Cryptography, applied

group_project

Visible to the public TWC: Small: Better Security for Efficient Secret-Key Cryptography

Present-day cryptography crucially relies on secret-key cryptography, the setting where communicating parties use a shared secret key, hidden to the attacker, to securely encrypt and/or authenticate data. Secret-key cryptography is based on standardized efficient algorithms known as cryptographic primitives, such as block ciphers and hash functions. These act as building blocks for so-called modes of operations, cryptographic algorithms achieving strong security goals for encryption and authentication, and which are orders of magnitude faster than public-key ones.

group_project

Visible to the public TWC: Medium: Automating Countermeasures and Security Evaluation Against Software Side-channel Attacks

Side-channel attacks (SCA) have been a realistic threat to various cryptographic implementations that do not feature dedicated protection. While many effective countermeasures have been found and applied manually, they are application-specific and labor intensive. In addition, security evaluation tends to be incomplete, with no guarantee that all the vulnerabilities in the target system have been identified and addressed by such manual countermeasures.

group_project

Visible to the public CAREER: Cryptography for Secure Outsourcing

Individuals and organizations routinely trust third party providers to hold sensitive data, putting it at risk of exposure. While the data could be encrypted under a key that is kept secret from the provider, it rarely is, due to the inconvenience and increased cost of managing the cryptography. This project will develop technologies for working with encrypted data efficiently and conveniently. In particular, it will enable searching on encrypted data, which is prevented by currently deployed encryption, and running arbitrary programs efficiently on encrypted data.

group_project

Visible to the public TWC: TTP Option: Frontier: Collaborative: MACS: A Modular Approach to Cloud Security

The goal of the Modular Approach to Cloud Security (MACS) project is to develop methods for building information systems with meaningful multi-layered security guarantees. The modular approach of MACS focuses on systems that are built from smaller and separable functional components, where the security of each component is asserted individually, and where the security of the system as a whole can be derived from the security of its components. The project concentrates on building outsourced, cloud-based information services with client-centric security guarantees.

group_project

Visible to the public TWC: Medium: Collaborative: The Theory and Practice of Key Derivation

Most cryptographic applications crucially rely on secret keys that are chosen randomly and are unknown to an attacker. Unfortunately, the process of deriving secret keys in practice is often difficult, error-prone and riddled with security vulnerabilities. Badly generated keys offer a prevalent source of attacks that render complex cryptographic applications completely insecure, despite their sophisticated design and rigorous mathematical analysis.

group_project

Visible to the public STARSS: Small: SecureDust - The Physical Limits of Information Security

Truly ubiquitous computing with very small, self-powered and wirelessly networked integrated circuits will become possible within a decade. Applications of these devices include biosensors, environmental monitors, and defense, all of which bring a need for security and privacy. Enabling the use of strong cryptographic algorithms on extremely constrained devices requires rethinking, from an energy-first perspective, the design and implementation of basic cryptographic building blocks.

group_project

Visible to the public TWC: Option: Medium: Collaborative: Authenticated Ciphers

OpenSSH reveals excerpts from encrypted login sessions. TLS (HTTPS) reveals encrypted PayPal account cookies. DTLS is no better. EAXprime allows instantaneous forgeries. RFID security has been broken again and again. All of these failures of confidentiality and integrity are failures of authenticated ciphers: algorithms that promise to encrypt and authenticate messages using a shared secret key.

group_project

Visible to the public TWC: Frontier: Collaborative: CORE: Center for Encrypted Functionalities

The Center for Encrypted Functionalities (CORE) tackles the deep and far-reaching problem of general-purpose "program obfuscation," which aims to enhance cybersecurity by making an arbitrary computer program unintelligible while preserving its functionality.

group_project

Visible to the public TWC: Frontier: Collaborative: CORE: Center for Encrypted Functionalities

The Center for Encrypted Functionalities (CORE) tackles the deep and far-reaching problem of general-purpose "program obfuscation," which aims to enhance cybersecurity by making an arbitrary computer program unintelligible while preserving its functionality.

group_project

Visible to the public STARSS: TTP Option: Small: A Quantum Approach to Hardware Security: from Theory to Optical Implementation

The problem of ensuring that computer hardware is not surreptitiously malicious is a growing concern. The case of random number generators (RNGs) is particularly important because random numbers are foundational to information security. All current solutions in practice require trusting the hardware, and are therefore vulnerable to hardware attacks. This project explores a quantum-based solution to hardware security by designing and implementing a new class of RNGs that can prove their own integrity to the user.