Biblio
This paper describes a realisation of a ResNet face recognition method through Zigbee-based wireless protocol. The system uses a CC2530 Zigbee-based radio frequency chip with connected VC0706 camera on it. The Arduino Nano had been used for organisation of data compression and effective division of Zigbee packets. The proposed solution also simplifies a data transmission within a strict bandwidth of Zigbee protocol and reliable packet forwarding in case of frequency distortion. The following investigation model uses Raspberry Pi 3 with connected Zigbee End Device (ZED) for successful receiving of important images and acceleration of deep learning interfaces. The model is integrated into a smart security system based on Zigbee modules, MySQL database, Android application and works in the background by using daemons procedures. To protect data, all wireless connections had been encrypted by the 128-bit Advanced Encryption Standard (AES-128) algorithm. Experimental results show a possibility to implement complex systems under restricted requirements of available transmission protocols.
In Robotics Operating System Process correspondence is the instrument given by the working framework that enables procedures to speak with one another Message passing model enables different procedures to peruse and compose information to the message line without being associated with one another, messages going between Robots. ROS is intended to be an inexactly coupled framework where a procedure is known as a hub and each hub ought to be answerable for one assignment. In the military application robots will go to go about as an officer and going ensure nation. In the referenced idea robot solider will give the message passing idea then the officers will go caution and start assaulting on the foes.
Attacks by Jamming on wireless communication network can provoke Denial of Services. According to the communication system which is affected, the consequences can be more or less critical. In this paper, we propose to develop an algorithm which could be implemented at the reception stage of a communication terminal in order to detect the presence of jamming signals. The work is performed on Wi-Fi communication signals and demonstrates the necessity to have a specific signal processing at the reception stage to be able to detect the presence of jamming signals.
Selecting the best path in multi-path heterogeneous networks is challenging. Multi-path TCP uses by default a scheduler that selects the path with the minimum round trip time (minRTT). A well-known problem is head-of-line blocking at the receiver when packets arrive out of order on different paths. We shed light on another issue that occurs if scheduling have to deal with deep queues in the network. First, we highlight the relevance by a real-world experiment in cellular networks that often deploy deep queues. Second, we elaborate on the issues with minRTT scheduling and deep queues in a simplified network to illustrate the root causes; namely the interaction of the minRTT scheduler and loss-based congestion control that causes extensive bufferbloat at network elements and distorts RTT measurement. This results in extraordinary large buffer sizes for full utilization. Finally, we discuss mitigation techniques and show how alternative congestion control algorithms mitigate the effect.
With the rapid progression of Information and Communication Technology (ICT) and especially of Internet of Things (IoT), the conventional electrical grid is transformed into a new intelligent paradigm, known as Smart Grid (SG). SG provides significant benefits both for utility companies and energy consumers such as the two-way communication (both electricity and information), distributed generation, remote monitoring, self-healing and pervasive control. However, at the same time, this dependence introduces new security challenges, since SG inherits the vulnerabilities of multiple heterogeneous, co-existing legacy and smart technologies, such as IoT and Industrial Control Systems (ICS). An effective countermeasure against the various cyberthreats in SG is the Intrusion Detection System (IDS), informing the operator timely about the possible cyberattacks and anomalies. In this paper, we provide an anomaly-based IDS especially designed for SG utilising operational data from a real power plant. In particular, many machine learning and deep learning models were deployed, introducing novel parameters and feature representations in a comparative study. The evaluation analysis demonstrated the efficacy of the proposed IDS and the improvement due to the suggested complex data representation.
Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.
The globalization of supply chain makes semiconductor chips susceptible to various security threats. Design obfuscation techniques have been widely investigated to thwart intellectual property (IP) piracy attacks. Key distribution among IP providers, system integration team, and end users remains as a challenging problem. This work proposes an orthogonal obfuscation method, which utilizes an orthogonal matrix to authenticate obfuscation keys, rather than directly examining each activation key. The proposed method hides the keys by using an orthogonal obfuscation algorithm to increasing the key retrieval time, such that the primary keys for IP cores will not be leaked. The simulation results show that the proposed method reduces the key retrieval time by 36.3% over the baseline. The proposed obfuscation methods have been successfully applied to ISCAS'89 benchmark circuits. Experimental results indicate that the orthogonal obfuscation only increases the area by 3.4% and consumes 4.7% more power than the baseline1.
Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.