Biblio

Found 3153 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2018-09-30
Marie-Christin Harre, Sebastian Feuerstack, Bertram Wortelen.  2018.  A Method for Optimizing Complex Graphical Interfaces for Fast and Correct Perception of System States (in press). Proceedings of the 7th International Working Conference on Human-Centered Software Engineering (HCSE).
2019-11-25
Cassagne, Adrien, Aumage, Olivier, Barthou, Denis, Leroux, Camille, Jégo, Christophe.  2018.  MIPP: A Portable C++ SIMD Wrapper and Its Use for Error Correction Coding in 5G Standard. Proceedings of the 2018 4th Workshop on Programming Models for SIMD/Vector Processing. :2:1–2:8.
Error correction code (ECC) processing has so far been performed on dedicated hardware for previous generations of mobile communication standards, to meet latency and bandwidth constraints. As the 5G mobile standard, and its associated channel coding algorithms, are now being specified, modern CPUs are progressing to the point where software channel decoders can viably be contemplated. A key aspect in reaching this transition point is to get the most of CPUs SIMD units on the decoding algorithms being pondered for 5G mobile standards. The nature and diversity of such algorithms requires highly versatile programming tools. This paper demonstrates the virtues and versatility of our MIPP SIMD wrapper in implementing a high performance portfolio of key ECC decoding algorithms.
2019-01-21
Khosravi-Farmad, M., Ramaki, A. A., Bafghi, A. G..  2018.  Moving Target Defense Against Advanced Persistent Threats for Cybersecurity Enhancement. 2018 8th International Conference on Computer and Knowledge Engineering (ICCKE). :280–285.
One of the main security concerns of enterprise-level organizations which provide network-based services is combating with complex cybersecurity attacks like advanced persistent threats (APTs). The main features of these attacks are being multilevel, multi-step, long-term and persistent. Also they use an intrusion kill chain (IKC) model to proceed the attack steps and reach their goals on targets. Traditional security solutions like firewalls and intrusion detection and prevention systems (IDPSs) are not able to prevent APT attack strategies and block them. Recently, deception techniques are proposed to defend network assets against malicious activities during IKC progression. One of the most promising approaches against APT attacks is Moving Target Defense (MTD). MTD techniques can be applied to attack steps of any abstraction levels in a networked infrastructure (application, host, and network) dynamically for disruption of successful execution of any on the fly IKCs. In this paper, after presentation and discussion on common introduced IKCs, one of them is selected and is used for further analysis. Also, after proposing a new and comprehensive taxonomy of MTD techniques in different levels, a mapping analysis is conducted between IKC models and existing MTD techniques. Finally, the effect of MTD is evaluated during a case study (specifically IP Randomization). The experimental results show that the MTD techniques provide better means to defend against IKC-based intrusion activities.
2019-04-01
Block, Kenneth, Noubir, Guevara.  2018.  My Magnetometer Is Telling You Where I'Ve Been?: A Mobile Device Permissionless Location Attack Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :260–270.
Although privacy compromises remain an issue among users and advocacy groups, identification of user location has emerged as another point of concern. Techniques using GPS, Wi-Fi, NFC, Bluetooth tracking and cell tower triangulation are well known. These can typically identify location accurately with meter resolution. Another technique, inferring routes via sensor exploitation, may place a user within a few hundred meters of a general location. Acoustic beacons such as those placed in malls may have more finely grained resolution yet are limited by the sensitivity of the device's microphone to ultrasonic signals and directionality. In this paper we are able to discern user location within commercial GPS resolution by leveraging the ability of mobile device magnetometers to detect externally generated signals in a permissionless attack. We are able to achieve an aggregate location identification success rate of 86% with a bit error rate of 1.5% which is only ten times the stationary error rate. We accomplish this with a signal that is a fraction of the Earth's magnetic field strength. We designed, prototyped, and experimentally evaluated a system where a location ID is transmitted via low power magnetic coil(s) and received by permissionless apps. The system can be located at ingresses and kiosks situated in malls, stores, transportation hubs and other public locations including crosswalks using a location ID that is mapped to the GPS coordinates of the facility hosting the system. We demonstrate that using Android phone magnetometers, we can correctly detect and identify the when and the where of a device when the victim walks at a comfortable pace while their device has all the aforementioned services disabled. In order to address the substantial signal fading effects due to mobility in a very-low power magnetic near field, we developed signal processing and coding techniques and evaluated the prototype on six android devices in an IRB-approved study with six participants. This article is summarized in: Computer Science Teachers Association CSTA's mission is to empower, engage and advocate for K-12 CS teachers worldwide.
2022-04-20
Bouk, Safdar Hussain, Ahmed, Syed Hassan, Hussain, Rasheed, Eun, Yongsoon.  2018.  Named Data Networking's Intrinsic Cyber-Resilience for Vehicular CPS. IEEE Access. 6:60570–60585.
Modern vehicles equipped with a large number of electronic components, sensors, actuators, and extensive connectivity, are the classical example of cyber-physical systems (CPS). Communication as an integral part of the CPS has enabled and offered many value-added services for vehicular networks. The communication mechanism helps to share contents with all vehicular network nodes and the surrounding environment, e.g., vehicles, traffic lights, and smart road signs, to efficiently take informed and smart decisions. Thus, it opens the doors to many security threats and vulnerabilities. Traditional TCP/IP-based communication paradigm focuses on securing the communication channel instead of the contents that travel through the network. Nevertheless, for content-centered application, content security is more important than communication channel security. To this end, named data networking (NDN) is one of the future Internet architectures that puts the contents at the center of communication and offers embedded content security. In this paper, we first identify the cyberattacks and security challenges faced by the vehicular CPS (VCPS). Next, we propose the NDN-based cyber-resilient, the layered and modular architecture for VCPS. The architecture includes the NDN's forwarding daemon, threat aversion, detection, and resilience components. A detailed discussion about the functionality of each component is also presented. Furthermore, we discuss the future challenges faced by the integration of NDN with VCPS to realize NDN-based VCPS.
Conference Name: IEEE Access
2019-03-04
Buck, Joshua W., Perugini, Saverio, Nguyen, Tam V..  2018.  Natural Language, Mixed-initiative Personal Assistant Agents. Proceedings of the 12th International Conference on Ubiquitous Information Management and Communication. :82:1–82:8.
The increasing popularity and use of personal voice assistant technologies, such as Siri and Google Now, is driving and expanding progress toward the long-term and lofty goal of using artificial intelligence to build human-computer dialog systems capable of understanding natural language. While dialog-based systems such as Siri support utterances communicated through natural language, they are limited in the flexibility they afford to the user in interacting with the system and, thus, support primarily action-requesting and information-seeking tasks. Mixed-initiative interaction, on the other hand, is a flexible interaction technique where the user and the system act as equal participants in an activity, and is often exhibited in human-human conversations. In this paper, we study user support for mixed-initiative interaction with dialog-based systems through natural language using a bag-of-words model and k-nearest-neighbor classifier. We study this problem in the context of a toolkit we developed for automated, mixed-initiative dialog system construction, involving a dialog authoring notation and management engine based on lambda calculus, for specifying and implementing task-based, mixed-initiative dialogs. We use ordering at Subway through natural language, human-computer dialogs as a case study. Our results demonstrate that the dialogs authored with our toolkit support the end user's completion of a natural language, human-computer dialog in a mixed-initiative fashion. The use of natural language in the resulting mixed-initiative dialogs afford the user the ability to experience multiple self-directed paths through the dialog and makes the flexibility in communicating user utterances commensurate with that in dialog completion paths—an aspect missing from commercial assistants like Siri.
2019-08-05
Zhang, Zhiyi, Lu, Edward, Li, Yanbiao, Zhang, Lixia, Yu, Tianyuan, Pesavento, Davide, Shi, Junxiao, Benmohamed, Lotfi.  2018.  NDNoT: A Framework for Named Data Network of Things. Proceedings of the 5th ACM Conference on Information-Centric Networking. :200–201.
The Named Data Networking (NDN) architecture provides simple solutions to the communication needs of Internet of Things (IoT) in terms of ease-of-use, security, and content delivery. To utilize the desirable properties of NDN architecture in IoT scenarios, we are working to provide an integrated framework, dubbed NDNoT, to support IoT over NDN. NDNoT provides solutions to auto configuration, service discovery, data-centric security, content delivery, and other needs of IoT application developers. Utilizing NDN naming conventions, NDNoT aims to create an open environment where IoT applications and different services can easily cooperate and work together. This poster introduces the basic components of our framework and explains how these components function together.
2020-04-06
Kumar, Rakesh, Babu, Vignesh, Nicol, David.  2018.  Network Coding for Critical Infrastructure Networks. 2018 IEEE 26th International Conference on Network Protocols (ICNP). :436–437.
The applications in the critical infrastructure systems pose simultaneous resilience and performance requirements to the underlying computer network. To meet such requirements, the networks that use the store-and-forward paradigm poses stringent conditions on the redundancy in the network topology and results in problems that becoming computationally challenging to solve at scale. However, with the advent of programmable data-planes, it is now possible to use linear network coding (NC) at the intermediate network nodes to meet resilience requirements of the applications. To that end, we propose an architecture that realizes linear NC in programmable networks by decomposing the linear NC functions into the atomic coding primitives. We designed and implemented the primitives using the features offered by the P4 ecosystem. Using an empirical evaluation, we show that the theoretical gains promised by linear network coding can be realized with a per-packet processing cost.
2019-02-25
Cornelissen, Laurenz A., Barnett, Richard J, Schoonwinkel, Petrus, Eichstadt, Brent D., Magodla, Hluma B..  2018.  A Network Topology Approach to Bot Classification. Proceedings of the Annual Conference of the South African Institute of Computer Scientists and Information Technologists. :79-88.
Automated social agents, or bots are increasingly becoming a problem on social media platforms. There is a growing body of literature and multiple tools to aid in the detection of such agents on online social networking platforms. We propose that the social network topology of a user would be sufficient to determine whether the user is a automated agent or a human. To test this, we use a publicly available dataset containing users on Twitter labelled as either automated social agent or human. Using an unsupervised machine learning approach, we obtain a detection accuracy rate of 70%.
2020-07-27
Babay, Amy, Tantillo, Thomas, Aron, Trevor, Platania, Marco, Amir, Yair.  2018.  Network-Attack-Resilient Intrusion-Tolerant SCADA for the Power Grid. 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :255–266.
As key components of the power grid infrastructure, Supervisory Control and Data Acquisition (SCADA) systems are likely to be targeted by nation-state-level attackers willing to invest considerable resources to disrupt the power grid. We present Spire, the first intrusion-tolerant SCADA system that is resilient to both system-level compromises and sophisticated network-level attacks and compromises. We develop a novel architecture that distributes the SCADA system management across three or more active sites to ensure continuous availability in the presence of simultaneous intrusions and network attacks. A wide-area deployment of Spire, using two control centers and two data centers spanning 250 miles, delivered nearly 99.999% of all SCADA updates initiated over a 30-hour period within 100ms. This demonstrates that Spire can meet the latency requirements of SCADA for the power grid.
2019-12-18
Mohammed, Saif Saad, Hussain, Rasheed, Senko, Oleg, Bimaganbetov, Bagdat, Lee, JooYoung, Hussain, Fatima, Kerrache, Chaker Abdelaziz, Barka, Ezedin, Alam Bhuiyan, Md Zakirul.  2018.  A New Machine Learning-based Collaborative DDoS Mitigation Mechanism in Software-Defined Network. 2018 14th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). :1–8.
Software Defined Network (SDN) is a revolutionary idea to realize software-driven network with the separation of control and data planes. In essence, SDN addresses the problems faced by the traditional network architecture; however, it may as well expose the network to new attacks. Among other attacks, distributed denial of service (DDoS) attacks are hard to contain in such software-based networks. Existing DDoS mitigation techniques either lack in performance or jeopardize the accuracy of the attack detection. To fill the voids, we propose in this paper a machine learning-based DDoS mitigation technique for SDN. First, we create a model for DDoS detection in SDN using NSL-KDD dataset and then after training the model on this dataset, we use real DDoS attacks to assess our proposed model. Obtained results show that the proposed technique equates favorably to the current techniques with increased performance and accuracy.
2019-03-18
Tran, Muoi, Luu, Loi, Kang, Min Suk, Bentov, Iddo, Saxena, Prateek.  2018.  Obscuro: A Bitcoin Mixer Using Trusted Execution Environments. Proceedings of the 34th Annual Computer Security Applications Conference. :692–701.
Bitcoin provides only pseudo-anonymous transactions, which can be exploited to link payers and payees – defeating the goal of anonymous payments. To thwart such attacks, several Bitcoin mixers have been proposed, with the objective of providing unlinkability between payers and payees. However, existing Bitcoin mixers can be regarded as either insecure or inefficient. We present Obscuro, a highly efficient and secure Bitcoin mixer that utilizes trusted execution environments (TEEs). With the TEE's confidentiality and integrity guarantees for code and data, our mixer design ensures the correct mixing operations and the protection of sensitive data (i.e., private keys and mixing logs), ruling out coin theft and address linking attacks by a malicious service provider. Yet, the TEE-based implementation does not prevent the manipulation of inputs (e.g., deposit submissions, blockchain feeds) to the mixer, hence Obscuro is designed to overcome such limitations: it (1) offers an indirect deposit mechanism to prevent a malicious service provider from rejecting benign user deposits; and (2) scrutinizes blockchain feeds to prevent deposits from being mixed more than once (thus degrading anonymity) while being eclipsed from the main blockchain branch. In addition, Obscuro provides several unique anonymity features (e.g., minimum mixing set size guarantee, resistant to dropping user deposits) that are not available in existing centralized and decentralized mixers. Our prototype of Obscuro is built using Intel SGX and we demonstrate its effectiveness in Bitcoin Testnet. Our implementation mixes 1000 inputs in just 6.49 seconds, which vastly outperforms all of the existing decentralized mixers.
2019-05-01
Gautier, Adam M., Andel, Todd R., Benton, Ryan.  2018.  On-Device Detection via Anomalous Environmental Factors. Proceedings of the 8th Software Security, Protection, and Reverse Engineering Workshop. :5:1–5:8.
Embedded Systems (ES) underlie society's critical cyberinfrastructure and comprise the vast majority of consumer electronics, making them a prized target for dangerous malware and hardware Trojans. Malicious intrusion into these systems present a threat to national security and economic stability as globalized supply chains and tight network integration make ES more susceptible to attack than ever. High-end ES like the Xilinx Zynq-7020 system on a chip are widely used in the field and provide a representative platform for investigating the methods of cybercriminals. This research suggests a novel anomaly detection framework that could be used to detect potential zero-day exploits, undiscovered rootkits, or even maliciously implanted hardware by leveraging the Zynq architecture and real-time device-level measurements of thermal side-channels. The results of an initial investigation showed different processor workloads produce distinct thermal fingerprints that are detectable by out-of-band, digital logic-based thermal sensors.
2019-01-21
Lian, J., Wang, X., Noshad, M., Brandt-Pearce, M..  2018.  Optical Wireless Interception Vulnerability Analysis of Visible Light Communication System. 2018 IEEE International Conference on Communications (ICC). :1–6.
Visible light communication is a solution for high-security wireless data transmission. In this paper, we first analyze the potential vulnerability of the system from eavesdropping outside the room. By setting up a signal to noise ratio threshold, we define a vulnerable area outside of the room through a window. We compute the receiver aperture needed to capture the signal and what portion of the space is most vulnerable to eavesdropping. Based on the analysis, we propose a solution to improve the security by optimizing the modulation efficiency of each LED in the indoor lamp. The simulation results show that the proposed solution can improve the security considerably while maintaining the indoor communication performance.
2019-06-17
Krahn, Robert, Trach, Bohdan, Vahldiek-Oberwagner, Anjo, Knauth, Thomas, Bhatotia, Pramod, Fetzer, Christof.  2018.  Pesos: Policy Enhanced Secure Object Store. Proceedings of the Thirteenth EuroSys Conference. :25:1–25:17.
Third-party storage services pose the risk of integrity and confidentiality violations as the current storage policy enforcement mechanisms are spread across many layers in the system stack. To mitigate these security vulnerabilities, we present the design and implementation of Pesos, a Policy Enhanced Secure Object Store (Pesos) for untrusted third-party storage providers. Pesos allows clients to specify per-object security policies, concisely and separately from the storage stack, and enforces these policies by securely mediating the I/O in the persistence layer through a single unified enforcement layer. More broadly, Pesos exposes a rich set of storage policies ensuring the integrity, confidentiality, and access accounting for data storage through a declarative policy language. Pesos enforces these policies on untrusted commodity platforms by leveraging a combination of two trusted computing technologies: Intel SGX for trusted execution environment (TEE) and Kinetic Open Storage for trusted storage. We have implemented Pesos as a fully-functional storage system supporting many useful end-to-end storage features, and a range of effective performance optimizations. We evaluated Pesos using a range of micro-benchmarks, and real-world use cases. Our evaluation shows that Pesos incurs reasonable performance overheads for the enforcement of policies while keeping the trusted computing base (TCB) small.
2018-12-10
Gujral, Aditya, Chaspari, Theodora, Timmons, Adela C., Kim, Yehsong, Barrett, Sarah, Margolin, Gayla.  2018.  Population-specific Detection of Couples' Interpersonal Conflict Using Multi-task Learning. Proceedings of the 20th ACM International Conference on Multimodal Interaction. :229–233.
The inherent diversity of human behavior limits the capabilities of general large-scale machine learning systems, that usually require ample amounts of data to provide robust descriptors of the outcomes of interest. Motivated by this challenge, personalized and population-specific models comprise a promising line of work for representing human behavior, since they can make decisions for clusters of people with common characteristics, reducing the amount of data needed for training. We propose a multi-task learning (MTL) framework for developing population-specific models of interpersonal conflict between couples using ambulatory sensor and mobile data from real-life interactions. The criteria for population clustering include global indices related to couples' relationship quality and attachment style, person-specific factors of partners' positivity, negativity, and stress levels, as well as fluctuating factors of daily emotional arousal obtained from acoustic and physiological indices. Population-specific information is incorporated through a MTL feed-forward neural network (FF-NN), whose first layers capture the common information across all data samples, while its last layers are specific to the unique characteristics of each population. Our results indicate that the proposed MTL FF-NN trained solely on the sensor-based acoustic, linguistic, and physiological modalities provides unweighted and weighted F1-scores of 0.51 and 0.75, respectively, outperforming the corresponding baselines of a single general FF-NN trained on the entire dataset and separate FF-NNs trained on each population cluster individually. These demonstrate the feasibility of such ambulatory systems for detecting real-life behaviors and possibly intervening upon them, and highlights the importance of taking into account the inherent diversity of different populations from the general pool of data.
2020-11-09
Göktaş, E., Kollenda, B., Koppe, P., Bosman, E., Portokalidis, G., Holz, T., Bos, H., Giuffrida, C..  2018.  Position-Independent Code Reuse: On the Effectiveness of ASLR in the Absence of Information Disclosure. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :227–242.
Address-space layout randomization is a wellestablished defense against code-reuse attacks. However, it can be completely bypassed by just-in-time code-reuse attacks that rely on information disclosure of code addresses via memory or side-channel exposure. To address this fundamental weakness, much recent research has focused on detecting and mitigating information disclosure. The assumption being that if we perfect such techniques, we will not only maintain layout secrecy but also stop code reuse. In this paper, we demonstrate that an advanced attacker can mount practical code-reuse attacks even in the complete absence of information disclosure. To this end, we present Position-Independent Code-Reuse Attacks, a new class of codereuse attacks relying on the relative rather than absolute location of code gadgets in memory. By means of memory massaging, the attacker first makes the victim program generate a rudimentary ROP payload (for instance, containing code pointers that target instructions "close" to relevant gadgets). Afterwards, the addresses in this payload are patched with small offsets via relative memory writes. To establish the practicality of such attacks, we present multiple Position-Independent ROP exploits against real-world software. After showing that we can bypass ASLR in current systems without requiring information disclosures, we evaluate the impact of our technique on other defenses, such as fine-grained ASLR, multi-variant execution, execute-only memory and re-randomization. We conclude by discussing potential mitigations.
2018-09-30
2019-07-01
de Lima, Davi Ferreira, Bezerra, José Roberto, de Macedo Costa da Silva, Jorge Fredericson.  2018.  Privacy and Integrity Protection of Data in SCADA Systems. Proceedings of the 10th Latin America Networking Conference. :110–114.
The critical infrastructure of a country, due to its relevance and complexity, demands systems to facilitate the user interaction to correctly deal and share the information related to the monitored processes. The systems currently applied to monitor such infrastructures are based on SCADA architecture. The advent of the Internet jointly to the needs of fast information exchange at any place in order to support accurate decision-making processes, demands increasing interconnection among SCADA and management systems. However, such interconnection may expose sensitive data manipulated by such systems to hackers which may cause massive damages, financial loses, threats to human lives among others. Therefore, unprotected data may expose the systems to cyber-criminals by affecting any of the cyber-security principles, Confidentiality, Integrity, and Authenticity. This article presents four study cases using Wireshark to analyze a popular SCADA software to check user authentication process. The result of this research was the reading in plain text of the user authentication data used to access the control and monitoring system. As an immediate and minimal solution, this work presents low cost, easy setup and open source solutions are proposed using VPN and protocol obfuscator to improve security applying cryptography and hide the data passing through Virtual Private Network.
2019-12-16
Ding, Xiaofeng, Zhang, Xiaodong, Bao, Zhifeng, Jin, Hai.  2018.  Privacy-Preserving Triangle Counting in Large Graphs. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1283–1292.
Triangle count is a critical parameter in mining relationships among people in social networks. However, directly publishing the findings obtained from triangle counts may bring potential privacy concern, which raises great challenges and opportunities for privacy-preserving triangle counting. In this paper, we choose to use differential privacy to protect triangle counting for large scale graphs. To reduce the large sensitivity caused in large graphs, we propose a novel graph projection method that can be used to obtain an upper bound for sensitivity in different distributions. In particular, we publish the triangle counts satisfying the node-differential privacy with two kinds of histograms: the triangle count distribution and the cumulative distribution. Moreover, we extend the research on privacy preserving triangle counting to one of its applications, the local clustering coefficient. Experimental results show that the cumulative distribution can fit the real statistical information better, and our proposed mechanism has achieved better accuracy for triangle counts while maintaining the requirement of differential privacy.
2020-07-20
Bai, Kunpeng, Wu, Chuankun, Zhang, Zhenfeng.  2018.  Protect white-box AES to resist table composition attacks. IET Information Security. 12:305–313.
White-box cryptography protects cryptographic software in a white-box attack context (WBAC), where the dynamic execution of the cryptographic software is under full control of an adversary. Protecting AES in the white-box setting attracted many scientists and engineers, and several solutions emerged. However, almost all these solutions have been badly broken by various efficient white-box attacks, which target compositions of key-embedding lookup tables. In 2014, Luo, Lai, and You proposed a new WBAC-oriented AES implementation, and claimed that their implementation is secure against both Billet et al.'s attack and De Mulder et al.'s attack. In this study, based on the existing table-composition-targeting cryptanalysis techniques, the authors show that the secret key of the Luo-Lai-You (LLY) implementation can be recovered with a time complexity of about 244. Furthermore, the authors propose a new white-box AES implementation based on table lookups, which is shown to be resistant against the existing table-composition-targeting white-box attacks. The authors, key-embedding tables are obfuscated with large affine mappings, which cannot be cancelled out by table compositions of the existing cryptanalysis techniques. Although their implementation requires twice as much memory as the LLY WBAES to store the tables, its speed is about 63 times of the latter.
2020-11-30
Wang, Y., Huang, F., Hu, Y., Cao, R., Shi, T., Liu, Q., Bi, L., Liu, M..  2018.  Proton Radiation Effects on Y-Doped HfO2-Based Ferroelectric Memory. IEEE Electron Device Letters. 39:823–826.
In this letter, ferroelectric memory performance of TiN/Y-doped-HfO2 (HYO)/TiN capacitors is investigated under proton radiation with 3-MeV energy and different fluence (5e13, 1e14, 5e14, and 1e15 ions/cm2). X-ray diffraction patterns confirm that the orthorhombic phase Pbc21 of HYOfilm has no obvious change after proton radiation. Electrical characterization results demonstrate slight variations of the permittivity and ferroelectric hysteresis loop after proton radiation. The remanent polarization (2Pr) of the capacitor decreases with increasing proton fluence. But the decreasing trend of 2Pr is suppressed under high electric fields. Furthermore, the 2Pr degradation with cycling is abated by proton radiation. These results show that the HYO-based ferroelectric memory is highly resistive to proton radiation, which is potentially useful for space applications.
2019-10-28
Withers, Alex, Bockelman, Brian, Weitzel, Derek, Brown, Duncan, Gaynor, Jeff, Basney, Jim, Tannenbaum, Todd, Miller, Zach.  2018.  SciTokens: Capability-Based Secure Access to Remote Scientific Data. Proceedings of the Practice and Experience on Advanced Research Computing. :24:1–24:8.
The management of security credentials (e.g., passwords, secret keys) for computational science workflows is a burden for scientists and information security officers. Problems with credentials (e.g., expiration, privilege mismatch) cause workflows to fail to fetch needed input data or store valuable scientific results, distracting scientists from their research by requiring them to diagnose the problems, re-run their computations, and wait longer for their results. In this paper, we introduce SciTokens, open source software to help scientists manage their security credentials more reliably and securely. We describe the SciTokens system architecture, design, and implementation addressing use cases from the Laser Interferometer Gravitational-Wave Observatory (LIGO) Scientific Collaboration and the Large Synoptic Survey Telescope (LSST) projects. We also present our integration with widely-used software that supports distributed scientific computing, including HTCondor, CVMFS, and XrootD. SciTokens uses IETF-standard OAuth tokens for capability-based secure access to remote scientific data. The access tokens convey the specific authorizations needed by the workflows, rather than general-purpose authentication impersonation credentials, to address the risks of scientific workflows running on distributed infrastructure including NSF resources (e.g., LIGO Data Grid, Open Science Grid, XSEDE) and public clouds (e.g., Amazon Web Services, Google Cloud, Microsoft Azure). By improving the interoperability and security of scientific workflows, SciTokens 1) enables use of distributed computing for scientific domains that require greater data protection and 2) enables use of more widely distributed computing resources by reducing the risk of credential abuse on remote systems.
2019-12-30
Bazm, Mohammad-Mahdi, Lacoste, Marc, Südholt, Mario, Menaud, Jean-Marc.  2018.  Secure Distributed Computing on Untrusted Fog Infrastructures Using Trusted Linux Containers. 2018 IEEE International Conference on Cloud Computing Technology and Science (CloudCom). :239–242.
Fog and Edge computing provide a large pool of resources at the edge of the network that may be used for distributed computing. Fog infrastructure heterogeneity also results in complex configuration of distributed applications on computing nodes. Linux containers are a mainstream technique allowing to run packaged applications and micro services. However, running applications on remote hosts owned by third parties is challenging because of untrusted operating systems and hardware maintained by third parties. To meet such challenges, we may leverage trusted execution mechanisms. In this work, we propose a model for distributed computing on Fog infrastructures using Linux containers secured by Intel's Software Guard Extensions (SGX) technology. We implement our model on a Docker and OpenSGX platform. The result is a secure and flexible approach for distributed computing on Fog infrastructures.
2019-09-09
Mulamba, Dieudonne, Amarnath, Athith, Bezawada, Bruhadeshwar, Ray, Indrajit.  2018.  A Secure Hash Commitment Approach for Moving Target Defense of Security-critical Services. Proceedings of the 5th ACM Workshop on Moving Target Defense. :59–68.
Protection of security-critical services, such as access-control reference monitors, is an important requirement in the modern era of distributed systems and services. The threat arises from hosting the service on a single server for a lengthy period of time, which allows the attacker to periodically enumerate the vulnerabilities of the service with respect to the server's configuration and launch targeted attacks on the service. In our work, we design and implement an efficient solution based on the moving "target" defense strategy, to protect security-critical services against such active adversaries. Specifically, we focus on implementing our solution for protecting the reference monitor service that enforces access control for users requesting access to sensitive resources. The key intuition of our approach is to increase the level of difficulty faced by the attacker to compromise a service by periodically moving the security-critical service among a group of heterogeneous servers. For this approach to be practically feasible, the movement of the service should be efficient and random, i.e., the attacker should not have a-priori information about the choice of the next server hosting the service. Towards this, we describe an efficient Byzantine fault-tolerant leader election protocol that achieves the desired security and performance objectives. We built a prototype implementation that moves the access control service randomly among a group of fifty servers within a time range of 250-440 ms. We show that our approach tolerates Byzantine behavior of servers, which ensures that a server under adversarial control has no additional advantage of being selected as the next active server.