Biblio
Differential privacy is an approach that preserves patient privacy while permitting researchers access to medical data. This paper presents mechanisms proposed to satisfy differential privacy while answering a given workload of range queries. Representing input data as a vector of counts, these methods partition the vector according to relationships between the data and the ranges of the given queries. After partitioning the vector into buckets, the counts of each bucket are estimated privately and split among the bucket's positions to answer the given query set. The performance of the proposed method was evaluated using different workloads over several attributes. The results show that partitioning the vector based on the data can produce more accurate answers, while partitioning the vector based on the given workload improves privacy. This paper's two main contributions are: (1) improving earlier work on partitioning mechanisms by building a greedy algorithm to partition the counts' vector efficiently, and (2) its adaptive algorithm considers the sensitivity of the given queries before providing results.
Phishing is referred as an attempt to obtain sensitive information, such as usernames, passwords, and credit card details (and, indirectly, money), for malicious reasons, by disguising as a trustworthy entity in an electronic communication [1]. Hackers and malicious users, often use Emails as phishing tools to obtain the personal data of legitimate users, by sending Emails with authentic identities, legitimate content, but also with malicious URL, which help them to steal consumer's data. The high dimensional data in phishing context contains large number of redundant features that significantly elevate the classification error. Additionally, the time required to perform classification increases with the number of features. So extracting complex Features from phishing Emails requires us to determine which Features are relevant and fundamental in phishing detection. The dominant approaches in phishing are based on machine learning techniques; these rely on manual feature engineering, which is time consuming. On the other hand, deep learning is a promising alternative to traditional methods. The main idea of deep learning techniques is to learn complex features extracted from data with minimum external contribution [2]. In this paper, we propose new phishing detection and prevention approach, based first on our previous spam filter [3] to classify textual content of Email. Secondly it's based on Autoencoder and on Denoising Autoencoder (DAE), to extract relevant and robust features set of URL (to which the website is actually directed), therefore the features space could be reduced considerably, and thus decreasing the phishing detection time.
We study the notion of stability and perturbation resilience introduced by Bilu and Linial (2010) and Awasthi, Blum, and Sheffet (2012). A combinatorial optimization problem is α-stable or α-perturbation-resilient if the optimal solution does not change when we perturb all parameters of the problem by a factor of at most α. In this paper, we give improved algorithms for stable instances of various clustering and combinatorial optimization problems. We also prove several hardness results. We first give an exact algorithm for 2-perturbation resilient instances of clustering problems with natural center-based objectives. The class of clustering problems with natural center-based objectives includes such problems as k-means, k-median, and k-center. Our result improves upon the result of Balcan and Liang (2016), who gave an algorithm for clustering 1+â2â2.41 perturbation-resilient instances. Our result is tight in the sense that no polynomial-time algorithm can solve (2âε)-perturbation resilient instances of k-center unless NP = RP, as was shown by Balcan, Haghtalab, and White (2016). We then give an exact algorithm for (2â2/k)-stable instances of Minimum Multiway Cut with k terminals, improving the previous result of Makarychev, Makarychev, and Vijayaraghavan (2014), who gave an algorithm for 4-stable instances. We also give an algorithm for (2â2/k+δ)-weakly stable instances of Minimum Multiway Cut. Finally, we show that there are no robust polynomial-time algorithms for n1âε-stable instances of Set Cover, Minimum Vertex Cover, and Min 2-Horn Deletion (unless P = NP).
Security protection is a concern for the Internet of Things (IoT) which performs data exchange autonomously over the internet for remote monitoring, automation and other applications. IoT implementations has raised concerns over its security and various research has been conducted to find an effective solution for this. Thus, this work focus on the analysis of an asymmetric encryption scheme, AA-Beta (AAβ) on a platform constrained in terms of processor capability, storage and random access Memory (RAM). For this work, the platform focused is ARM Cortex-M7 microcontroller. The encryption and decryption's performance on the embedded microcontroller is realized and time executed is measured. By enabled the I-Cache (Instruction cache) and D-Cache (Data Cache), the performances are 50% faster compared to disabled the D-Cache and I-Cache. The performance is then compared to our previous work on System on Chip (SoC). This is to analyze the gap of the SoC that has utilized the full GNU Multiple Precision Arithmetic Library (GMP) package versus ARM Cortex-M7 that using the mini-gmp package in term of the footprint and the actual performance.
The collection of high frequency metering data in the emerging smart grid gives rise to the concern of consumer privacy. Anonymization of metering data is one of the proposed approaches in the literature, which enables transmission of unmasked data while preserving the privacy of the sender. Distributed anonymization methods can reduce the dependency on service providers, thus promising more privacy for the consumers. However, the distributed communication among the end-users introduces overhead and requires methods to prevent external attacks. In this paper, we propose four variants of a distributed anonymization method for smart metering data privacy, referred to as the Collaborative Anonymity Set Formation (CASF) method. The performance overhead analysis and security analysis of the variants are done using NS-3 simulator and the Scyther tool, respectively. It is shown that the proposed scheme enhances the privacy preservation functionality of an existing anonymization scheme, while being robust against external attacks.
Industrial networking has many issues based on the type of industries, data storage, data centers, and cloud computing, etc. Green data storage improves the scientific, commercial and industrial profile of the networking. Future industries are looking for cybersecurity solution with the low-cost resources in which the energy serving is the main problem in the industrial networking. To improve these problems, green data storage will be the priority because data centers and cloud computing deals with the data storage. In this analysis, we have decided to use solar energy source and different light rays as methodologies include a prism and the Li-Fi techniques. In this approach, light rays sent through the prism which allows us to transmit the data with different frequencies. This approach provides green energy and maximum protection within the data center. As a result, we have illustrated that cloud services within the green data center in industrial networking will achieve better protection with the low-cost energy through this analysis. Finally, we have to conclude that Li-Fi enhances the use of green energy and protection which are advantages to current and future industrial networking.
Guidelines, directives, and policy statements are usually presented in ``linear'' text form - word after word, page after page. However necessary, this practice impedes full understanding, obscures feedback dynamics, hides mutual dependencies and cascading effects and the like, - even when augmented with tables and diagrams. The net result is often a checklist response as an end in itself. All this creates barriers to intended realization of guidelines and undermines potential effectiveness. We present a solution strategy using text as ``data'', transforming text into a structured model, and generate a network views of the text(s), that we then can use for vulnerability mapping, risk assessments and control point analysis. We apply this approach using two NIST reports on cybersecurity of smart grid, more than 600 pages of text. Here we provide a synopsis of approach, methods, and tools. (Elsewhere we consider (a) system-wide level, (b) aviation e-landscape, (c) electric vehicles, and (d) SCADA for smart grid).
Integration of information technologies with the current power infrastructure promises something further than a smart grid: implementation of smart cities. Power efficient cities will be a significant step toward greener cities and a cleaner environment. However, the extensive use of information technologies in smart cities comes at a cost of reduced privacy. In particular, consumers' power profiles will be accessible by third parties seeking information over consumers' personal habits. In this paper, a methodology for enhancing privacy of electricity consumption patterns is proposed and tested. The proposed method exploits digital connectivity and predictive tools offered via smart grids to morph consumption patterns by grouping consumers via an optimization scheme. To that end, load anticipation, correlation and Theil coefficients are utilized synergistically with genetic algorithms to find an optimal assembly of consumers whose aggregated pattern hides individual consumption features. Results highlight the efficiency of the proposed method in enhancing privacy in the environment of smart cities.
Due to the growing performance requirements, embedded systems are increasingly more complex. Meanwhile, they are also expected to be reliable. Guaranteeing reliability on complex systems is very challenging. Consequently, there is a substantial need for designs that enable the use of unverified components such as real-time operating system (RTOS) without requiring their correctness to guarantee safety. In this work, we propose a novel approach to design a controller that enables the system to restart and remain safe during and after the restart. Complementing this controller with a switching logic allows the system to use complex, unverified controller to drive the system as long as it does not jeopardize safety. Such a design also tolerates faults that occur in the underlying software layers such as RTOS and middleware and recovers from them through system-level restarts that reinitialize the software (middleware, RTOS, and applications) from a read-only storage. Our approach is implementable using one commercial off-the-shelf (COTS) processing unit. To demonstrate the efficacy of our solution, we fully implement a controller for a 3 degree of freedom (3DOF) helicopter. We test the system by injecting various types of faults into the applications and RTOS and verify that the system remains safe.
Predict software program reliability turns into a completely huge trouble in these days. Ordinary many new software programs are introducing inside the marketplace and some of them dealing with failures as their usage/managing is very hard. and plenty of shrewd strategies are already used to are expecting software program reliability. In this paper we're giving a sensible knowledge and the difference among those techniques with my new method. As a result, the prediction fashions constructed on one dataset display a extensive decrease in their accuracy when they are used with new statistics. The aim of this assessment, SE issues which can be of sensible importance are software development/cost estimation, software program reliability prediction, and so forth, and also computing its broaden computational equipment with enhanced power, scalability, flexibility and that can engage more successfully with human beings.



