Biblio
Filters: First Letter Of Last Name is A [Clear All Filters]
.
2017. A Genetic Programming Ensemble Method for Learning Dynamical System Models. Proceedings of the 8th International Conference on Computer Modeling and Simulation. :47–51.
Modelling complex dynamical systems plays a crucial role to understand several phenomena in different domains such as physics, engineering, biology and social sciences. In this paper, a genetic programming ensemble method is proposed to learn complex dynamical systems' underlying mathematical models, represented as differential equations, from systems' time series observations. The proposed method relies on decomposing the modelling space based on given variable dependencies. An ensemble of learners is then applied in this decomposed space and their output is combined to generate the final model. Two examples of complex dynamical systems are used to test the performance of the proposed methodology where the standard genetic programming method has struggled to find matching model equations. The empirical results show the effectiveness of the proposed methodology in learning closely matching structure of almost all system equations.
.
2017. Hardware Support for Secure Stream Processing in Cloud Environments. Proceedings of the Computing Frontiers Conference. :283–286.
Many-core microprocessor architectures are quickly becoming prevalent in data centers, due to their demonstrated processing power and network flexibility. However, this flexibility comes at a cost; co-mingled data from disparate users must be kept secure, which forces processor cycles to be wasted on cryptographic operations. This paper introduces a novel, secure, stream processing architecture which supports efficient homomorphic authentication of data and enforces secrecy of individuals' data. Additionally, this architecture is shown to secure time-series analysis of data from multiple users from both corruption and disclosure. Hardware synthesis shows that security-related circuitry incurs less than 10% overhead, and latency analysis shows an increase of 2 clocks per hop. However, despite the increase in latency, the proposed architecture shows an improvement over stream processing systems that use traditional security methods.
.
2017. Hiding in Plain Sight: A Longitudinal Study of Combosquatting Abuse. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :569–586.
Domain squatting is a common adversarial practice where attackers register domain names that are purposefully similar to popular domains. In this work, we study a specific type of domain squatting called "combosquatting," in which attackers register domains that combine a popular trademark with one or more phrases (e.g., betterfacebook[.]com, youtube-live[.]com). We perform the first large-scale, empirical study of combosquatting by analyzing more than 468 billion DNS records - collected from passive and active DNS data sources over almost six years. We find that almost 60% of abusive combosquatting domains live for more than 1,000 days, and even worse, we observe increased activity associated with combosquatting year over year. Moreover, we show that combosquatting is used to perform a spectrum of different types of abuse including phishing, social engineering, affiliate abuse, trademark abuse, and even advanced persistent threats. Our results suggest that combosquatting is a real problem that requires increased scrutiny by the security community.
.
2017. High Level Design of a Home Autonomous System Based on Cyber Physical System Modeling. 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW). :45–52.
The process used to build an autonomous smart home system using Cyber-Physical Systems (CPS) principles has received much attention by researchers and developers. However, there are many challenges during the design and implementation of such a system, such as Portability, Timing, Prediction, and Integrity. This paper presents a novel modeling methodology for a smart home system in the scope of CyberPhysical interface that attempts to overcome these issues. We discuss a high-level design approach that simulates the first three levels of a 5C architecture in CPS layers in a smart home environment. A detailed description of the model design, architecture, and a software implementation via NetLogo simulation have been presented in this paper.
.
2017. Identifying security vulnerabilities of weakly detectable network parameter errors. 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :295–301.
This paper is concerned about the security vulnerabilities in the implementation of the Congestion Revenue Rights (CRR) markets. Such problems may be due to the weakly detectable network model parameter errors which are commonly found in power systems. CRRs are financial tools for hedging the risk of congestion charges in power markets. The reimbursements received by CRR holders are determined by the congestion patterns and Locational Marginal Prices (LMPs) in the day-ahead markets, which heavily rely on the parameters in the network model. It is recently shown that detection of errors in certain network model parameters may be very difficult. This paper's primary goal is to illustrate the lack of market security due to such vulnerabilities, i.e. CRR market calculations can be manipulated by injecting parameter errors which are not likely to be detected. A case study using the IEEE 14-bus system will illustrate the feasibility of such undetectable manipulations. Several suggestions for preventing such cyber security issues are provided at the end of the paper.
.
2017. Infrasonic scene fingerprinting for authenticating speaker location. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :361–365.
Ambient infrasound with frequency ranges well below 20 Hz is known to carry robust navigation cues that can be exploited to authenticate the location of a speaker. Unfortunately, many of the mobile devices like smartphones have been optimized to work in the human auditory range, thereby suppressing information in the infrasonic region. In this paper, we show that these ultra-low frequency cues can still be extracted from a standard smartphone recording by using acceleration-based cepstral features. To validate our claim, we have collected smartphone recordings from more than 30 different scenes and used the cues for scene fingerprinting. We report scene recognition rates in excess of 90% and a feature set analysis reveals the importance of the infrasonic signatures towards achieving the state-of-the-art recognition performance.
.
2017. Insider Threat Detection with Face Recognition and KNN User Classification. 2017 IEEE International Conference on Cloud Computing in Emerging Markets (CCEM). :39—44.
Information Security in cloud storage is a key trepidation with regards to Degree of Trust and Cloud Penetration. Cloud user community needs to ascertain performance and security via QoS. Numerous models have been proposed [2] [3] [6][7] to deal with security concerns. Detection and prevention of insider threats are concerns that also need to be tackled. Since the attacker is aware of sensitive information, threats due to cloud insider is a grave concern. In this paper, we have proposed an authentication mechanism, which performs authentication based on verifying facial features of the cloud user, in addition to username and password, thereby acting as two factor authentication. New QoS has been proposed which is capable of monitoring and detection of insider threats using Machine Learning Techniques. KNN Classification Algorithm has been used to classify users into legitimate, possibly legitimate, possibly not legitimate and not legitimate groups to verify image authenticity to conclude, whether there is any possible insider threat. A threat detection model has also been proposed for insider threats, which utilizes Facial recognition and Monitoring models. Security Method put forth in [6] [7] is honed to include threat detection QoS to earn higher degree of trust from cloud user community. As a recommendation, Threat detection module should be harnessed in private cloud deployments like Defense and Pharma applications. Experimentation has been conducted using open source Machine Learning libraries and results have been attached in this paper.
.
2017. Integrating Design and Data Centric Approaches to Generate Invariants for Distributed Attack Detection. Proceedings of the 2017 Workshop on Cyber-Physical Systems Security and PrivaCy. :131–136.
Process anomaly is used for detecting cyber-physical attacks on critical infrastructure such as plants for water treatment and electric power generation. Identification of process anomaly is possible using rules that govern the physical and chemical behavior of the process within a plant. These rules, often referred to as invariants, can be derived either directly from plant design or from the data generated in an operational. However, for operational legacy plants, one might consider a data-centric approach for the derivation of invariants. The study reported here is a comparison of design-centric and data-centric approaches to derive process invariants. The study was conducted using the design of, and the data generated from, an operational water treatment plant. The outcome of the study supports the conjecture that neither approach is adequate in itself, and hence, the two ought to be integrated.
.
2017. Intelligent System for Automatic Performance Evaluation of Distribution System Operators. 2017 19th International Conference on Intelligent System Application to Power Systems (ISAP). :1–6.
The performance evaluation of distribution network operators is essential for the electrical utilities to know how prepared the operators are to execute their operation standards and rules, searching for minimizing the time of power outage, after some contingency. The performance of operators can be evaluated by the impact of their actions on several technical and economic indicators of the distribution system. This issue is a complex problem, whose solution involves necessarily some expertise and a multi-criteria evaluation. This paper presents a Tutorial Expert System (TES) for performance evaluation of electrical distribution network operators after a given contingency in the electrical network. The proposed TES guides the evaluation process, taking into account technical, economic and personal criteria, aiding the quantification of these criteria. A case study based on real data demonstrates the applicability of the performance evaluation procedure of distribution network operators.
.
2017. Internet Device Graphs. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1913–1921.
Internet device graphs identify relationships between user-centric internet connected devices such as desktops, laptops, smartphones, tablets, gaming consoles, TV's, etc. The ability to create such graphs is compelling for online advertising, content customization, recommendation systems, security, and operations. We begin by describing an algorithm for generating a device graph based on IP-colocation, and then apply the algorithm to a corpus of over 2.5 trillion internet events collected over the period of six weeks in the United States. The resulting graph exhibits immense scale with greater than 7.3 billion edges (pair-wise relationships) between more than 1.2 billion nodes (devices), accounting for the vast majority of internet connected devices in the US. Next, we apply community detection algorithms to the graph resulting in a partitioning of internet devices into 100 million small communities representing physical households. We validate this partition with a unique ground truth dataset. We report on the characteristics of the graph and the communities. Lastly, we discuss the important issues of ethics and privacy that must be considered when creating and studying device graphs, and suggest further opportunities for device graph enrichment and application.
.
2017. The Internet of Things: Network Delay Improvement Using Network Coding. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :8:1–8:7.
Thanks to the occurrence of the Internet of Things (IoT), the devices are able to collect and transmit data via the Internet and contributing to our big data world. It will permit devices to exchange monitoring data content in real time. Real-time communication (RTC) with these devices was analyzed in respect to the Network delay. Network coding (NC) combines data packets and the output packet which is a mixture of the input packets. This technique can provide many potential gains to the network, including reducing Round-Trip Time (RTT), decreasing latency and improving Network delay (ND). In the present paper, the authors improve network delay metrics in the context of the remote management of renewable energy using a random NC with an efficient strategy technique.
.
2017. Jaal: Towards Network Intrusion Detection at ISP Scale. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :134–146.
We have recently seen an increasing number of attacks that are distributed, and span an entire wide area network (WAN). Today, typically, intrusion detection systems (IDSs) are deployed at enterprise scale and cannot handle attacks that cover a WAN. Moreover, such IDSs are implemented at a single entity that expects to look at all packets to determine an intrusion. Transferring copies of raw packets to centralized engines for analysis in a WAN can significantly impact both network performance and detection accuracy. In this paper, we propose Jaal, a framework for achieving accurate network intrusion detection at scale. The key idea in Jaal is to monitor traffic and construct in-network packet summaries. The summaries are then processed centrally to detect attacks with high accuracy. The main challenges that we address are (a) creating summaries that are concise, but sufficient to draw highly accurate inferences and (b) transforming traditional IDS rules to handle summaries instead of raw packets. We implement Jaal on a large scale SDN testbed. We show that on average Jaal yields a detection accuracy of about 98%, which is the highest reported for ISP scale network intrusion detection. At the same time, the overhead associated with transferring summaries to the central inference engine is only about 35% of what is consumed if raw packets are transferred.
.
2017. Jasmin: High-Assurance and High-Speed Cryptography. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1807–1823.
Jasmin is a framework for developing high-speed and high-assurance cryptographic software. The framework is structured around the Jasmin programming language and its compiler. The language is designed for enhancing portability of programs and for simplifying verification tasks. The compiler is designed to achieve predictability and efficiency of the output code (currently limited to x64 platforms), and is formally verified in the Coq proof assistant. Using the supercop framework, we evaluate the Jasmin compiler on representative cryptographic routines and conclude that the code generated by the compiler is as efficient as fast, hand-crafted, implementations. Moreover, the framework includes highly automated tools for proving memory safety and constant-time security (for protecting against cache-based timing attacks). We also demonstrate the effectiveness of the verification tools on a large set of cryptographic routines.
.
2017. Just-in-time Static Analysis. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :307–317.
We present the concept of Just-In-Time (JIT) static analysis that interleaves code development and bug fixing in an integrated development environment. Unlike traditional batch-style analysis tools, a JIT analysis tool presents warnings to code developers over time, providing the most relevant results quickly, and computing less relevant results incrementally later. In this paper, we describe general guidelines for designing JIT analyses. We also present a general recipe for transforming static data-flow analyses to JIT analyses through a concept of layered analysis execution. We illustrate this transformation through CHEETAH, a JIT taint analysis for Android applications. Our empirical evaluation of CHEETAH on real-world applications shows that our approach returns warnings quickly enough to avoid disrupting the normal workflow of developers. This result is confirmed by our user study, in which developers fixed data leaks twice as fast when using CHEETAH compared to an equivalent batch-style analysis.
.
2017. LSH Forest: Practical Algorithms Made Theoretical. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms. :67–78.
We analyze LSH Forest [BCG05]—a popular heuristic for the nearest neighbor search—and show that a careful yet simple modification of it outperforms "vanilla" LSH algorithms. The end result is the first instance of a simple, practical algorithm that provably leverages data-dependent hashing to improve upon data-oblivious LSH. Here is the entire algorithm for the d-dimensional Hamming space. The LSH Forest, for a given dataset, applies a random permutation to all the d coordinates, and builds a trie on the resulting strings. In our modification, we further augment this trie: for each node, we store a constant number of points close to the mean of the corresponding subset of the dataset, which are compared to any query point reaching that node. The overall data structure is simply several such tries sampled independently. While the new algorithm does not quantitatively improve upon the best data-dependent hashing algorithms from [AR15] (which are known to be optimal), it is significantly simpler, being based on a practical heuristic, and is provably better than the best LSH algorithm for the Hamming space [IM98, HIM12].
.
2017. Mitigating DNS Random Subdomain DDoS Attacks by Distinct Heavy Hitters Sketches. Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies. :8:1–8:6.
Random Subdomain DDoS attacks on the Domain Name System (DNS) infrastructure are becoming a popular vector in recent attacks (e.g., recent Mirai attack on Dyn). In these attacks, many queries are sent for a single or a few victim domains, yet they include highly varying non-existent subdomains generated randomly. Motivated by these attacks we designed and implemented novel and efficient algorithms for distinct heavy hitters (dHH). A (classic) heavy hitter (HH) in a stream of elements is a key (e.g., the domain of a query) which appears in many elements (e.g., requests). When stream elements consist of ¡key, subkey¿ pairs, (¡domain, subdomain¿) a distinct heavy hitter (dhh) is a key that is paired with a large number of different subkeys. Our algorithms dominate previous designs in both the asymptotic (theoretical) sense and practicality. Specifically the new fixed-size algorithms are simple to code and with asymptotically optimal space accuracy tradeoffs. Based on these algorithms, we build and implement a system for detection and mitigation of Random Subdomain DDoS attacks. We perform experimental evaluation, demonstrating the effectiveness of our algorithms.
.
2017. Multiple Facets for Dynamic Information Flow with Exceptions. ACM Trans. Program. Lang. Syst.. 39:10:1–10:56.
JavaScript is the source of many security problems, including cross-site scripting attacks and malicious advertising code. Central to these problems is the fact that code from untrusted sources runs with full privileges. Information flow controls help prevent violations of data confidentiality and integrity. This article explores faceted values, a mechanism for providing information flow security in a dynamic manner that avoids the stuck executions of some prior approaches, such as the no-sensitive-upgrade technique. Faceted values simultaneously simulate multiple executions for different security levels to guarantee termination-insensitive noninterference. We also explore the interaction of faceted values with exceptions, declassification, and clearance.
.
2017. Mutated Policies: Towards Proactive Attribute-based Defenses for Access Control. Proceedings of the 2017 Workshop on Moving Target Defense. :39–49.
Recently, both academia and industry have recognized the need for leveraging real-time information for the purposes of specifying, enforcing and maintaining rich and flexible authorization policies. In such a context, security-related properties, a.k.a., attributes, have been recognized as a convenient abstraction for providing a well-defined representation of such information, allowing for them to be created and exchanged by different independently-run organizational domains for authorization purposes. However, attackers may attempt to compromise the way attributes are generated and communicated by recurring to hacking techniques, e.g., forgery, in an effort to bypass authorization policies and their corresponding enforcement mechanisms and gain unintended access to sensitive resources as a result. In this paper, we propose a novel technique that allows for enterprises to pro-actively collect attributes from the different entities involved in the access request process, e.g., users, subjects, protected resources, and running environments. After the collection, we aim to carefully select the attributes that uniquely identify the aforementioned entities, and randomly mutate the original access policies over time by adding additional policy rules constructed from the newly-identified attributes. This way, even when attackers are able to compromise the original attributes, our mutated policies may offer an additional layer of protection to deter ongoing and future attacks. We present the rationale and experimental results supporting our proposal, which provide evidence of its suitability for being deployed in practice.
.
2017. Neighbor-Passive Monitoring Technique for Detecting Sinkhole Attacks in RPL Networks. Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence. :173–182.
Internet Protocol version 6 (IPv6) over Low-power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks due to its capability to transmit IPv6 packets with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by the Routing Protocol for Low-power and Lossy Networks (RPL). 6LoWPAN, with its routing protocol (RPL), usually uses nodes that have constrained resources (memory, power, and processor). In addition, RPL messages are exchanged among network nodes without any message authentication mechanism, thereby exposing the RPL to various attacks that may lead to network disruptions. A sinkhole attack utilizes the vulnerabilities in an RPL and attracts considerable traffic by advertising falsified data that change the routing preference for other nodes. This paper proposes the neighbor-passive monitoring technique (NPMT) for detecting sinkhole attacks in RPL-based networks. The proposed technique is evaluated using the COOJA simulator in terms of power consumption and detection accuracy. Moreover, NPMT is compared with popular detection mechanisms.
.
2017. Practical Attacks Against Graph-based Clustering. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1125–1142.
Graph modeling allows numerous security problems to be tackled in a general way, however, little work has been done to understand their ability to withstand adversarial attacks. We design and evaluate two novel graph attacks against a state-of-the-art network-level, graph-based detection system. Our work highlights areas in adversarial machine learning that have not yet been addressed, specifically: graph-based clustering techniques, and a global feature space where realistic attackers without perfect knowledge must be accounted for (by the defenders) in order to be practical. Even though less informed attackers can evade graph clustering with low cost, we show that some practical defenses are possible.
.
2017. Practical Graphs for Optimal Side-Channel Resistant Memory-Hard Functions. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1001–1017.
A memory-hard function (MHF) ƒn with parameter n can be computed in sequential time and space n. Simultaneously, a high amortized parallel area-time complexity (aAT) is incurred per evaluation. In practice, MHFs are used to limit the rate at which an adversary (using a custom computational device) can evaluate a security sensitive function that still occasionally needs to be evaluated by honest users (using an off-the-shelf general purpose device). The most prevalent examples of such sensitive functions are Key Derivation Functions (KDFs) and password hashing algorithms where rate limits help mitigate off-line dictionary attacks. As the honest users' inputs to these functions are often (low-entropy) passwords special attention is given to a class of side-channel resistant MHFs called iMHFs. Essentially all iMHFs can be viewed as some mode of operation (making n calls to some round function) given by a directed acyclic graph (DAG) with very low indegree. Recently, a combinatorial property of a DAG has been identified (called "depth-robustness") which results in good provable security for an iMHF based on that DAG. Depth-robust DAGs have also proven useful in other cryptographic applications. Unfortunately, up till now, all known very depth-robust DAGs are impractically complicated and little is known about their exact (i.e. non-asymptotic) depth-robustness both in theory and in practice. In this work we build and analyze (both formally and empirically) several exceedingly simple and efficient to navigate practical DAGs for use in iMHFs and other applications. For each DAG we: Prove that their depth-robustness is asymptotically maximal. Prove bounds of at least 3 orders of magnitude better on their exact depth-robustness compared to known bounds for other practical iMHF. Implement and empirically evaluate their depth-robustness and aAT against a variety of state-of-the art (and several new) depth-reduction and low aAT attacks. We find that, against all attacks, the new DAGs perform significantly better in practice than Argon2i, the most widely deployed iMHF in practice. Along the way we also improve the best known empirical attacks on the aAT of Argon2i by implementing and testing several heuristic versions of a (hitherto purely theoretical) depth-reduction attack. Finally, we demonstrate practicality of our constructions by modifying the Argon2i code base to use one of the new high aAT DAGs. Experimental benchmarks on a standard off-the-shelf CPU show that the new modifications do not adversely affect the impressive throughput of Argon2i (despite seemingly enjoying significantly higher aAT).
.
2017. Processor-Oblivious Record and Replay. Proceedings of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming. :145–161.
Record-and-replay systems are useful tools for debugging non-deterministic parallel programs by first recording an execution and then replaying that execution to produce the same access pattern. Existing record-and-replay systems generally target thread-based execution models, and record the behaviors and interleavings of individual threads. Dynamic multithreaded languages and libraries, such as the Cilk family, OpenMP, TBB, etc., do not have a notion of threads. Instead, these languages provide a processor-oblivious model of programming, where programs expose task-parallelism using high-level constructs such as spawn/sync without regard to the number of threads/cores available to run the program. Thread-based record-and-replay would violate the processor-oblivious nature of these programs, as they incorporate the number of threads into the recorded information, constraining the replayed execution to the same number of threads. In this paper, we present a processor-oblivious record-and-replay scheme for such languages where record and replay can use different number of processors and both are scheduled using work stealing. We provide theoretical guarantees for our record and replay scheme — namely that record is optimal for programs with one lock and replay is near-optimal for all cases. In addition, we implemented this scheme in the Cilk Plus runtime system and our evaluation indicates that processor-obliviousness does not cause substantial overheads.
.
2017. Return of the Runtimes: Rethinking the Language Runtime System for the Cloud 3.0 Era. Proceedings of the 16th Workshop on Hot Topics in Operating Systems. :138–143.
The public cloud is moving to a Platform-as-a-Service model where services such as data management, machine learning or image classification are provided by the cloud operator while applications are written in high-level languages and leverage these services. Managed languages such as Java, Python or Scala are widely used in this setting. However, while these languages can increase productivity, they are often associated with problems such as unpredictable garbage collection pauses or warm-up overheads. We argue that the reason for these problems is that current language runtime systems were not initially designed for the cloud setting. To address this, we propose seven tenets for designing future language runtime systems for cloud data centers. We then outline the design of a general substrate for building such runtime systems, based on these seven tenets.
.
2017. Scalable Framework for Accurate Binary Code Comparison. 2017 Ivannikov ISPRAS Open Conference (ISPRAS). :34–38.
Comparison of two binary files has many practical applications: the ability to detect programmatic changes between two versions, the ability to find old versions of statically linked libraries to prevent the use of well-known bugs, malware analysis, etc. In this article, a framework for comparison of binary files is presented. Framework uses IdaPro [1] disassembler and Binnavi [2] platform to recover structure of the target program and represent it as a call graph (CG). A program dependence graph (PDG) corresponds to each vertex of the CG. The proposed comparison algorithm consists of two main stages. At the first stage, several heuristics are applied to find the exact matches. Two functions are matched if at least one of the calculated heuristics is the same and unique in both binaries. At the second stage, backward and forward slicing is applied on matched vertices of CG to find further matches. According to empiric results heuristic method is effective and has high matching quality for unchanged or slightly modified functions. As a contradiction, to match heavily modified functions, binary code clone detection is used and it is based on finding maximum common subgraph for pair of PDGs. To achieve high performance on extensive binaries, the whole matching process is parallelized. The framework is tested on the number of real world libraries, such as python, openssh, openssl, libxml2, rsync, php, etc. Results show that in most cases more than 95% functions are truly matched. The tool is scalable due to parallelization of functions matching process and generation of PDGs and CGs.
.
2017. Scheduling Battery-Powered Sensor Networks for Minimizing Detection Delays. IEEE Communication Letters.
Sensor networks monitoring spatially-distributed physical systems often comprise battery-powered sensor devices. To extend lifetime, battery power may be conserved using sleep scheduling: activating and deactivating some of the sensors from time to time. Scheduling sensors with the goal of maximizing average coverage, that is the average fraction of time for which each monitoring target is covered by some active sensor has been studied extensively. However, many applications also require time-critical monitoring in the sense that one has to minimize the average delay until an unpredictable change or event at a monitoring target is detected. In this paper, we study the problem of sleep scheduling sensors to minimize the average delay in detecting such time-critical events in the context of monitoring physical systems that can be modeled using graphs, such as water distribution networks. We provide a game-theoretic solution that computes schedules with near optimal average delays. We illustrate that schedules that optimize average coverage may result in large average detection delays, whereas schedules minimizing average detection delays using our proposed scheme also result in near optimal average coverage.



