Visible to the public Biblio

Found 299 results

Filters: First Letter Of Title is O  [Clear All Filters]
2023-09-08
Zhong, Luoyifan.  2022.  Optimization and Prediction of Intelligent Tourism Data. 2022 IEEE 8th Intl Conference on Big Data Security on Cloud (BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing, (HPSC) and IEEE Intl Conference on Intelligent Data and Security (IDS). :186–188.
Tourism is one of the main sources of income in Australia. The number of tourists will affect airlines, hotels and other stakeholders. Predicting the arrival of tourists can make full preparations for welcoming tourists. This paper selects Queensland Tourism data as intelligent data. Carry out data visualization around the intelligent data, establish seasonal ARIMA model, find out the characteristics and predict. In order to improve the accuracy of prediction. Based on the tourism data around Queensland, build a 10 layer Back Propagation neural network model. It is proved that the network shows good performance for the data prediction of this paper.
2023-08-25
Khujamatov, Halimjon, Lazarev, Amir, Akhmedov, Nurshod, Asenbaev, Nurbek, Bekturdiev, Aybek.  2022.  Overview Of Vanet Network Security. 2022 International Conference on Information Science and Communications Technologies (ICISCT). :1–6.
This article provides an overview of the security of VANET, which is a vehicle network. When reviewing this topic, publications of various researchers were considered. The article provides information security requirements for VANET, an overview of security research, an overview of existing attacks, methods for detecting attacks and appropriate countermeasures against such threats.
2023-08-23
Alja'afreh, Mohammad, Obaidat, Muath, Karime, Ali, Alouneh, Sahel.  2022.  Optimizing System-on-Chip Performance Using AI and SDN: Approaches and Challenges. 2022 Ninth International Conference on Software Defined Systems (SDS). :1—8.
The advancement of modern multimedia and data-intensive classes of applications demands the development of hardware that delivers better performance. Due to the evolution of 5G, Edge-Computing, the Internet of Things, Software-Defined networks, etc., the data produced by the devices such as sensors are increasing. A software-Defined network is a powerful paradigm that is capable of automating networking and cloud computing. Software-Defined Network has controllers, devices, and applications which produce a huge amount of data. The processing of data inside the device as well as between the devices needs a better hardware architecture with more cores to ensure speedy performance. The System-on-Chip approach alone will not be capable to handle this dense core comprised of hardware. We have to blend Network-on-Chip along with System-on-Chip to increase the potential to include more cores capable to handle more threads. Artificial Intelligence, a key enabler in next-generation devices is capable of producing a better architecture design with optimized performance. In this paper, we are discussing and endeavouring how System-on-Chip, Network-on-Chip, Software-Defined Networks, and Artificial Intelligence can be physically, logically, and contextually incorporated to deliver improved computation and networking outcomes.
2023-08-18
Zheng, Chengxu, Wang, Xiaopeng, Luo, Xiaoyu, Fang, Chongrong, He, Jianping.  2022.  An OpenPLC-based Active Real-time Anomaly Detection Framework for Industrial Control Systems. 2022 China Automation Congress (CAC). :5899—5904.
In recent years, the design of anomaly detectors has attracted a tremendous surge of interest due to security issues in industrial control systems (ICS). Restricted by hardware resources, most anomaly detectors can only be deployed at the remote monitoring ends, far away from the control sites, which brings potential threats to anomaly detection. In this paper, we propose an active real-time anomaly detection framework deployed in the controller of OpenPLC, which is a standardized open-source PLC and has high scalability. Specifically, we add adaptive active noises to control signals, and then identify a linear dynamic system model of the plant offline and implement it in the controller. Finally, we design two filters to process the estimated residuals based on the obtained model and use χ2 detector for anomaly detection. Extensive experiments are conducted on an industrial control virtual platform to show the effectiveness of the proposed detection framework.
2023-08-11
Patgiri, Ripon.  2022.  OSHA: A General-purpose and Next Generation One-way Secure Hash Algorithm. 2022 IEEE/ACIS 22nd International Conference on Computer and Information Science (ICIS). :25—33.
Secure hash functions are widely used in cryptographic algorithms to secure against diverse attacks. A one-way secure hash function is used in the various research fields to secure, for instance, blockchain. Notably, most of the hash functions provide security based on static parameters and publicly known operations. Consequently, it becomes easier to attack by the attackers because all parameters and operations are predefined. The publicly known parameters and predefined operations make the oracle regenerate the key even though it is a one-way secure hash function. Moreover, the sensitive data is mixed with the predefined constant where an oracle may find a way to discover the key. To address the above issues, we propose a novel one-way secure hash algorithm, OSHA for short, to protect sensitive data against attackers. OSHA depends on a pseudo-random number generator to generate a hash value. Particularly, OSHA mixes multiple pseudo-random numbers to produce a secure hash value. Furthermore, OSHA uses dynamic parameters, which is difficult for adversaries to guess. Unlike conventional secure hash algorithms, OSHA does not depend on fixed constants. It replaces the fixed constant with the pseudo-random numbers. Also, the input message is not mixed with the pseudo-random numbers; hence, there is no way to recover and reverse the process for the adversaries.
Zhu, Haiting, Wan, Junmei, Li, Nan, Deng, Yingying, He, Gaofeng, Guo, Jing, Zhang, Lu.  2022.  Odd-Even Hash Algorithm: A Improvement of Cuckoo Hash Algorithm. 2021 Ninth International Conference on Advanced Cloud and Big Data (CBD). :1—6.
Hash-based data structures and algorithms are currently flourishing on the Internet. It is an effective way to store large amounts of information, especially for applications related to measurement, monitoring and security. At present, there are many hash table algorithms such as: Cuckoo Hash, Peacock Hash, Double Hash, Link Hash and D-left Hash algorithm. However, there are still some problems in these hash table algorithms, such as excessive memory space, long insertion and query operations, and insertion failures caused by infinite loops that require rehashing. This paper improves the kick-out mechanism of the Cuckoo Hash algorithm, and proposes a new hash table structure- Odd-Even Hash (OE Hash) algorithm. The experimental results show that OE Hash algorithm is more efficient than the existing Link Hash algorithm, Linear Hash algorithm, Cuckoo Hash algorithm, etc. OE Hash algorithm takes into account the performance of both query time and insertion time while occupying the least space, and there is no insertion failure that leads to rehashing, which is suitable for massive data storage.
2023-08-03
Duan, Xiaowei, Han, Yiliang, Wang, Chao, Ni, Huanhuan.  2022.  Optimization of Encrypted Communication Model Based on Generative Adversarial Network. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :20–24.
With the progress of cryptography computer science, designing cryptographic algorithms using deep learning is a very innovative research direction. Google Brain designed a communication model using generation adversarial network and explored the encrypted communication algorithm based on machine learning. However, the encrypted communication model it designed lacks quantitative evaluation. When some plaintexts and keys are leaked at the same time, the security of communication cannot be guaranteed. This model is optimized to enhance the security by adjusting the optimizer, modifying the activation function, and increasing batch normalization to improve communication speed of optimization. Experiments were performed on 16 bits and 64 bits plaintexts communication. With plaintext and key leak rate of 0.75, the decryption error rate of the decryptor is 0.01 and the attacker can't guess any valid information about the communication.
2023-07-13
Jeyakumar, D, Chidambarathanu, K., Pradeepkumar, S., Anish, T.P..  2022.  OUTFS+. An Efficient User-Side Encrypted File System Using IBE With Parallel Encryption. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :760–766.
Cloud computing is a fast growing field that provides the user with resources like software, infrastructure and virtual hardware processing power. The steady rise of cloud computing in recent times allowed large companies and even individual users to move towards working with cloud storage systems. However, the risks of leakage of uploaded data in the cloud storage and the questions about the privacy of such systems are becoming a huge problem. Security incidents occur frequently everywhere around the world. Sometimes, data leak may occur at the server side by hackers for their own profit. Data being shared must be encrypted before outsourcing it to the cloud storage. Existing encryption/decryption systems utilize large computational power and have troubles managing the files. This paper introduces a file system that is a more efficient, virtual, with encryption/decryption scheme using parallel encryption. To make encryption and decryption of files easier, Parallel encryption is used in place of serial encryption which is integrated with Identity-Based Encryption in the file system. The proposed file system aims to secure files, reduce the chances of file stored in cloud storage getting leaked thus providing better security. The proposed file system, OutFS+, is more robust and secure than its predecessor, OutFS. Cloud outsourcing takes place faster and the files can be downloaded to the OutFS+ instance on the other side. Moreover, OutFS+ is secure since it is a virtual layer on the operating system and can be unmounted whenever the user wants to.
2023-07-11
Hammar, Kim, Stadler, Rolf.  2022.  An Online Framework for Adapting Security Policies in Dynamic IT Environments. 2022 18th International Conference on Network and Service Management (CNSM). :359—363.

We present an online framework for learning and updating security policies in dynamic IT environments. It includes three components: a digital twin of the target system, which continuously collects data and evaluates learned policies; a system identification process, which periodically estimates system models based on the collected data; and a policy learning process that is based on reinforcement learning. To evaluate our framework, we apply it to an intrusion prevention use case that involves a dynamic IT infrastructure. Our results demonstrate that the framework automatically adapts security policies to changes in the IT infrastructure and that it outperforms a state-of-the-art method.

2023-07-10
Dong, Yeting, Wang, Zhiwen, Guo, Wuyuan.  2022.  Overview of edge detection algorithms based on mathematical morphology. 2022 IEEE 6th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC ). :1321—1326.
Edge detection is the key and difficult point of machine vision and image processing technology. The traditional edge detection algorithm is sensitive to noise and it is difficult to accurately extract the edge of the image, so the effect of image processing is not ideal. To solve this problem, people in the industry use the structural element features of morphological edge detection operator to extract the edge features of the image by carefully designing and combining the structural elements of different sizes and directions, so as to effectively ensure the integrity of edge information in all directions and eliminate large noise at the same time. This paper first introduces the traditional edge detection algorithms, then summarizes the edge detection algorithms based on mathematical morphology in recent years, finds that the selection of multi-scale and multi-directional structural elements is an important research direction, and finally discusses the development trend of mathematical morphology edge detection technology.
2023-06-30
Libicki, Martin C..  2022.  Obnoxious Deterrence. 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:65–77.
The reigning U.S. paradigm for deterring malicious cyberspace activity carried out by or condoned by other countries is to levy penalties on them. The results have been disappointing. There is little evidence of the permanent reduction of such activity, and the narrative behind the paradigm presupposes a U.S./allied posture that assumes the morally superior role of judge upon whom also falls the burden of proof–-a posture not accepted but nevertheless exploited by other countries. In this paper, we explore an alternative paradigm, obnoxious deterrence, in which the United States itself carries out malicious cyberspace activity that is used as a bargaining chip to persuade others to abandon objectionable cyberspace activity. We then analyze the necessary characteristics of this malicious cyberspace activity, which is generated only to be traded off. It turns out that two fundamental criteria–that the activity be sufficiently obnoxious to induce bargaining but be insufficiently valuable to allow it to be traded away–may greatly reduce the feasibility of such a ploy. Even if symmetric agreements are easier to enforce than pseudo-symmetric agreements (e.g., the XiObama agreement of 2015) or asymmetric red lines (e.g., the Biden demand that Russia not condone its citizens hacking U.S. critical infrastructure), when violations occur, many of today’s problems recur. We then evaluate the practical consequences of this approach, one that is superficially attractive.
ISSN: 2325-5374
2023-06-29
Bodapati, Nagaeswari, Pooja, N., Varshini, E. Amrutha, Jyothi, R. Naga Sravana.  2022.  Observations on the Theory of Digital Signatures and Cryptographic Hash Functions. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1–5.
As the demand for effective information protection grows, security has become the primary concern in protecting such data from attackers. Cryptography is one of the methods for safeguarding such information. It is a method of storing and distributing data in a specific format that can only be read and processed by the intended recipient. It offers a variety of security services like integrity, authentication, confidentiality and non-repudiation, Malicious. Confidentiality service is required for preventing disclosure of information to unauthorized parties. In this paper, there are no ideal hash functions that dwell in digital signature concepts is proved.
2023-06-22
Black, Samuel, Kim, Yoohwan.  2022.  An Overview on Detection and Prevention of Application Layer DDoS Attacks. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0791–0800.
Distributed Denial-of-Service (DDoS) attacks aim to cause downtime or a lack of responsiveness for web services. DDoS attacks targeting the application layer are amongst the hardest to catch as they generally appear legitimate at lower layers and attempt to take advantage of common application functionality or aspects of the HTTP protocol, rather than simply send large amounts of traffic like with volumetric flooding. Attacks can focus on functionality such as database operations, file retrieval, or just general backend code. In this paper, we examine common forms of application layer attacks, preventative and detection measures, and take a closer look specifically at HTTP Flooding attacks by the High Orbit Ion Cannon (HOIC) and “low and slow” attacks through slowloris.
2023-05-26
Wang, Changjiang, Yu, Chutian, Yin, Xunhu, Zhang, Lijun, Yuan, Xiang, Fan, Mingxia.  2022.  An Optimal Planning Model for Cyber-physical Active Distribution System Considering the Reliability Requirements. 2022 4th International Conference on Smart Power & Internet Energy Systems (SPIES). :1476—1480.
Since the cyber and physical layers in the distribution system are deeply integrated, the traditional distribution system has gradually developed into the cyber-physical distribution system (CPDS), and the failures of the cyber layer will affect the reliable and safe operation of the whole distribution system. Therefore, this paper proposes an CPDS planning method considering the reliability of the cyber-physical system. First, the reliability evaluation model of CPDS is proposed. Specifically, the functional reliability model of the cyber layer is introduced, based on which the physical equipment reliability model is further investigated. Second, an optimal planning model of CPDS considering cyber-physical random failures is developed, which is solved using the Monte Carlo Simulation technique. The proposed model is tested on the modified IEEE 33-node distribution system, and the results demonstrate the effectiveness of the proposed method.
2023-05-12
Pupezescu, Valentin, Pupezescu, Marilena-Cătălina, Perișoară, Lucian-Andrei.  2022.  Optimizations of Database Management Systems for Real Time IoT Edge Applications. 2022 23rd International Carpathian Control Conference (ICCC). :171–176.

The exponential growth of IoT-type systems has led to a reconsideration of the field of database management systems in terms of storing and handling high-volume data. Recently, many real-time Database Management Systems(DBMS) have been developed to address issues such as security, managing concurrent access to stored data, and optimizing data query performance. This paper studies methods that allow to reduce the temporal validity range for common DBMS. The primary purpose of IoT edge devices is to generate data and make it available for machine learning or statistical algorithms. This is achieved inside the Knowledge Discovery in Databases process. In order to visualize and obtain critical Data Mining results, all the device-generated data must be made available as fast as possible for selection, preprocessing and data transformation. In this research we investigate if IoT edge devices can be used with common DBMS proper configured in order to access data fast instead of working with Real Time DBMS. We will study what kind of transactions are needed in large IoT ecosystems and we will analyze the techniques of controlling concurrent access to common resources (stored data). For this purpose, we built a series of applications that are able to simulate concurrent writing operations to a common DBMS in order to investigate the performance of concurrent access to database resources. Another important procedure that will be tested with the developed applications will be to increase the availability of data for users and data mining applications. This will be achieved by using field indexing.

Germanà, Roberto, Giuseppi, Alessandro, Pietrabissa, Antonio, Di Giorgio, Alessandro.  2022.  Optimal Energy Storage System Placement for Robust Stabilization of Power Systems Against Dynamic Load Altering Attacks. 2022 30th Mediterranean Conference on Control and Automation (MED). :821–828.
This paper presents a study on the "Dynamic Load Altering Attacks" (D-LAAs), their effects on the dynamics of a transmission network, and provides a robust control protection scheme, based on polytopic uncertainties, invariance theory, Lyapunov arguments and graph theory. The proposed algorithm returns an optimal Energy Storage Systems (ESSs) placement, that minimizes the number of ESSs placed in the network, together with the associated control law that can robustly stabilize against D-LAAs. The paper provides a contextualization of the problem and a modelling approach for power networks subject to D-LAAs, suitable for the designed robust control protection scheme. The paper also proposes a reference scenario for the study of the dynamics of the control actions and their effects in different cases. The approach is evaluated by numerical simulations on large networks.
ISSN: 2473-3504
2023-04-28
Li, Zhiyu, Zhou, Xiang, Weng, Wenbin.  2022.  Operator Partitioning and Parallel Scheduling Optimization for Deep Learning Compiler. 2022 IEEE 5th International Conference on Automation, Electronics and Electrical Engineering (AUTEEE). :205–211.
TVM(tensor virtual machine) as a deep learning compiler which supports the conversion of machine learning models into TVM IR(intermediate representation) and to optimise the generation of high-performance machine code for various hardware platforms. While the traditional approach is to parallelise the cyclic transformations of operators, in this paper we partition the implementation of the operators in the deep learning compiler TVM with parallel scheduling to derive a faster running time solution for the operators. An optimisation algorithm for partitioning and parallel scheduling is designed for the deep learning compiler TVM, where operators such as two-dimensional convolutions are partitioned into multiple smaller implementations and several partitioned operators are run in parallel scheduling to derive the best operator partitioning and parallel scheduling decisions by means of performance estimation. To evaluate the effectiveness of the algorithm, multiple examples of the two-dimensional convolution operator, the average pooling operator, the maximum pooling operator, and the ReLU activation operator with different input sizes were tested on the CPU platform, and the performance of these operators was experimentally shown to be improved and the operators were run speedily.
2023-04-14
Domukhovskii, Nikolai.  2022.  Optimal Attack Chain Building Algorithm. 2022 Ural-Siberian Conference on Biomedical Engineering, Radioelectronics and Information Technology (USBEREIT). :317–319.
Traditional risk assessment process based on knowledge of threat occurrence probability against every system’s asset. One should consider asset placement, applied security measures on asset and network levels, adversary capabilities and so on: all of that has significant influence on probability value. We can measure threat probability by modelling complex attack process. Such process requires creating an attack tree, which consist of elementary attacks against different assets and relations between elementary attacks and impact on influenced assets. However, different attack path may lead to targeted impact – so task of finding optimal attack chain on a given system topology emerges. In this paper method for complex attack graph creation presented, allowing automatic building various attack scenarios for a given system. Assuming that exploits of particular vulnerabilities represent by independent events, we can compute the overall success probability of a complex attack as the product of the success probabilities of exploiting individual vulnerabilities. This assumption makes it possible to use algorithms for finding the shortest paths on a directed graph to find the optimal chain of attacks for a given adversary’s target.
2023-03-31
Chapman, Jon, Venugopalan, Hari.  2022.  Open Source Software Computed Risk Framework. 2022 IEEE 17th International Conference on Computer Sciences and Information Technologies (CSIT). :172–175.
The increased dissemination of open source software to a broader audience has led to a proportional increase in the dissemination of vulnerabilities. These vulnerabilities are introduced by developers, some intentionally or negligently. In this paper, we work to quantity the relative risk that a given developer represents to a software project. We propose using empirical software engineering based analysis on the vast data made available by GitHub to create a Developer Risk Score (DRS) for prolific contributors on GitHub. The DRS can then be aggregated across a project as a derived vulnerability assessment, we call this the Computational Vulnerability Assessment Score (CVAS). The CVAS represents the correlation between the Developer Risk score across projects and vulnerabilities attributed to those projects. We believe this to be a contribution in trying to quantity risk introduced by specific developers across open source projects. Both of the risk scores, those for contributors and projects, are derived from an amalgamation of data, both from GitHub and outside GitHub. We seek to provide this risk metric as a force multiplier for the project maintainers that are responsible for reviewing code contributions. We hope this will lead to a reduction in the number of introduced vulnerabilities for projects in the Open Source ecosystem.
ISSN: 2766-3639
Premalatha, N., Sujatha, S..  2022.  An Optimization driven – Deep Belief Neural Network Model for Prediction of Employment Status after Graduation. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). :1–5.
Higher education management has problems producing 100% of graduates capable of responding to the needs of industry while industry also is struggling to find qualified graduates that responded to their needs in part because of the inefficient way of evaluating problems, as well as because of weaknesses in the evaluation of problem-solving capabilities. The objective of this paper is to propose an appropriate classification model to be used for predicting and evaluating the attributes of the data set of the student in order to meet the selection criteria required by the industries in the academic field. The dataset required for this analysis was obtained from a private firm and the execution was carried out using Chimp Optimization Algorithm (COA) based Deep Belief Neural Network (COA-DBNN) and the obtained results are compared with various classifiers such as Logistic Regression (LR), Decision Tree (DT) and Random Forest (RF). The proposed model outperforms other classifiers in terms of various performance metrics. This critical analysis will help the college management to make a better long-term plan for producing graduates who are skilled, knowledgeable and fulfill the industry needs as well.
2023-03-17
Pardee, Jessica W., Schneider, Jennifer, Lam, Cindy.  2022.  Operationalizing Resiliency among Childcare Providers during the COVID-19 Pandemic. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1–7.
Childcare, a critical infrastructure, played an important role to create community resiliency during the COVID-19 pandemic. By finding pathways to remain open, or rapidly return to operations, the adaptive capacity of childcare providers to offer care in the face of unprecedented challenges functioned to promote societal level mitigation of the COVID-19 pandemic impacts, to assist families in their personal financial recoveries, and to provide consistent, caring, and meaningful educational experiences for society's youngest members. This paper assesses the operational adaptations of childcare centers as a key resource and critical infrastructure during the COVID-19 pandemic in the Greater Rochester, NY metropolitan region. Our findings evaluate the policy, provider mitigation, and response actions documenting the challenges they faced and the solutions they innovated. Implications for this research extend to climate-induced disruptions, including fires, water shortages, electric grid cyberattacks, and other disruptions where extended stay-at-home orders or service critical interventions are implemented.
2023-02-17
Liu, Xuanyu, Cheng, Guozhen, Wang, Yawen, Zhang, Shuai.  2022.  Overview of Scientific Workflow Security Scheduling in Clouds. 2021 International Conference on Advanced Computing and Endogenous Security. :1–6.
With the development of cloud computing technology, more and more scientific researchers choose to deliver scientific workflow tasks to public cloud platforms for execution. This mode effectively reduces scientific research costs while also bringing serious security risks. In response to this problem, this article summarizes the current security issues facing cloud scientific workflows, and analyzes the importance of studying cloud scientific workflow security issues. Then this article analyzes, summarizes and compares the current cloud scientific workflow security methods from three perspectives: system architecture, security model, and security strategy. Finally made a prospect for the future development direction.
2023-02-03
Sarapan, Waranyu, Boonrakchat, Nonthakorn, Paudel, Ashok, Booraksa, Terapong, Boonraksa, Promphak, Marungsri, Boonruang.  2022.  Optimal Peer-to-Peer Energy Trading by Applying Blockchain to Islanded Microgrid Considering V2G. 2022 19th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON). :1–4.
Energy trading in small groups or microgrids is interesting to study. The energy market may overgrow in the future, so accessing the energy market by small prosumers may not be difficult anymore. This paper has modeled a decentralized P2P energy trading and exchange system in a microgrid group. The Islanded microgrid system is simulated to create a small energy producer and consumer trading situation. The simulation results show the increasing energy transactions and profit when including V2G as an energy storage device. In addition, blockchain is used for system security because a peer-to-peer marketplace has no intermediary control.
Kiruba, B., Saravanan, V., Vasanth, T., Yogeshwar, B.K..  2022.  OWASP Attack Prevention. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1671–1675.
The advancements in technology can be seen in recent years, and people have been adopting the emerging technologies. Though people rely upon these advancements, many loopholes can be seen if you take a particular field, and attackers are thirsty to steal personal data. There has been an increasing number of cyber threats and breaches happening worldwide, primarily for fun or for ransoms. Web servers and sites of the users are being compromised, and they are unaware of the vulnerabilities. Vulnerabilities include OWASP's top vulnerabilities like SQL injection, Cross-site scripting, and so on. To overcome the vulnerabilities and protect the site from getting down, the proposed work includes the implementation of a Web Application Firewall focused on the Application layer of the OSI Model; the product protects the target web applications from the Common OWASP security vulnerabilities. The Application starts analyzing the incoming and outgoing requests generated from the traffic through the pre-built Application Programming Interface. It compares the request and parameter with the algorithm, which has a set of pre-built regex patterns. The outcome of the product is to detect and reject general OWASP security vulnerabilities, helping to secure the user's business and prevent unauthorized access to sensitive data, respectively.
2023-01-05
Yang, Haonan, Zhong, Yongchao, Yang, Bo, Yang, Yiyu, Xu, Zifeng, Wang, Longjuan, Zhang, Yuqing.  2022.  An Overview of Sybil Attack Detection Mechanisms in VFC. 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshops (DSN-W). :117–122.
Vehicular Fog Computing (VFC) has been proposed to address the security and response time issues of Vehicular Ad Hoc Networks (VANETs) in latency-sensitive vehicular network environments, due to the frequent interactions that VANETs need to have with cloud servers. However, the anonymity protection mechanism in VFC may cause the attacker to launch Sybil attacks by fabricating or creating multiple pseudonyms to spread false information in the network, which poses a severe security threat to the vehicle driving. Therefore, in this paper, we summarize different types of Sybil attack detection mechanisms in VFC for the first time, and provide a comprehensive comparison of these schemes. In addition, we also summarize the possible impacts of different types of Sybil attacks on VFC. Finally, we summarize challenges and prospects of future research on Sybil attack detection mechanisms in VFC.