Biblio

Found 4176 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2017-02-27
Mohsen, R., Pinto, A. M..  2015.  Algorithmic information theory for obfuscation security. 2015 12th International Joint Conference on e-Business and Telecommunications (ICETE). 04:76–87.

The main problem in designing effective code obfuscation is to guarantee security. State of the art obfuscation techniques rely on an unproven concept of security, and therefore are not regarded as provably secure. In this paper, we undertake a theoretical investigation of code obfuscation security based on Kolmogorov complexity and algorithmic mutual information. We introduce a new definition of code obfuscation that requires the algorithmic mutual information between a code and its obfuscated version to be minimal, allowing for controlled amount of information to be leaked to an adversary. We argue that our definition avoids the impossibility results of Barak et al. and is more advantageous then obfuscation indistinguishability definition in the sense it is more intuitive, and is algorithmic rather than probabilistic.

2018-05-27
2017-03-08
Chammas, E., Mokbel, C., Likforman-Sulem, L..  2015.  Arabic handwritten document preprocessing and recognition. 2015 13th International Conference on Document Analysis and Recognition (ICDAR). :451–455.

Arabic handwritten documents present specific challenges due to the cursive nature of the writing and the presence of diacritical marks. Moreover, one of the largest labeled database of Arabic handwritten documents, the OpenHart-NIST database includes specific noise, namely guidelines, that has to be addressed. We propose several approaches to process these documents. First a guideline detection approach has been developed, based on K-means, that detects the documents that include guidelines. We then propose a series of preprocessing at text-line level to reduce the noise effects. For text-lines including guidelines, a guideline removal preprocessing is described and existing keystroke restoration approaches are assessed. In addition, we propose a preprocessing that combines noise removal and deskewing by removing line fragments from neighboring text lines, while searching for the principal orientation of the text-line. We provide recognition results, showing the significant improvement brought by the proposed processings.

2018-05-23
G. Gay, M. Staats, M. Whalen, M. P. E. Heimdahl.  2015.  Automated Oracle Data Selection Support. IEEE Transactions on Software Engineering. 41:1119-1137.
2018-05-14
Rajeev Alur, Mukund Raghothaman, Christos Stergiou, Stavros Tripakis, Abhishek Udupa.  2015.  Automatic Completion of Distributed Protocols with Symmetry. Computer Aided Verification - 27th International Conference, {CAV} 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part {II}. :395–412.
2016-04-11
Brad Miller, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha Bachwani, Riyaz Faizullabhoy, Ling Huang, Vaishaal Shankar, Tony Wu, George Yiu et al..  2015.  Back to the Future: Malware Detection with Temporally Consistent Labels. CoRR. abs/1510.07338

The malware detection arms race involves constant change: malware changes to evade detection and labels change as detection mechanisms react. Recognizing that malware changes over time, prior work has enforced temporally consistent samples by requiring that training binaries predate evaluation binaries. We present temporally consistent labels, requiring that training labels also predate evaluation binaries since training labels collected after evaluation binaries constitute label knowledge from the future. Using a dataset containing 1.1 million binaries from over 2.5 years, we show that enforcing temporal label consistency decreases detection from 91% to 72% at a 0.5% false positive rate compared to temporal samples alone.

The impact of temporal labeling demonstrates the potential of improved labels to increase detection results. Hence, we present a detector capable of selecting binaries for submission to an expert labeler for review. At a 0.5% false positive rate, our detector achieves a 72% true positive rate without an expert, which increases to 77% and 89% with 10 and 80 expert queries daily, respectively. Additionally, we detect 42% of malicious binaries initially undetected by all 32 antivirus vendors from VirusTotal used in our evaluation. For evaluation at scale, we simulate the human expert labeler and show that our approach is robust against expert labeling errors. Our novel contributions include a scalable malware detector integrating manual review with machine learning and the examination of temporal label consistency

2015-11-11
Kantchelian, Alex, Tschantz, Michael Carl, Afroz, Sadia, Miller, Brad, Shankar, Vaishaal, Bachwani, Rekha, Joseph, Anthony D., Tygar, J. D..  2015.  Better Malware Ground Truth: Techniques for Weighting Anti-Virus Vendor Labels. Proceedings of the 8th ACM Workshop on Artificial Intelligence and Security. :45–56.

We examine the problem of aggregating the results of multiple anti-virus (AV) vendors' detectors into a single authoritative ground-truth label for every binary. To do so, we adapt a well-known generative Bayesian model that postulates the existence of a hidden ground truth upon which the AV labels depend. We use training based on Expectation Maximization for this fully unsupervised technique. We evaluate our method using 279,327 distinct binaries from VirusTotal, each of which appeared for the rst time between January 2012 and June 2014.

Our evaluation shows that our statistical model is consistently more accurate at predicting the future-derived ground truth than all unweighted rules of the form \k out of n" AV detections. In addition, we evaluate the scenario where partial ground truth is available for model building. We train a logistic regression predictor on the partial label information. Our results show that as few as a 100 randomly selected training instances with ground truth are enough to achieve 80% true positive rate for 0.1% false positive rate. In comparison, the best unweighted threshold rule provides only 60% true positive rate at the same false positive rate.

2018-05-27
2017-03-08
Gupta, A., Mehrotra, A., Khan, P. M..  2015.  Challenges of Cloud Computing amp; Big Data Analytics. 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom). :1112–1115.

Now-a-days for most of the organizations across the globe, two important IT initiatives are: Big Data Analytics and Cloud Computing. Big Data Analytics can provide valuables insight that can create competitiveness and generate increased revenues. Cloud Computing can enhance productivity and efficiencies thus reducing cost. Cloud Computing offers groups of servers, storages and various networking resources. It enables environment of Big Data to processes voluminous, high velocity and varied formats of Big Data.

2018-05-27
Song Tan, Song, WenZhan, Michael Stewart, Lang Tong.  2015.  Construct Data Integrity Attacks Against Real-Time Electrical Market in Smart Grid. IEEE International Conference on Smart Grid Communications (SmartGridComm).
2017-03-08
Mondal, S., Bours, P..  2015.  Context independent continuous authentication using behavioural biometrics. IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). :1–8.

In this research, we focus on context independent continuous authentication that reacts on every separate action performed by a user. The experimental data was collected in a complete uncontrolled condition from 53 users by using our data collection software. In our analysis, we considered both keystroke and mouse usage behaviour patterns to prevent a situation where an attacker avoids detection by restricting to one input device because the continuous authentication system only checks the other input device. The best result obtained from this research is that for 47 bio-metric subjects we have on average 275 actions required to detect an imposter where these biometric subjects are never locked out from the system.

2018-05-27
Morris, Benjamin J, Powell, Matthew J, Ames, Aaron D.  2015.  Continuity and smoothness properties of nonlinear optimization-based feedback controllers. Decision and Control (CDC), 2015 IEEE 54th Annual Conference on. :151–158.
2018-05-14
2018-05-27
Manjesh Kumar Hanawal, Venkatesh Saligrama.  2015.  Cost effective algorithms for spectral bandits. 53rd Annual Allerton Conference on Communication, Control, and Computing, Allerton 2015, Allerton Park {&} Retreat Center, Monticello, IL, USA, September 29 - October 2, 2015. :1323–1329.
2015-01-08
Amit K. Chopra, Munindar P. Singh.  2015.  Cupid: Commitments in Relational Algebra. Proceedings of the 23rd Conference on Artificial Intelligence (AAAI). :1–8.

We propose Cupid, a language for specifying commitments that supports their information-centric aspects, and offers crucial benefits.  One, Cupid is first-order, enabling a systematic treatment of commitment instances.  Two, Cupid supports features needed for real-world scenarios such as deadlines, nested commitments, and complex event expressions for capturing the lifecycle of commitment instances.  Three, Cupid maps to relational database queries and thus provides a set-based semantics for retrieving commitment instances in states such as being violated,discharged, and so on.  We prove that Cupid queries are safe.  Four,to aid commitment modelers, we propose the notion of well-identified commitments, and finitely violable and finitely expirable commitments.  We give syntactic restrictions for obtaining such commitments.

2018-06-17
Khaitan, Siddhartha Kumar, McCalley, James D, Liu, Chen Ching.  2015.  Cyber physical systems approach to smart electric power grid.

This book documents recent advances in the field of modeling, simulation, control, security and reliability of Cyber- Physical Systems (CPS) in power grids. The aim of this book is to help the reader gain insights into working of CPSs and understand their potential in transforming the power grids of tomorrow. This book will be useful for all those who are interested in design of cyber-physical systems, be they students or researchers in power systems, CPS modeling software developers, technical marketing professionals and business policy-makers.

2018-05-15
2018-05-17
Greenwood, Garrison, Gallagher, John, Matson, Eric.  2015.  Cyber-Physical Systems: The Next Generation of Evolvable Hardware Research and Applications. Proceedings of the 18th Asia Pacific Symposium on Intelligent and Evolutionary Systems, Volume 1. :285–296.

Since the late 1990s the sales of processors targeted for embedded systems has exceeded sales for the PC market. Some embedded systems tightly link the computing resources to the physical world. Such systems are called cyber-physical systems. Autonomous cyber-physical systems often have safety-critical missions, which means they must be fault tolerant. Unfortunately fault recovery options are limited; adapting the physical system behavior may be the only viable option. Consequently, autonomous cyber-physical systems are a class of adaptive systems. The evolvable hardware field has developed a number of techniques that should prove to be useful for designing cyber-physical systems although work along those lines has only recently begun. In this paper we provide an overview of cyber-physical systems and then describe how two evolvable hardware techniques can be used to adapt the physical system behavior in real-time. The goal is to introduce cyber-physical systems to the evolvable hardware community and encourage those researchers to begin working in this emerging field.

2015-04-04
Munindar P. Singh.  2015.  Cybersecurity as an Application Domain for Multiagent Systems. Proceedings of the 14th International Conference on Autonomous Agents and MultiAgent Systems (AAMAS).

The science of cybersecurity has recently been garnering much attention among researchers and practitioners dissatisfied with the ad hoc nature of much of the existing work on cybersecurity. Cybersecurity offers a great opportunity for multiagent systems research.  We motivate cybersecurity as an application area for multiagent systems with an emphasis on normative multiagent systems. First, we describe ways in which multiagent systems could help advance our understanding of cybersecurity and provide a set of principles that could serve as a foundation for a new science of cybersecurity. Second, we argue how paying close attention to the challenges of cybersecurity could expose the limitations of current research in multiagent systems, especially with respect to dealing with considerations of autonomy and interdependence.

2017-03-08
Buda, A., Främling, K., Borgman, J., Madhikermi, M., Mirzaeifar, S., Kubler, S..  2015.  Data supply chain in Industrial Internet. 2015 IEEE World Conference on Factory Communication Systems (WFCS). :1–7.

The Industrial Internet promises to radically change and improve many industry's daily business activities, from simple data collection and processing to context-driven, intelligent and pro-active support of workers' everyday tasks and life. The present paper first provides insight into a typical industrial internet application architecture, then it highlights one fundamental arising contradiction: “Who owns the data is often not capable of analyzing it”. This statement is explained by imaging a visionary data supply chain that would realize some of the Industrial Internet promises. To concretely implement such a system, recent standards published by The Open Group are presented, where we highlight the characteristics that make them suitable for Industrial Internet applications. Finally, we discuss comparable solutions and concludes with new business use cases.

2018-05-27
2017-02-27
Wei, L., Moghadasi, A. H., Sundararajan, A., Sarwat, A. I..  2015.  Defending mechanisms for protecting power systems against intelligent attacks. 2015 10th System of Systems Engineering Conference (SoSE). :12–17.

The power system forms the backbone of a modern society, and its security is of paramount importance to nation's economy. However, the power system is vulnerable to intelligent attacks by attackers who have enough knowledge of how the power system is operated, monitored and controlled. This paper proposes a game theoretic approach to explore and evaluate strategies for the defender to protect the power systems against such intelligent attacks. First, a risk assessment is presented to quantify the physical impacts inflicted by attacks. Based upon the results of the risk assessment, this paper represents the interactions between the attacker and the defender by extending the current zero-sum game model to more generalized game models for diverse assumptions concerning the attacker's motivation. The attacker and defender's equilibrium strategies are attained by solving these game models. In addition, a numerical illustration is demonstrated to warrant the theoretical outcomes.

2017-03-08
Ma, T., Zhang, H., Qian, J., Liu, S., Zhang, X., Ma, X..  2015.  The Design of Brand Cosmetics Anti-counterfeiting System Based on RFID Technology. 2015 International Conference on Network and Information Systems for Computers. :184–189.

The digital authentication security technology is widely used in the current brand cosmetics as key anti-counterfeiting technology, yet this technology is prone to "false security", "hard security" and "non-security" phenomena. This paper researches the current cosmetics brand distribution channels and sales methods also analyses the cosmetics brands' demand for RFID technology anti-counterfeiting security system, then proposes a security system based on RFID technology for brand cosmetics. The system is based on a typical distributed RFID tracking and tracing system which is the most widely used system-EPC system. This security system based on RFID technology for brand cosmetics in the paper is a visual information management system for luxury cosmetics brand. It can determine the source of the product timely and effectively, track and trace products' logistics information and prevent fake goods and gray goods getting into the normal supply chain channels.

2017-05-18
Ahsan, Muhammad, Meter, Rodney Van, Kim, Jungsang.  2015.  Designing a Million-Qubit Quantum Computer Using a Resource Performance Simulator. J. Emerg. Technol. Comput. Syst.. 12:39:1–39:25.

The optimal design of a fault-tolerant quantum computer involves finding an appropriate balance between the burden of large-scale integration of noisy components and the load of improving the reliability of hardware technology. This balance can be evaluated by quantitatively modeling the execution of quantum logic operations on a realistic quantum hardware containing limited computational resources. In this work, we report a complete performance simulation software tool capable of (1) searching the hardware design space by varying resource architecture and technology parameters, (2) synthesizing and scheduling a fault-tolerant quantum algorithm within the hardware constraints, (3) quantifying the performance metrics such as the execution time and the failure probability of the algorithm, and (4) analyzing the breakdown of these metrics to highlight the performance bottlenecks and visualizing resource utilization to evaluate the adequacy of the chosen design. Using this tool, we investigate a vast design space for implementing key building blocks of Shor’s algorithm to factor a 1,024-bit number with a baseline budget of 1.5 million qubits. We show that a trapped-ion quantum computer designed with twice as many qubits and one-tenth of the baseline infidelity of the communication channel can factor a 2,048-bit integer in less than 5 months.