Biblio

Found 3405 results

Filters: First Letter Of Last Name is H  [Clear All Filters]
2014-09-17
Tembe, Rucha, Zielinska, Olga, Liu, Yuqi, Hong, Kyung Wha, Murphy-Hill, Emerson, Mayhorn, Chris, Ge, Xi.  2014.  Phishing in International Waters: Exploring Cross-national Differences in Phishing Conceptualizations Between Chinese, Indian and American Samples. Proceedings of the 2014 Symposium and Bootcamp on the Science of Security. :8:1–8:7.

One hundred-sixty four participants from the United States, India and China completed a survey designed to assess past phishing experiences and whether they engaged in certain online safety practices (e.g., reading a privacy policy). The study investigated participants' reported agreement regarding the characteristics of phishing attacks, types of media where phishing occurs and the consequences of phishing. A multivariate analysis of covariance indicated that there were significant differences in agreement regarding phishing characteristics, phishing consequences and types of media where phishing occurs for these three nationalities. Chronological age and education did not influence the agreement ratings; therefore, the samples were demographically equivalent with regards to these variables. A logistic regression analysis was conducted to analyze the categorical variables and nationality data. Results based on self-report data indicated that (1) Indians were more likely to be phished than Americans, (2) Americans took protective actions more frequently than Indians by destroying old documents, and (3) Americans were more likely to notice the "padlock" security icon than either Indian or Chinese respondents. The potential implications of these results are discussed in terms of designing culturally sensitive anti-phishing solutions.

2018-06-04
Deka, Bhaswati, Gerdes, Ryan M, Li, Ming, Heaslip, Kevin.  2014.  Poster: Analysis and Comparison of Secure Localization Schemes for Intelligent Transportation Systems. Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security. :1424–1426.
2018-05-25
Hei, Xiali, Du, Xiaojiang, Lin, Shan.  2014.  Poster: Near Field Communication Based Access Control for Wireless Medical Devices. Proceedings of the 15th ACM International Symposium on Mobile Ad Hoc Networking and Computing. :423–424.
2018-05-27
2018-05-14
Feng, Yiheng, Hourdos, John, Davis, Gary A.  2014.  Probe vehicle based real-time traffic monitoring on urban roadways. Transportation Research Part C: Emerging Technologies. 40:160–178.
2018-05-11
2019-05-30
Mark Yampolskiy, Yevgeniy Vorobeychik, Xenofon Koutsoukos, Peter Horvath, Heath LeBlanc, Janos Sztipanovits.  2014.  Resilient Distributed Consensus for Tree Topology. 3rd ACM International Conference on High Confidence Networked Systems (HiCoNS 2014).

Distributed consensus protocols are an important class of distributed algorithms. Recently, an Adversarial Resilient Consensus Protocol (ARC-P) has been proposed which is capable to achieve consensus despite false information pro- vided by a limited number of malicious nodes. In order to withstand false information, this algorithm requires a mesh- like topology, so that multiple alternative information flow paths exist. However, these assumptions are not always valid. For instance, in Smart Grid, an emerging distributed CPS, the node connectivity is expected to resemble the scale free network topology. Especially closer to the end customer, in home and building area networks, the connectivity graph resembles a tree structure.

In this paper, we propose a Range-based Adversary Re- silient Consensus Protocol (R.ARC-P). Three aspects dis- tinguish R.ARC-P from its predecessor: This protocol op- erates on the tree topology, it distinguishes between trust- worthiness of nodes in the immediate neighborhood, and it uses a valid value range in order to reduce the number of nodes considered as outliers. R.ARC-P is capable of reach- ing global consensus among all genuine nodes in the tree if assumptions about maximal number of malicious nodes in the neighborhood hold. In the case that this assumption is wrong, it is still possible to reach Strong Partial Consensus, i.e., consensus between leafs of at least two different parents.

2014-10-24
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis D.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage cross- collaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE. 

2015-01-13
Hibshi, Hanan, Slavin, Rocky, Niu, Jianwei, Breaux, Travis.  2014.  Rethinking Security Requirements in RE Research.

As information security became an increasing
concern for software developers and users, requirements
engineering (RE) researchers brought new insight to security
requirements. Security requirements aim to address security at
the early stages of system design while accommodating the
complex needs of different stakeholders. Meanwhile, other
research communities, such as usable privacy and security,
have also examined these requirements with specialized goal to
make security more usable for stakeholders from product
owners, to system users and administrators. In this paper we
report results from conducting a literature survey to compare
security requirements research from RE Conferences with the
Symposium on Usable Privacy and Security (SOUPS). We
report similarities between the two research areas, such as
common goals, technical definitions, research problems, and
directions. Further, we clarify the differences between these
two communities to understand how they can leverage each
other’s insights. From our analysis, we recommend new
directions in security requirements research mainly to expand
the meaning of security requirements in RE to reflect the
technological advancements that the broader field of security is
experiencing. These recommendations to encourage crosscollaboration
with other communities are not limited to the
security requirements area; in fact, we believe they can be
generalized to other areas of RE.

2015-05-05
Baek, J., Vu, Q., Liu, J., Huang, X., Xiang, Y..  2014.  A secure cloud computing based framework for big data information management of smart grid. Cloud Computing, IEEE Transactions on. PP:1-1.

Smart grid is a technological innovation that improves efficiency, reliability, economics, and sustainability of electricity services. It plays a crucial role in modern energy infrastructure. The main challenges of smart grids, however, are how to manage different types of front-end intelligent devices such as power assets and smart meters efficiently; and how to process a huge amount of data received from these devices. Cloud computing, a technology that provides computational resources on demands, is a good candidate to address these challenges since it has several good properties such as energy saving, cost saving, agility, scalability, and flexibility. In this paper, we propose a secure cloud computing based framework for big data information management in smart grids, which we call “Smart-Frame.” The main idea of our framework is to build a hierarchical structure of cloud computing centers to provide different types of computing services for information management and big data analysis. In addition to this structural framework, we present a security solution based on identity-based encryption, signature and proxy re-encryption to address critical security issues of the proposed framework.
 

2015-05-01
Chen, L.M., Hsiao, S.-W., Chen, M.C., Liao, W..  2014.  Slow-Paced Persistent Network Attacks Analysis and Detection Using Spectrum Analysis. Systems Journal, IEEE. PP:1-12.

A slow-paced persistent attack, such as slow worm or bot, can bewilder the detection system by slowing down their attack. Detecting such attacks based on traditional anomaly detection techniques may yield high false alarm rates. In this paper, we frame our problem as detecting slow-paced persistent attacks from a time series obtained from network trace. We focus on time series spectrum analysis to identify peculiar spectral patterns that may represent the occurrence of a persistent activity in the time domain. We propose a method to adaptively detect slow-paced persistent attacks in a time series and evaluate the proposed method by conducting experiments using both synthesized traffic and real-world traffic. The results show that the proposed method is capable of detecting slow-paced persistent attacks even in a noisy environment mixed with legitimate traffic.

2015-01-11
P. Gao, H. Miao, J.S. Baras.  2014.  Social Network Ad Allocation via Hyperbolic Embedding. Proceedings 53rd IEEE Conference on Decision and Control.
2015-05-06
Kuehner, Holger, Hartenstein, Hannes.  2014.  Spoilt for Choice: Graph-based Assessment of Key Management Protocols to Share Encrypted Data. Proceedings of the 4th ACM Conference on Data and Application Security and Privacy. :147–150.

Sharing data with client-side encryption requires key management. Selecting an appropriate key management protocol for a given scenario is hard, since the interdependency between scenario parameters and the resource consumption of a protocol is often only known for artificial, simplified scenarios. In this paper, we explore the resource consumption of systems that offer sharing of encrypted data within real-world scenarios, which are typically complex and determined by many parameters. For this purpose, we first collect empirical data that represents real-world scenarios by monitoring large-scale services within our organization. We then use this data to parameterize a resource consumption model that is based on the key graph generated by each key management protocol. The preliminary simulation runs we did so far indicate that this key-graph based model can be used to estimate the resource consumption of real-world systems for sharing encrypted data.

2015-01-12
Sunshine, Joshua, Herbsleb, James, Aldrich, Jonathan.  2014.  Structuring Documentation to Support State Search: A Laboratory Experiment about Protocol Programming. . European Conference on Object-Oriented Programming (ECOOP), 2014.

Application Programming Interfaces (APIs) often define object
protocols. Objects with protocols have a finite number of states and
in each state a different set of method calls is valid. Many researchers
have developed protocol verification tools because protocols are notoriously
difficult to follow correctly. However, recent research suggests that
a major challenge for API protocol programmers is effectively searching
the state space. Verification is an ineffective guide for this kind of
search. In this paper we instead propose Plaiddoc, which is like Javadoc
except it organizes methods by state instead of by class and it includes
explicit state transitions, state-based type specifications, and rich state
relationships. We compare Plaiddoc to a Javadoc control in a betweensubjects
laboratory experiment. We find that Plaiddoc participants complete
state search tasks in significantly less time and with significantly
fewer errors than Javadoc participants.

2015-04-30
Chiang, R., Rajasekaran, S., Zhang, N., Huang, H..  2014.  Swiper: Exploiting Virtual Machine Vulnerability in Third-Party Clouds with Competition for I/O Resources. Parallel and Distributed Systems, IEEE Transactions on. PP:1-1.

The emerging paradigm of cloud computing, e.g., Amazon Elastic Compute Cloud (EC2), promises a highly flexible yet robust environment for large-scale applications. Ideally, while multiple virtual machines (VM) share the same physical resources (e.g., CPUs, caches, DRAM, and I/O devices), each application should be allocated to an independently managed VM and isolated from one another. Unfortunately, the absence of physical isolation inevitably opens doors to a number of security threats. In this paper, we demonstrate in EC2 a new type of security vulnerability caused by competition between virtual I/O workloads-i.e., by leveraging the competition for shared resources, an adversary could intentionally slow down the execution of a targeted application in a VM that shares the same hardware. In particular, we focus on I/O resources such as hard-drive throughput and/or network bandwidth-which are critical for data-intensive applications. We design and implement Swiper, a framework which uses a carefully designed workload to incur significant delays on the targeted application and VM with minimum cost (i.e., resource consumption). We conduct a comprehensive set of experiments in EC2, which clearly demonstrates that Swiper is capable of significantly slowing down various server applications while consuming a small amount of resources.

2015-05-06
Klaper, David, Hovy, Eduard.  2014.  A Taxonomy and a Knowledge Portal for Cybersecurity. Proceedings of the 15th Annual International Conference on Digital Government Research. :79–85.

Smart government is possible only if the security of sensitive data can be assured. The more knowledgeable government officials and citizens are about cybersecurity, the better are the chances that government data is not compromised or abused. In this paper, we present two systems under development that aim at improving cybersecurity education. First, we are creating a taxonomy of cybersecurity topics that provides links to relevant educational or research material. Second, we are building a portal that serves as platform for users to discuss the security of websites. These sources can be linked together. This helps to strengthen the knowledge of government officials and citizens with regard to cybersecurity issues. These issues are a central concern for open government initiatives.

 

McGettrick, Andrew, Cassel, Lillian N., Dark, Melissa, Hawthorne, Elizabeth K., Impagliazzo, John.  2014.  Toward Curricular Guidelines for Cybersecurity. Proceedings of the 45th ACM Technical Symposium on Computer Science Education. :81–82.

This session reports on a workshop convened by the ACM Education Board with funding by the US National Science Foundation and invites discussion from the community on the workshop findings. The topic, curricular directions for cybersecurity, is one that resonates in many departments considering how best to prepare graduates to face the challenges of security issues in employment and future research. The session will include presentation of the workshop context and conclusions, but will be open to participant discussion. This will be the first public presentation of the results of the workshop and the first opportunity for significant response.

2018-06-04
2016-12-07
Hanan Hibshi, Rocky Slavin, Jianwei Niu, Travis Breaux.  2014.  Rethinking Security Requirements in RE Research .

As information security became an increasing concern for software developers and users, requirements engineering (RE) researchers brought new insight to security requirements. Security requirements aim to address security at the early stages of system design while accommodating the complex needs of different stakeholders. Meanwhile, other research communities, such as usable privacy and security, have also examined these requirements with specialized goal to make security more usable for stakeholders from product owners, to system users and administrators. In this paper we report results from conducting a literature survey to compare security requirements research from RE Conferences with the Symposium on Usable Privacy and Security (SOUPS). We report similarities between the two research areas, such as common goals, technical definitions, research problems, and directions. Further, we clarify the differences between these two communities to understand how they can leverage each other’s insights. From our analysis, we recommend new directions in security requirements research mainly to expand the meaning of security requirements in RE to reflect the technological advancements that the broader field of security is experiencing. These recommendations to encourage crosscollaboration with other communities are not limited to the security requirements area; in fact, we believe they can be generalized to other areas of RE. 

2016-12-05
Ashwini Rao, Hanan Hibshi, Travis Breaux, Jean-Michel Lehker, Jianwei Niu.  2014.  Less is More? Investigating the Role of Examples in Security Studies using Analogical Transfer HotSoS '14 Proceedings of the 2014 Symposium and Bootcamp on the Science of Security.

Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.

2017-02-17
Biplab Deka, University of Illinois at Urbana-Champaign, Alex A. Birklykke, Aalborg University, Henry Duwe, University of Illinois at Urbana-Champaign, Vikash K. Mansinghka, Massachusetts Institute of Technology, Rakesh Kumar, University of Illinois at Urbana-Champaign.  2014.  Markov Chain Algorithms: A Template for Building Future Robust Low-power Systems. Philosophical Transactions of the Royal Society A Mathematical, Physical and Engineering Sciences.

Although computational systems are looking towards post CMOS devices in the pursuit of lower power, the expected inherent unreliability of such devices makes it difficult to design robust systems without additional power overheads for guaranteeing robustness. As such, algorithmic structures with inherent ability to tolerate computational errors are of significant interest. We propose to cast applications as stochastic algorithms based on Markov chains (MCs) as such algorithms are both sufficiently general and tolerant to transition errors. We show with four example applications—Boolean satisfiability, sorting, low-density parity-check decoding and clustering—how applications can be cast as MC algorithms. Using algorithmic fault injection techniques, we demonstrate the robustness of these implementations to transition errors with high error rates. Based on these results, we make a case for using MCs as an algorithmic template for future robust low-power systems.

2016-12-05
Hanan Hibshi, Travis Breaux, Maria Riaz, Laurie Williams.  2014.  A Framework to Measure Experts' Decision Making in Security Requirements Analysis. 2014 IEEE 1st International Workshop on Evolving Security and Privacy Requirements Engineering (ESPRE).

Research shows that commonly accepted security requirements   are  not  generally  applied  in  practice.  Instead  of relying on requirements checklists, security experts rely on their expertise and background knowledge to identify security vulnerabilities.  To  understand  the  gap  between  available checklists  and  practice,  we  conducted  a  series  of  interviews  to encode   the   decision-making   process   of  security   experts   and novices during security requirements analysis. Participants were asked to analyze two types of artifacts: source code, and network diagrams  for  vulnerabilities  and  to  apply  a  requirements checklist to mitigate some of those vulnerabilities.  We framed our study using Situation Awareness—a cognitive theory from psychology—to   elicit  responses   that  we  later  analyzed   using coding theory and grounded analysis.  We report our preliminary results of analyzing two interviews that reveal possible decision- making patterns that could characterize how analysts perceive, comprehend   and  project  future  threats  which  leads  them  to decide upon requirements  and their specifications,  in addition, to how  experts  use  assumptions  to  overcome  ambiguity  in specifications.  Our goal is to build a model that researchers  can use to evaluate their security requirements methods against how experts transition through different situation awareness levels in their decision-making  process.

2015-01-11
Zielinska, Olga A., Tembe, Rucha, Hong, Kyung Wha, Ge, Xi, Murphy-Hill, Emerson, Mayhorn, Christopher B..  2014.  One Phish, Two Phish, How to Avoid the Internet Phish: Analysis of Training Strategies to Detect Phishing Emails. Human Factors and Ergonomics Society Annual Meeting.

Phishing is a social engineering tactic that targets internet users in an attempt to trick them into divulging personal information. When opening an email, users are faced with the decision of determining if an email is legitimate or an attempt at phishing. Although software has been developed to assist the user, studies have shown they are not foolproof, leaving the user vulnerable. Multiple training programs have been developed to educate users in their efforts to make informed decisions; however, training that conveys the real world consequences of phishing or training that increases a user’s fear level have not been developed. Conveying real world consequences of a situation and increasing a user’s fear level have been proven to enhance the effects of training in other fields. Ninety-six participants were recruited and randomly assigned to training programs with phishing consequences, training programs designed to increase fear, or a control group. Preliminary results indicate that training helped users identify phishing emails; however, little difference was seen among the three groups. Future analysis will include a factor analysis of personality and individual differences that influence training efficacy.

Heorhiadi, Victor, Fayaz, SeyedKaveh, Reiter, Michael K., Sekar, Vyas.  2014.  SNIPS: A Software-Defined Approach for Scaling Intrusion Prevention Systems via Offloading. 10th International Conference on Information Systems Security, ICISS 2014. 8880

Growing traffic volumes and the increasing complexity of attacks pose a constant scaling challenge for network intrusion prevention systems (NIPS). In this respect, offloading NIPS processing to compute clusters offers an immediately deployable alternative to expensive hardware upgrades. In practice, however, NIPS offloading is challenging on three fronts in contrast to passive network security functions: (1) NIPS offloading can impact other traffic engineering objectives; (2) NIPS offloading impacts user perceived latency; and (3) NIPS actively change traffic volumes by dropping unwanted traffic. To address these challenges, we present the SNIPS system. We design a formal optimization framework that captures tradeoffs across scalability, network load, and latency. We provide a practical implementation using recent advances in software-defined networking without requiring modifications to NIPS hardware. Our evaluations on realistic topologies show that SNIPS can reduce the maximum load by up to 10× while only increasing the latency by 2%.

2015-01-13
Rao, Ashwini, Hibshi, Hanan, Breaux, Travis, Lehker, Jean-Michel, Niu, Jianwei.  2014.  Less is More? Investigating the Role of Examples in Security Studies using Analogical Transfer 2014 Symposium and Bootcamp on the Science of Security (HotSoS).

Information system developers and administrators often overlook critical security requirements and best practices. This may be due to lack of tools and techniques that allow practitioners to tailor security knowledge to their particular context. In order to explore the impact of new security methods, we must improve our ability to study the impact of security tools and methods on software and system development. In this paper, we present early findings of an experiment to assess the extent to which the number and type of examples used in security training stimuli can impact security problem solving. To motivate this research, we formulate hypotheses from analogical transfer theory in psychology. The independent variables include number of problem surfaces and schemas, and the dependent variable is the answer accuracy. Our study results do not show a statistically significant difference in performance when the number and types of examples are varied. We discuss the limitations, threats to validity and opportunities for future studies in this area.