Biblio

Found 4176 results

Filters: First Letter Of Last Name is M  [Clear All Filters]
2017-05-16
Worthy, Peter, Matthews, Ben, Viller, Stephen.  2016.  Trust Me: Doubts and Concerns Living with the Internet of Things. Proceedings of the 2016 ACM Conference on Designing Interactive Systems. :427–434.

An increasing number of everyday objects are now connected to the internet, collecting and sharing information about us: the "Internet of Things" (IoT). However, as the number of "social" objects increases, human concerns arising from this connected world are starting to become apparent. This paper presents the results of a preliminary qualitative study in which five participants lived with an ambiguous IoT device that collected and shared data about their activities at home for a week. In analyzing this data, we identify the nature of human and socio-technical concerns that arise when living with IoT technologies. Trust is identified as a critical factor - as trust in the entity/ies that are able to use their collected information decreases, users are likely to demand greater control over information collection. Addressing these concerns may support greater engagement of users with IoT technology. The paper concludes with a discussion of how IoT systems might be designed to better foster trust with their owners.

2017-09-26
Mikami, Kei, Ando, Daisuke, Kaneko, Kunitake, Teraoka, Fumio.  2016.  Verification of a Multi-Domain Authentication and Authorization Infrastructure Yamata-no-Orochi. Proceedings of the 11th International Conference on Future Internet Technologies. :69–75.

Yamata-no-Orochi is an authentication and authorization infrastructure across multiple service domains and provides Internet services with unified authentication and authorization mechanisms. In this paper, Yamata-no-Orochi is incorporated into a video distribution system to verify its general versatility as a multi-domain authentication and authorization infrastructure for Internet services. This paper also reduces the authorization time of Yamata-no-Orochi to fulfill the processing time constrains of the video distribution system. The evaluation results show that all the authentication and authorization processes work correctly and the performance of Yamata-no-Orochi is practical for the video distribution system.

2016-10-11
Donghoon Kim, Mladen A. Vouk.  2016.  Assessing Run-time Overhead of Securing Kepler. The International Conference on Computational Science, ICCS 2016. 80:2281-2286.
2018-05-25
2018-05-11
Abbas, Houssam, Jang, Kuk Jin, Mangharam, Rahul.  2016.  Benchmark: Nonlinear Hybrid Automata Model of Excitable Cardiac Tissue. Applied Verification for Continuous and Hybrid Systems.
Abbas, Houssam, Jang, Kuk Jin, Jiang, Zhihao, Mangharam, Rahul.  2016.  Towards Model Checking of Implantable Cardioverter Defibrillators. 19th ACM International Conference on Hybrid Systems: Computation and Control.
2017-03-20
Canfora, Gerardo, Medvet, Eric, Mercaldo, Francesco, Visaggio, Corrado Aaron.  2016.  Acquiring and Analyzing App Metrics for Effective Mobile Malware Detection. Proceedings of the 2016 ACM on International Workshop on Security And Privacy Analytics. :50–57.

Android malware is becoming very effective in evading detection techniques, and traditional malware detection techniques are demonstrating their weaknesses. Signature based detection shows at least two drawbacks: first, the detection is possible only after the malware has been identified, and the time needed to produce and distribute the signature provides attackers with window of opportunities for spreading the malware in the wild. For solving this problem, different approaches that try to characterize the malicious behavior through the invoked system and API calls emerged. Unfortunately, several evasion techniques have proven effective to evade detection based on system and API calls. In this paper, we propose an approach for capturing the malicious behavior in terms of device resource consumption (using a thorough set of features), which is much more difficult to camouflage. We describe a procedure, and the corresponding practical setting, for extracting those features with the aim of maximizing their discriminative power. Finally, we describe the promising results we obtained experimenting on more than 2000 applications, on which our approach exhibited an accuracy greater than 99%.

2017-06-27
Maheswaran, John, Jackowitz, Daniel, Zhai, Ennan, Wolinsky, David Isaac, Ford, Bryan.  2016.  Building Privacy-Preserving Cryptographic Credentials from Federated Online Identities. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :3–13.

Federated identity providers, e.g., Facebook and PayPal, offer a convenient means for authenticating users to third-party applications. Unfortunately such cross-site authentications carry privacy and tracking risks. For example, federated identity providers can learn what applications users are accessing; meanwhile, the applications can know the users' identities in reality. This paper presents Crypto-Book, an anonymizing layer enabling federated identity authentications while preventing these risks. Crypto-Book uses a set of independently managed servers that employ a (t,n)-threshold cryptosystem to collectively assign credentials to each federated identity (in the form of either a public/private keypair or blinded signed messages). With the credentials in hand, clients can then leverage anonymous authentication techniques such as linkable ring signatures or partially blind signatures to log into third-party applications in an anonymous yet accountable way. We have implemented a prototype of Crypto-Book and demonstrated its use with three applications: a Wiki system, an anonymous group communication system, and a whistleblower submission system. Crypto-Book is practical and has low overhead: in a deployment within our research group, Crypto-Book group authentication took 1.607s end-to-end, an overhead of 1.2s compared to traditional non-privacy-preserving federated authentication.

2017-10-03
Majumder, Abhishek, Deb, Subhrajyoti, Roy, Sudipta.  2016.  Classification and Performance Analysis of Intra-domain Mobility Management Schemes for Wireless Mesh Network. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :113:1–113:6.

Nowadays Wireless Mesh Networks (WMNs) has come up with a promising solution for modern wireless communications. But, one of the major problems with WMN is the mobility of the Mesh Clients (MCs). To offer seamless connectivity to the MCs, their mobility management is necessary. During mobility management one of the major concerns is the communication overhead incurred during handoff of the MCs. For addressing this concern, many schemes have been proposed by the researchers. In this paper, a classification of the existing intra domain mobility management schemes has been presented. The schemes have been numerically analyzed. Finally, their performance has been analyzed and compared with respect to handoff cost considering different mobility rates of the MCs.

2017-07-24
Melis, Luca, Asghar, Hassan Jameel, De Cristofaro, Emiliano, Kaafar, Mohamed Ali.  2016.  Private Processing of Outsourced Network Functions: Feasibility and Constructions. Proceedings of the 2016 ACM International Workshop on Security in Software Defined Networks & Network Function Virtualization. :39–44.

Aiming to reduce the cost and complexity of maintaining networking infrastructures, organizations are increasingly outsourcing their network functions (e.g., firewalls, traffic shapers and intrusion detection systems) to the cloud, and a number of industrial players have started to offer network function virtualization (NFV)-based solutions. Alas, outsourcing network functions in its current setting implies that sensitive network policies, such as firewall rules, are revealed to the cloud provider. In this paper, we investigate the use of cryptographic primitives for processing outsourced network functions, so that the provider does not learn any sensitive information. More specifically, we present a cryptographic treatment of privacy-preserving outsourcing of network functions, introducing security definitions as well as an abstract model of generic network functions, and then propose a few instantiations using partial homomorphic encryption and public-key encryption with keyword search. We include a proof-of-concept implementation of our constructions and show that network functions can be privately processed by an untrusted cloud provider in a few milliseconds.

2016-04-12
Anduo Wang, University of Illinois at Urbana-Champaign, Xueyan Mei, University of Illinois at Urbana-Champaign, Jason Croft, University of Illinois at Urbana-Champaign, Matthew Caesar, University of Illinois at Urbana-Champaign, Brighten Godfrey, University of Illinois at Urbana-Champaign.  2016.  Ravel: A Database-Defined Network. ACM SIGCOMM Symposium on Software Defined Networking Research (SOSR 2016).

SDN’s logically centralized control provides an insertion point for programming the network. While it is generally agreed that higherlevel abstractions are needed to make that programming easy, there is little consensus on what are the “right” abstractions. Indeed, as SDN moves beyond its initial specialized deployments to broader use cases, it is likely that network control applications will require diverse abstractions that evolve over time. To this end, we champion a perspective that SDN control fundamentally revolves around data representation. We discard any application-specific structure that might be outgrown by new demands. Instead, we adopt a plain data representation of the entire network — network topology, forwarding, and control applications — and seek a universal data language that allows application programmers to transform the primitive representation into any high-level representations presented to applications or network operators. Driven by this insight, we present a system, Ravel, that implements an entire SDN network control infrastructure within a standard SQL database. In Ravel, network abstractions take the form of user-defined SQL views expressed by SQL queries that can be added on the fly. A key challenge in realizing this approach is to orchestrate multiple simultaneous abstractions that collectively affect the same underlying data. To achieve this, Ravel enhances the database with novel data integration mechanisms that merge the multiple views into a coherent forwarding behavior. Moreover, Ravel is exposed to applications through the one simple, familiar and highly interoperable SQL interface. While this is an ambitious long-term goal, our prototype built on the PostgreSQL database exhibits promising performance even for large scale networks.

2017-08-02
Matsuki, Tatsuma, Matsuoka, Naoki.  2016.  A Resource Contention Analysis Framework for Diagnosis of Application Performance Anomalies in Consolidated Cloud Environments. Proceedings of the 7th ACM/SPEC on International Conference on Performance Engineering. :173–184.

Cloud services have made large contributions to the agile developments and rapid revisions of various applications. However, the performance of these applications is still one of the largest concerns for developers. Although it has created many performance analysis frameworks, most of them have not been efficient for the rapid application revisions because they have required performance models, which may have had to be remodeled whenever application revisions occurred. We propose an analysis framework for diagnosis of application performance anomalies. We designed our framework so that it did not require any performance models to be efficient in rapid application revisions. That investigates the Pearson correlation and association rules between system metrics and application performance. The association rules are widely used in data-mining areas to find relations between variables in databases. We demonstrated through an experiment and testing on a real data set that our framework could select causal metrics even when the metrics were temporally correlated, which reduced the false negatives obtained from cause diagnosis. We evaluated our framework from the perspective of the expected remaining diagnostic costs of framework users. The results indicated that it was expected to reduce the diagnostic costs by 84.8\textbackslash% at most, compared with a method that only used the Pearson correlation.

2017-11-03
Beevi, L. S., Merlin, G., MoganaPriya, G..  2016.  Security and privacy for smart grid using scalable key management. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT). :4716–4721.

This paper focuses on the issues of secure key management for smart grid. With the present key management schemes, it will not yield security for deployment in smart grid. A novel key management scheme is proposed in this paper which merges elliptic curve public key technique and symmetric key technique. Based on the Needham-Schroeder authentication protocol, symmetric key scheme works. Well known threats like replay attack and man-in-the-middle attack can be successfully abolished using Smart Grid. The benefits of the proposed system are fault-tolerance, accessibility, Strong security, scalability and Efficiency.

2017-08-02
Menninghaus, Mathias, Pulvermüller, Elke.  2016.  Towards Using Code Coverage Metrics for Performance Comparison on the Implementation Level. Proceedings of the 7th ACM/SPEC on International Conference on Performance Engineering. :101–104.

The development process for new algorithms or data structures often begins with the analysis of benchmark results to identify the drawbacks of already existing implementations. Furthermore it ends with the comparison of old and new implementations by using one or more well established benchmark. But how relevant, reproducible, fair, verifiable and usable those benchmarks may be, they have certain drawbacks. On the one hand a new implementation may be biased to provide good results for a specific benchmark. On the other hand benchmarks are very general and often fail to identify the worst and best cases of a specific implementation. In this paper we present a new approach for the comparison of algorithms and data structures on the implementation level using code coverage. Our approach uses model checking and multi-objective evolutionary algorithms to create test cases with a high code coverage. It then executes each of the given implementations with each of the test cases in order to calculate a cross coverage. Using this it calculates a combined coverage and weighted performance where implementations, which are not fully covered by the test cases of the other implementations, are punished. These metrics can be used to compare the performance of several implementations on a much deeper level than traditional benchmarks and they incorporate worst, best and average cases in an equal manner. We demonstrate this approach by two example sets of algorithms and outline the next research steps required in this context along with the greatest risks and challenges.

2017-03-29
Mallaiah, Kurra, Gandhi, Rishi Kumar, Ramachandram, S..  2016.  Word and Phrase Proximity Searchable Encryption Protocols for Cloud Based Relational Databases. Proceedings of the International Conference on Internet of Things and Cloud Computing. :42:1–42:12.

In this paper, we propose a practical and efficient word and phrase proximity searchable encryption protocols for cloud based relational databases. The proposed advanced searchable encryption protocols are provably secure. We formalize the security assurance with cryptographic security definitions and prove the security of our searchable encryption protocols under Shannon's perfect secrecy assumption. We have tested the proposed protocols comprehensively on Amazon's high performance computing server using mysql database and presented the results. The proposed protocols ensure that there is zero overhead of space and communication because cipher text size being equal to plaintext size. For the same reason, the database schema also does not change for existing applications. In this paper, we also present results of comprehensive analysis for Song, Wagner, and Perrig scheme.

2017-04-20
Takalo, H., Ahmadi, A., Mirhassani, M., Ahmadi, M..  2016.  Analog cellular neural network for application in physical unclonable functions. 2016 IEEE International Symposium on Circuits and Systems (ISCAS). :2635–2638.
In this paper an analog cellular neural network is proposed with application in physical unclonable function design. Dynamical behavior of the circuit and its high sensitivity to the process variation can be exploited in a challenge-response security system. The proposed circuit can be used as unclonable core module in the secure systems for applications such as device identification/authentication and secret key generation. The proposed circuit is designed and simulated in 45-nm bulk CMOS technology. Monte Carlo simulation for this circuit, results in unpolarized Gaussian-shaped distribution for Hamming Distance between 4005 100-bit PUF instances.
2017-05-17
Chen, Cheng, Zhang, Fengchao, Barras, Jamie, Althoefer, Kaspar, Bhunia, Swarup, Mandal, Soumyajit.  2016.  Authentication of Medicines Using Nuclear Quadrupole Resonance Spectroscopy. IEEE/ACM Trans. Comput. Biol. Bioinformatics. 13:417–430.

The production and sale of counterfeit and substandard pharmaceutical products, such as essential medicines, is an important global public health problem. We describe a chemometric passport-based approach to improve the security of the pharmaceutical supply chain. Our method is based on applying nuclear quadrupole resonance (NQR) spectroscopy to authenticate the contents of medicine packets. NQR is a non-invasive, non-destructive, and quantitative radio frequency (RF) spectroscopic technique. It is sensitive to subtle features of the solid-state chemical environment and thus generates unique chemical fingerprints that are intrinsically difficult to replicate. We describe several advanced NQR techniques, including two-dimensional measurements, polarization enhancement, and spin density imaging, that further improve the security of our authentication approach. We also present experimental results that confirm the specificity and sensitivity of NQR and its ability to detect counterfeit medicines.

2018-05-16
Y. Jiang, H. Liu, H. Kong, R. Wang, M. Hosseini, J. Sun, L. Sha.  2016.  Use Runtime Verification to Improve the Quality of Medical Care Practice. 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C). :112-121.
2017-05-17
Adepu, Sridhar, Mathur, Aditya.  2016.  Distributed Detection of Single-Stage Multipoint Cyber Attacks in a Water Treatment Plant. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :449–460.

A distributed detection method is proposed to detect single stage multi-point (SSMP) attacks on a Cyber Physical System (CPS). Such attacks aim at compromising two or more sensors or actuators at any one stage of a CPS and could totally compromise a controller and prevent it from detecting the attack. However, as demonstrated in this work, using the flow properties of water from one stage to the other, a neighboring controller was found effective in detecting such attacks. The method is based on physical invariants derived for each stage of the CPS from its design. The attack detection effectiveness of the method was evaluated experimentally against an operational water treatment testbed containing 42 sensors and actuators. Results from the experiments point to high effectiveness of the method in detecting a variety of SSMP attacks but also point to its limitations. Distributing the attack detection code among various controllers adds to the scalability of the proposed method.

2017-09-11
Mundada, Yogesh, Feamster, Nick, Krishnamurthy, Balachander.  2016.  Half-Baked Cookies: Hardening Cookie-Based Authentication for the Modern Web. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :675–685.

Modern websites use multiple authentication cookies to allow visitors to the site different levels of access. The complexity of modern web applications can make it difficult for a web application programmer to ensure that the use of authentication cookies does not introduce vulnerabilities. Even when a programmer has access to all of the source code, this analysis can be challenging; the problem becomes even more vexing when web programmers cobble together off-the-shelf libraries to implement authentication. We have assembled a checklist for modern web programmers to verify that the cookie based authentication mechanism is securely implemented. Then, we developed a tool, Newton, to help a web application programmer to identify authentication cookies for specific parts of the website and to verify that they are securely implemented according to the checklist. We used Newton to analyze 149 sites, including the Alexa top-200 and many other popular sites across a range of categories including search, shopping, and finance. We found that 113 of them–-including high-profile sites such as Yahoo, Amazon, and Fidelity–-were vulnerable to hijacking attacks. Many websites have already acknowledged and fixed the vulnerabilities that we found using Newton and reported to them.

2016-03-30
Elissa M. Redmiles, Amelia R. Malone, Michelle L. Mazurek.  2016.  I Think They're Trying to Tell Me Something: Advice Sources and Selection for Digital Security. IEEE Symposium on Security and Privacy.

Users receive a multitude of digital- and physical- security advice every day. Indeed, if we implemented all the security advice we received, we would never leave our houses or use the Internet. Instead, users selectively choose some advice to accept and some (most) to reject; however, it is unclear whether they are effectively prioritizing what is most important or most useful. If we can understand from where and why users take security advice, we can develop more effective security interventions.

As a first step, we conducted 25 semi-structured interviews of a demographically broad pool of users. These interviews resulted in several interesting findings: (1) participants evaluated digital-security advice based on the trustworthiness of the advice source, but evaluated physical-security advice based on their intuitive assessment of the advice content; (2) negative-security events portrayed in well-crafted fictional narratives with relatable characters (such as those shown in TV or movies) may be effective teaching tools for both digital- and physical-security behaviors; and (3) participants rejected advice for many reasons, including finding that the advice contains too much marketing material or threatens their privacy.

2017-05-16
Conway, Dan, Chen, Fang, Yu, Kun, Zhou, Jianlong, Morris, Richard.  2016.  Misplaced Trust: A Bias in Human-Machine Trust Attribution – In Contradiction to Learning Theory. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. :3035–3041.

Human-machine trust is a critical mitigating factor in many HCI instances. Lack of trust in a system can lead to system disuse whilst over-trust can lead to inappropriate use. Whilst human-machine trust has been examined extensively from within a technico-social framework, few efforts have been made to link the dynamics of trust within a steady-state operator-machine environment to the existing literature of the psychology of learning. We set out to recreate a commonly reported learning phenomenon within a trust acquisition environment: Users learning which algorithms can and cannot be trusted to reduce traffic in a city. We failed to replicate (after repeated efforts) the learning phenomena of "blocking", resulting in a finding that people consistently make a very specific error in trust assignment to cues in conditions of uncertainty. This error can be seen as a cognitive bias and has important implications for HCI.

2017-05-30
Werner, Jan, Baltas, George, Dallara, Rob, Otterness, Nathan, Snow, Kevin Z., Monrose, Fabian, Polychronakis, Michalis.  2016.  No-Execute-After-Read: Preventing Code Disclosure in Commodity Software. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :35–46.

Memory disclosure vulnerabilities enable an adversary to successfully mount arbitrary code execution attacks against applications via so-called just-in-time code reuse attacks, even when those applications are fortified with fine-grained address space layout randomization. This attack paradigm requires the adversary to first read the contents of randomized application code, then construct a code reuse payload using that knowledge. In this paper, we show that the recently proposed Execute-no-Read (XnR) technique fails to prevent just-in-time code reuse attacks. Next, we introduce the design and implementation of a novel memory permission primitive, dubbed No-Execute-After-Read (near), that foregoes the problems of XnR and provides strong security guarantees against just-in-time attacks in commodity binaries. Specifically, near allows all code to be disclosed, but prevents any disclosed code from subsequently being executed, thus thwarting just-in-time code reuse. At the same time, commodity binaries with mixed code and data regions still operate correctly, as legitimate data is still readable. To demonstrate the practicality and portability of our approach we implemented prototypes for both Linux and Android on the ARMv8 architecture, as well as a prototype that protects unmodified Microsoft Windows executables and dynamically linked libraries. In addition, our evaluation on the SPEC2006 benchmark demonstrates that our prototype has negligible runtime overhead, making it suitable for practical deployment.

2017-03-20
Barbareschi, Mario, Cilardo, Alessandro, Mazzeo, Antonino.  2016.  Partial FPGA Bitstream Encryption Enabling Hardware DRM in Mobile Environments. Proceedings of the ACM International Conference on Computing Frontiers. :443–448.

The concept of digital right management (DRM) has become extremely important in current mobile environments. This paper shows how partial bitstream encryption can allow the secure distribution of hardware applications resembling the mechanisms of traditional software DRM. Building on the recent developments towards the secure distribution of hardware cores, the paper demonstrates a prototypical implementation of a user mobile device supporting such distribution mechanisms. The prototype extends the Android operating system with support for hardware reconfigurability and showcases the interplay of novel security concepts enabled by hardware DRM, the advantages of a design flow based on high-level synthesis, and the opportunities provided by current software-rich reconfigurable Systems-on-Chips. Relying on this prototype, we also collected extensive quantitative results demonstrating the limited overhead incurred by the secure distribution architecture.

2017-03-07
Mohammadkhan, Ali, Ramakrishnan, K. K., Rajan, Ashok Sunder, Maciocco, Christian.  2016.  Considerations for re-designing the cellular infrastructure exploiting software-based networks. :1–6.

As demand for wireless mobile connectivity continues to explode, cellular network infrastructure capacity requirements continue to grow. While 5G tries to address capacity requirements at the radio layer, the load on the cellular core network infrastructure (called Enhanced Packet Core (EPC)) stresses the network infrastructure. Our work examines the architecture, protocols of current cellular infrastructures and the workload on the EPC. We study the challenges in dimensioning capacity and review the design alternatives to support the significant scale up desired, even for the near future. We breakdown the workload on the network infrastructure into its components-signaling event transactions; database or lookup transactions and packet processing. We quantitatively show the control plane and data plane load on the various components of the EPC and estimate how future 5G cellular network workloads will scale. This analysis helps us to understand the scalability challenges for future 5G EPC network components. Other efforts to scale the 5G cellular network take a system view where the control plane is separated from the data path and is terminated on a centralized SDN controller. The SDN controller configures the data path on a widely distributed switching infrastructure. Our analysis of the workload informs us on the feasibility of various design alternatives and motivates our efforts to develop our clean-slate approach, called CleanG.