Biblio

Found 1602 results

Filters: First Letter Of Last Name is N  [Clear All Filters]
2020-06-15
Gressl, Lukas, Steger, Christian, Neffe, Ulrich.  2019.  Consideration of Security Attacks in the Design Space Exploration of Embedded Systems. 2019 22nd Euromicro Conference on Digital System Design (DSD). :530–537.
Designing secure systems is a complex task, particularly for designers who are no security experts. Cyber security plays a key role in embedded systems, especially for the domain of the Internet of Things (IoT). IoT systems of this kind are becoming increasingly important in daily life as they simplify various tasks. They are usually small, either embedded into bigger systems or battery driven, and perform monitoring or one shot tasks. Thus, they are subject to manifold constraints in terms of performance, power consumption, chip area, etc. As they are continuously connected to the internet and utilize our private data to perform their tasks, they are interesting for potential attackers. Cyber security thus plays an important role for the design of an IoT system. As the usage of security measures usually increases both computation time, as well as power consumption, a conflict between these constraints must be solved. For the designers of such systems, balancing these constraints constitutes a highly complex task. In this paper we propose a novel approach for considering possible security attacks on embedded systems, simplifying the consideration of security requirements immediately at the start of the design process. We introduce a security aware design space exploration framework which based on an architectural, behavioral and security attack description, finds the optimal design for IoT systems. We also demonstrate the feasibility and the benefits of our framework based on a door access system use case.
2020-01-13
Li, Nan, Varadharajan, Vijay, Nepal, Surya.  2019.  Context-Aware Trust Management System for IoT Applications with Multiple Domains. 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS). :1138–1148.
The Internet of Things (IoT) provides connectivity between heterogeneous devices in different applications, such as smart wildlife, supply chain and traffic management. Trust management system (TMS) assesses the trustworthiness of service with respect to its quality. Under different context information, a service provider may be trusted in one context but not in another. The existing context-aware trust models usually store trust values under different contexts and search the closest (to a given context) record to evaluate the trustworthiness of a service. However, it is not suitable for distributed resource-constrained IoT devices which have small memory and low power. Reputation systems are applied in many trust models where trustor obtains recommendations from others. In context-based trust evaluation, it requires interactive queries to find relevant information from remote devices. The communication overhead and energy consumption are issues in low power networks like 6LoWPAN. In this paper, we propose a new context-aware trust model for lightweight IoT devices. The proposed model provides a trustworthiness overview of a service provider without storing past behavior records, that is, constant size storage. The proposed model allows a trustor to decide the significance of context items. This could result in distinctive decisions under the same trustworthiness record. We also show the performance of the proposed model under different attacks.
2020-10-14
Trevizan, Rodrigo D., Ruben, Cody, Nagaraj, Keerthiraj, Ibukun, Layiwola L., Starke, Allen C., Bretas, Arturo S., McNair, Janise, Zare, Alina.  2019.  Data-driven Physics-based Solution for False Data Injection Diagnosis in Smart Grids. 2019 IEEE Power Energy Society General Meeting (PESGM). :1—5.
This paper presents a data-driven and physics-based method for detection of false data injection (FDI) in Smart Grids (SG). As the power grid transitions to the use of SG technology, it becomes more vulnerable to cyber-attacks like FDI. Current strategies for the detection of bad data in the grid rely on the physics based State Estimation (SE) process and statistical tests. This strategy is naturally vulnerable to undetected bad data as well as false positive scenarios, which means it can be exploited by an intelligent FDI attack. In order to enhance the robustness of bad data detection, the paper proposes the use of data-driven Machine Intelligence (MI) working together with current bad data detection via a combined Chi-squared test. Since MI learns over time and uses past data, it provides a different perspective on the data than the SE, which analyzes only the current data and relies on the physics based model of the system. This combined bad data detection strategy is tested on the IEEE 118 bus system.
2020-06-29
Sultana, Subrina, Nasrin, Sumaiya, Lipi, Farhana Kabir, Hossain, Md Afzal, Sultana, Zinia, Jannat, Fatima.  2019.  Detecting and Preventing IP Spoofing and Local Area Network Denial (LAND) Attack for Cloud Computing with the Modification of Hop Count Filtering (HCF) Mechanism. 2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2). :1–6.
In today's world the number of consumers of cloud computing is increasing day by day. So, security is a big concern for cloud computing environment to keep user's data safe and secure. Among different types of attacks in cloud one of the harmful and frequently occurred attack is Distributed Denial of Service (DDoS) attack. DDoS is one type of flooding attack which is initiated by sending a large number of invalid packets to limit the services of the victim server. As a result, server can not serve the legitimate requests. DDoS attack can be done by a lot of strategies like malformed packets, IP spoofing, smurf attack, teardrop attack, syn flood attack, local area network denial (LAND) attack etc. This paper focuses on IP spoofing and LAND based DDoS attack. The objective of this paper is to propose an algorithm to detect and prevent IP spoofing and LAND attack. To achieve this objective a new approach is proposed combining two existing solutions of DDoS attack caused by IP spoofing and ill-formed packets. The proposed approach will provide a transparent solution, filter out the spoofed packets and minimize memory exhaustion through minimizing the number of insertions and updates required in the datatable. Finally, the approach is implemented and simulated using CloudSim 3.0 toolkit (a virtual cloud environment) followed by result analysis and comparison with existing algorithms.
2020-03-09
Nilizadeh, Shirin, Noller, Yannic, Pasareanu, Corina S..  2019.  DifFuzz: Differential Fuzzing for Side-Channel Analysis. 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE). :176–187.
Side-channel attacks allow an adversary to uncover secret program data by observing the behavior of a program with respect to a resource, such as execution time, consumed memory or response size. Side-channel vulnerabilities are difficult to reason about as they involve analyzing the correlations between resource usage over multiple program paths. We present DifFuzz, a fuzzing-based approach for detecting side-channel vulnerabilities related to time and space. DifFuzz automatically detects these vulnerabilities by analyzing two versions of the program and using resource-guided heuristics to find inputs that maximize the difference in resource consumption between secret-dependent paths. The methodology of DifFuzz is general and can be applied to programs written in any language. For this paper, we present an implementation that targets analysis of Java programs, and uses and extends the Kelinci and AFL fuzzers. We evaluate DifFuzz on a large number of Java programs and demonstrate that it can reveal unknown side-channel vulnerabilities in popular applications. We also show that DifFuzz compares favorably against Blazer and Themis, two state-of-the-art analysis tools for finding side-channels in Java programs.
2020-01-20
Nicho, Mathew, McDermott, Christopher D..  2019.  Dimensions of ‘Socio’ Vulnerabilities of Advanced Persistent Threats. 2019 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). :1–5.
Advanced Persistent Threats (APT) are highly targeted and sophisticated multi-stage attacks, utilizing zero day or near zero-day malware. Directed at internetworked computer users in the workplace, their growth and prevalence can be attributed to both socio (human) and technical (system weaknesses and inadequate cyber defenses) vulnerabilities. While many APT attacks incorporate a blend of socio-technical vulnerabilities, academic research and reported incidents largely depict the user as the prominent contributing factor that can weaken the layers of technical security in an organization. In this paper, our objective is to explore multiple dimensions of socio factors (non-technical vulnerabilities) that contribute to the success of APT attacks in organizations. Expert interviews were conducted with senior managers, working in government and private organizations in the United Arab Emirates (UAE) over a period of four years (2014 to 2017). Contrary to common belief that socio factors derive predominately from user behavior, our study revealed two new dimensions of socio vulnerabilities, namely the role of organizational management, and environmental factors which also contribute to the success of APT attacks. We show that the three dimensions postulated in this study can assist Managers and IT personnel in organizations to implement an appropriate mix of socio-technical countermeasures for APT threats.
2020-06-29
Kaljic, Enio, Maric, Almir, Njemcevic, Pamela.  2019.  DoS attack mitigation in SDN networks using a deeply programmable packet-switching node based on a hybrid FPGA/CPU data plane architecture. 2019 XXVII International Conference on Information, Communication and Automation Technologies (ICAT). :1–6.
The application of the concept of software-defined networks (SDN) has, on the one hand, led to the simplification and reduction of switches price, and on the other hand, has created a significant number of problems related to the security of the SDN network. In several studies was noted that these problems are related to the lack of flexibility and programmability of the data plane, which is likely first to suffer potential denial-of-service (DoS) attacks. One possible way to overcome this problem is to increase the flexibility of the data plane by increasing the depth of programmability of the packet-switching nodes below the level of flow table management. Therefore, this paper investigates the opportunity of using the architecture of deeply programmable packet-switching nodes (DPPSN) in the implementation of a firewall. Then, an architectural model of the firewall based on a hybrid FPGA/CPU data plane architecture has been proposed and implemented. Realized firewall supports three models of DoS attacks mitigation: DoS traffic filtering on the output interface, DoS traffic filtering on the input interface, and DoS attack redirection to the honeypot. Experimental evaluation of the implemented firewall has shown that DoS traffic filtering at the input interface is the best strategy for DoS attack mitigation, which justified the application of the concept of deep network programmability.
2020-02-10
Niu, Xiangyu, Li, Jiangnan, Sun, Jinyuan, Tomsovic, Kevin.  2019.  Dynamic Detection of False Data Injection Attack in Smart Grid using Deep Learning. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–6.
Modern advances in sensor, computing, and communication technologies enable various smart grid applications. The heavy dependence on communication technology has highlighted the vulnerability of the electricity grid to false data injection (FDI) attacks that can bypass bad data detection mechanisms. Existing mitigation in the power system either focus on redundant measurements or protect a set of basic measurements. These methods make specific assumptions about FDI attacks, which are often restrictive and inadequate to deal with modern cyber threats. In the proposed approach, a deep learning based framework is used to detect injected data measurement. Our time-series anomaly detector adopts a Convolutional Neural Network (CNN) and a Long Short Term Memory (LSTM) network. To effectively estimate system variables, our approach observes both data measurements and network level features to jointly learn system states. The proposed system is tested on IEEE 39-bus system. Experimental analysis shows that the deep learning algorithm can identify anomalies which cannot be detected by traditional state estimation bad data detection.
2020-08-07
Nawaz, A., Gia, T. N., Queralta, J. Peña, Westerlund, T..  2019.  Edge AI and Blockchain for Privacy-Critical and Data-Sensitive Applications. 2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU). :1—2.
The edge and fog computing paradigms enable more responsive and smarter systems without relying on cloud servers for data processing and storage. This reduces network load as well as latency. Nonetheless, the addition of new layers in the network architecture increases the number of security vulnerabilities. In privacy-critical systems, the appearance of new vulnerabilities is more significant. To cope with this issue, we propose and implement an Ethereum Blockchain based architecture with edge artificial intelligence to analyze data at the edge of the network and keep track of the parties that access the results of the analysis, which are stored in distributed databases.
2020-02-17
Ullah, N., Ali, S. M., Khan, B., Mehmood, C. A., Anwar, S. M., Majid, M., Farid, U., Nawaz, M. A., Ullah, Z..  2019.  Energy Efficiency: Digital Signal Processing Interactions Within Smart Grid. 2019 International Conference on Engineering and Emerging Technologies (ICEET). :1–6.
Smart Grid (SG) is regarded as complex electrical power system due to massive penetration of Renewable Energy Resources and Distribution Generations. The implementation of adjustable speed drives, advance power electronic devices, and electric arc furnaces are incorporated in SG (the transition from conventional power system). Moreover, SG is an advance, automated, controlled, efficient, digital, and intelligent system that ensures pertinent benefits, such as: (a) consumer empowerment, (b) advanced communication infrastructure, (c) user-friendly system, and (d) supports bi-directional power flow. Digital Signal Processing (DSP) is key tool for SG deployment and provides key solutions to a vast array of complex SG challenges. This research provides a comprehensive study on DSP interactions within SG. The prominent challenges posed by conventional grid, such as: (a) monitoring and control, (b) Electric Vehicles infrastructure, (c) cyber data injection attack, (d) Demand Response management and (e) cyber data injection attack are thoroughly investigated in this research.
2020-03-09
Tun, Hein, Lupin, Sergey, Than, Ba Hla, Nay Zaw Linn, Kyaw, Khaing, Min Thu.  2019.  Estimation of Information System Security Using Hybrid Simulation in AnyLogic. 2019 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :1829–1834.
Nowadays the role of Information systems in our life has greatly increased, which has become one of the biggest challenges for citizens, organizations and governments. Every single day we are becoming more and more dependent on information and communication technology (ICT). A major goal of information security is to find the best ways to mitigate the risks. The context-role and perimeter protection approaches can reduce and prevent an unauthorized penetration to protected zones and information systems inside the zones. The result of this work can be useful for the security system analysis and optimization of their organizations.
2020-08-10
Uddin, Mostafa, Nadeem, Tamer, Nukavarapu, Santosh.  2019.  Extreme SDN Framework for IoT and Mobile Applications Flexible Privacy at the Edge. 2019 IEEE International Conference on Pervasive Computing and Communications (PerCom. :1–11.
With the current significant penetration of mobile devices (i.e. smartphones and tablets) and the tremendous increase in the number of the corresponding mobile applications, they have become an indispensable part of our lives. Nowadays, there is a significant growth in the number of sensitive applications such as personal health applications, personal financial applications, home monitoring applications, etc. In addition, with the significant growth of Internet-of-Things (IoT) devices, smartphones and the corresponding applications are widely considered as the Internet gateways for these devices. Mobile devices mostly use wireless LANs (WLANs) (i.e., WiFi networks) as the prominent network interface to the Internet. However, due to the broadcast nature of WiFi links, wireless traffics are exposed to any eavesdropping adversary within the WLAN. Despite WiFi encryption, studies show that application usage information could be inferred from the encrypted wireless traffic. The leakage of this sensitive information is very serious issue that will significantly impact users' privacy and security. In addressing this privacy concern, we design and develop a lightweight programmable privacy framework, called PrivacyGuard. PrivacyGuard is inspired by the vision of pushing the Software Defined Network (SDN)-like paradigm all the way to wireless network edge, is designed to support of adopting privacy preserving policies to protect the wireless communication of the sensitive applications. In this paper, we demonstrate and evaluate a prototype of PrivacyGuard framework on Android devices showing the flexibility and efficiency of the framework.
2020-09-11
Eskandarian, Saba, Cogan, Jonathan, Birnbaum, Sawyer, Brandon, Peh Chang Wei, Franke, Dillon, Fraser, Forest, Garcia, Gaspar, Gong, Eric, Nguyen, Hung T., Sethi, Taresh K. et al..  2019.  Fidelius: Protecting User Secrets from Compromised Browsers. 2019 IEEE Symposium on Security and Privacy (SP). :264—280.
Users regularly enter sensitive data, such as passwords, credit card numbers, or tax information, into the browser window. While modern browsers provide powerful client-side privacy measures to protect this data, none of these defenses prevent a browser compromised by malware from stealing it. In this work, we present Fidelius, a new architecture that uses trusted hardware enclaves integrated into the browser to enable protection of user secrets during web browsing sessions, even if the entire underlying browser and OS are fully controlled by a malicious attacker. Fidelius solves many challenges involved in providing protection for browsers in a fully malicious environment, offering support for integrity and privacy for form data, JavaScript execution, XMLHttpRequests, and protected web storage, while minimizing the TCB. Moreover, interactions between the enclave and the browser, the keyboard, and the display all require new protocols, each with their own security considerations. Finally, Fidelius takes into account UI considerations to ensure a consistent and simple interface for both developers and users. As part of this project, we develop the first open source system that provides a trusted path from input and output peripherals to a hardware enclave with no reliance on additional hypervisor security assumptions. These components may be of independent interest and useful to future projects. We implement and evaluate Fidelius to measure its performance overhead, finding that Fidelius imposes acceptable overhead on page load and user interaction for secured pages and has no impact on pages and page components that do not use its enhanced security features.
2020-06-08
Homsi, Soamar, Quan, Gang, Wen, Wujie, Chapparo-Baquero, Gustavo A., Njilla, Laurent.  2019.  Game Theoretic-Based Approaches for Cybersecurity-Aware Virtual Machine Placement in Public Cloud Clusters. 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :272–281.
Allocating several Virtual Machines (VMs) onto a single server helps to increase cloud computing resource utilization and to reduce its operating expense. However, multiplexing VMs with different security levels on a single server gives rise to major VM-to-VM cybersecurity interdependency risks. In this paper, we address the problem of the static VM allocation with cybersecurity loss awareness by modeling it as a two-player zero-sum game between an attacker and a provider. We first obtain optimal solutions by employing the mathematical programming approach. We then seek to find the optimal solutions by quickly identifying the equilibrium allocation strategies in our formulated zero-sum game. We mean by "equilibrium" that none of the provider nor the attacker has any incentive to deviate from one's chosen strategy. Specifically, we study the characteristics of the game model, based on which, to develop effective and efficient allocation algorithms. Simulation results show that our proposed cybersecurity-aware consolidation algorithms can significantly outperform the commonly used multi-dimensional bin packing approaches for large-scale cloud data centers.
Pirani, Mohammad, Nekouei, Ehsan, Sandberg, Henrik, Johansson, Karl Henrik.  2019.  A Game-theoretic Framework for Security-aware Sensor Placement Problem in Networked Control Systems. 2019 American Control Conference (ACC). :114–119.
This paper studies the sensor placement problem in a networked control system for improving its security against cyber-physical attacks. The problem is formulated as a zero-sum game between an attacker and a detector. The attacker's decision is to select f nodes of the network to attack whereas the detector's decision is to place f sensors to detect the presence of the attack signals. In our formulation, the attacker minimizes its visibility, defined as the system L2 gain from the attack signals to the deployed sensors' outputs, and the detector maximizes the visibility of the attack signals. The equilibrium strategy of the game determines the optimal locations of the sensors. The existence of Nash equilibrium for the attacker-detector game is studied when the underlying connectivity graph is a directed or an undirected tree. When the game does not admit a Nash equilibrium, it is shown that the Stackelberg equilibrium of the game, with the detector as the game leader, can be computed efficiently. Our results show that, under the optimal sensor placement strategy, an undirected topology provides a higher security level for a networked control system compared with its corresponding directed topology.
2020-03-23
Aguilar, Eryn, Dancel, Jevis, Mamaud, Deysaree, Pirosch, Dorothy, Tavacoli, Farin, Zhan, Felix, Pearce, Robbie, Novack, Margaret, Keehu, Hokunani, Lowe, Benjamin et al..  2019.  Highly Parallel Seedless Random Number Generation from Arbitrary Thread Schedule Reconstruction. 2019 IEEE International Conference on Big Knowledge (ICBK). :1–8.
Security is a universal concern across a multitude of sectors involved in the transfer and storage of computerized data. In the realm of cryptography, random number generators (RNGs) are integral to the creation of encryption keys that protect private data, and the production of uniform probability outcomes is a revenue source for certain enterprises (most notably the casino industry). Arbitrary thread schedule reconstruction of compare-and-swap operations is used to generate input traces for the Blum-Elias algorithm as a method for constructing random sequences, provided the compare-and-swap operations avoid cache locality. Threads accessing shared memory at the memory controller is a true random source which can be polled indirectly through our algorithm with unlimited parallelism. A theoretical and experimental analysis of the observation and reconstruction algorithm are considered. The quality of the random number generator is experimentally analyzed using two standard test suites, DieHarder and ENT, on three data sets.
2020-08-13
Nosouhi, Mohammad Reza, Yu, Shui, Sood, Keshav, Grobler, Marthie.  2019.  HSDC–Net: Secure Anonymous Messaging in Online Social Networks. 2019 18th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/13th IEEE International Conference On Big Data Science And Engineering (TrustCom/BigDataSE). :350—357.
Hiding contents of users' messages has been successfully addressed before, while anonymization of message senders remains a challenge since users do not usually trust ISPs and messaging application providers. To resolve this challenge, several solutions have been proposed so far. Among them, the Dining Cryptographers network protocol (DC-net) provides the strongest anonymity guarantees. However, DC-net suffers from two critical issues that makes it impractical, i.e., (1) collision possibility and (2) vulnerability against disruptions. Apart from that, we noticed a third critical issue during our investigation. (3) DC-net users can be deanonymized after they publish at least three messages. We name this problem the short stability issue and prove that anonymity is provided only for a few cycles of message publishing. As far as we know, this problem has not been identified in the previous research works. In this paper, we propose Harmonized and Stable DC-net (HSDC-net), a self-organizing protocol for anonymous communications. In our protocol design, we first resolve the short stability issue and obtain SDC-net, a stable extension of DC-net. Then, we integrate the Slot Reservation and Disruption Management sub-protocols into SDC-net to overcome the collision and security issues, respectively. The obtained HSDC-net protocol can also be integrated into blockchain-based cryptocurrencies (e.g. Bitcoin) to mix multiple transactions (belonging to different users) into a single transaction in such a way that the source of each payment is unknown. This preserves privacy of blockchain users. Our prototype implementation shows that HSDC-net achieves low latencies that makes it a practical protocol.
2020-03-16
Noori-Hosseini, Mona, Lennartson, Bengt.  2019.  Incremental Abstraction for Diagnosability Verification of Modular Systems. 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :393–399.
In a diagnosability verifier with polynomial complexity, a non-diagnosable system generates uncertain loops. Such forbidden loops are in this paper transformed to forbidden states by simple detector automata. The forbidden state problem is trivially transformed to a nonblocking problem by considering all states except the forbidden ones as marked states. This transformation is combined with one of the most efficient abstractions for modular systems called conflict equivalence, where nonblocking properties are preserved. In the resulting abstraction, local events are hidden and more local events are achieved when subsystems are synchronized. This incremental abstraction is applied to a scalable production system, including parallel lines where buffers and machines in each line include some typical failures and feedback flows. For this modular system, the proposed diagnosability algorithm shows great results, where diagnosability of systems including millions of states is analyzed in less than a second.
2020-08-14
Hussain, Fatima, Li, Weiyue, Noye, Brett, Sharieh, Salah, Ferworn, Alexander.  2019.  Intelligent Service Mesh Framework for API Security and Management. 2019 IEEE 10th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON). :0735—0742.
With the advancements in enterprise-level business development, the demand for new applications and services is overwhelming. For the development and delivery of such applications and services, enterprise businesses rely on Application Programming Interfaces (APIs). API management and classification is a cumbersome task considering the rapid increase in the number of APIs, and API to API calls. API Mashups, domain APIs and API service mesh are a few recommended techniques for ease of API creation, management, and monitoring. API service mesh is considered as one of the techniques in this regard, in which the service plane and the control plane are separated for improving efficiency as well as security. In this paper, we propose and implement a security framework for the creation of a secure API service mesh using Istio and Kubernetes. Afterwards, we propose an smart association model for automatic association of new APIs to already existing categories of service mesh. To the best of our knowledge, this smart association model is the first of its kind.
2020-02-10
Weir, Charles, Becker, Ingolf, Noble, James, Blair, Lynne, Sasse, Angela, Rashid, Awais.  2019.  Interventions for Software Security: Creating a Lightweight Program of Assurance Techniques for Developers. 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP). :41–50.
Though some software development teams are highly effective at delivering security, others either do not care or do not have access to security experts to teach them how. Unfortunately, these latter teams are still responsible for the security of the systems they build: systems that are ever more important to ever more people. We propose that a series of lightweight in-terventions, six hours of facilitated workshops delivered over three months, can improve a team's motivation to consider security and awareness of assurance techniques, changing its security culture even when no security experts are involved. The interventions were developed after an Appreciative Inquiry and Grounded Theory survey of security professionals to find out what approaches work best. They were then validated in fieldwork with a Participatory Action Research study that de-livered the workshops to three development organizations. This approach has the potential to be applied by many development teams, improving the security of software worldwide.
2020-06-29
Nenova, Maria, Atanasov, Denis, Kassev, Kiril, Nenov, Andon.  2019.  Intrusion Detection System Model Implementation against DDOS attacks. 2019 IEEE International Conference on Microwaves, Antennas, Communications and Electronic Systems (COMCAS). :1–4.
In the paper is presented implementation of a system for detecting intrusion actions. An implementation of intrusion detection systems (IDS), their architectures, and intrusion detection methods are investigated. Analyzed are methods for SNORT (IDS) bandwidth traffic analysis in intrusion detection and prevention systems. The main requirements for Installation and configuration of the system are also discussed. Then the configuration of the firewall policy and specifics there, are also presented. It is also described the database structure, the operating modes, and analysis of the rules. Two of the most commonly implemented attacks and model for defense against them is proposed.
2020-02-10
Shahinzadeh, Hossein, Moradi, Jalal, Gharehpetian, Gevork B., Nafisi, Hamed, Abedi, Mehrdad.  2019.  IoT Architecture for Smart Grids. 2019 International Conference on Protection and Automation of Power System (IPAPS). :22–30.
The tremendous advances in information and communications technology (ICT), as well as the embedded systems, have been led to the emergence of the novel concept of the internet of things (IoT). Enjoying IoT-based technologies, many objects and components can be connected to each other through the internet or other modern communicational platforms. Embedded systems which are computing machines for special purposes like those utilized in high-tech devices, smart buildings, aircraft, and vehicles including advanced controllers, sensors, and meters with the ability of information exchange using IT infrastructures. The phrase "internet", in this context, does not exclusively refer to the World Wide Web rather than any type of server-based or peer-to-peer networks. In this study, the application of IoT in smart grids is addressed. Hence, at first, an introduction to the necessity of deployment of IoT in smart grids is presented. Afterwards, the applications of IoT in three levels of generation, transmission, and distribution is proposed. The generation level is composed of applications of IoT in renewable energy resources, wind and solar in particular, thermal generation, and energy storage facilities. The deployment of IoT in transmission level deals with congestion management in power system and guarantees the security of the system. In the distribution level, the implications of IoT in active distribution networks, smart cities, microgrids, smart buildings, and industrial sector are evaluated.
2020-02-17
Nouichi, Douae, Abdelsalam, Mohamed, Nasir, Qassim, Abbas, Sohail.  2019.  IoT Devices Security Using RF Fingerprinting. 2019 Advances in Science and Engineering Technology International Conferences (ASET). :1–7.
Internet of Things (IoT) devices industry is rapidly growing, with an accelerated increase in the list of manufacturers offering a wide range of smart devices selected to enhance end-users' standard of living. Security remains an after-thought in these devices resulting in vulnerabilities. While there exists a cryptographic protocol designed to solve such authentication problem, the computational complexity of cryptographic protocols and scalability problems make almost all cryptography-based authentication protocols impractical for IoT. Wireless RFF (Radio Frequency Fingerprinting) comes as a physical layer-based security authentication method that improves wireless security authentication, which is especially useful for the power and computing limited devices. As a proof-of-concept, this paper proposes a universal SDR (software defined Radio)-based inexpensive implementation intended to sense emitted wireless signals from IoT devices. Our approach is validated by extracting mobile phone signal bursts under different user-dedicated modes. The proposed setup is well adapted to accurately capture signals from different telecommunication standards. To ensure a unique identification of IoT devices, this paper also provides an optimum set of features useful to generate the device identity fingerprint.
2020-10-12
D'Angelo, Mirko, Gerasimou, Simos, Ghahremani, Sona, Grohmann, Johannes, Nunes, Ingrid, Pournaras, Evangelos, Tomforde, Sven.  2019.  On Learning in Collective Self-Adaptive Systems: State of Practice and a 3D Framework. 2019 IEEE/ACM 14th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS). :13–24.
Collective self-adaptive systems (CSAS) are distributed and interconnected systems composed of multiple agents that can perform complex tasks such as environmental data collection, search and rescue operations, and discovery of natural resources. By providing individual agents with learning capabilities, CSAS can cope with challenges related to distributed sensing and decision-making and operate in uncertain environments. This unique characteristic of CSAS enables the collective to exhibit robust behaviour while achieving system-wide and agent-specific goals. Although learning has been explored in many CSAS applications, selecting suitable learning models and techniques remains a significant challenge that is heavily influenced by expert knowledge. We address this gap by performing a multifaceted analysis of existing CSAS with learning capabilities reported in the literature. Based on this analysis, we introduce a 3D framework that illustrates the learning aspects of CSAS considering the dimensions of autonomy, knowledge access, and behaviour, and facilitates the selection of learning techniques and models. Finally, using example applications from this analysis, we derive open challenges and highlight the need for research on collaborative, resilient and privacy-aware mechanisms for CSAS.
2020-09-21
Pudukotai Dinakarrao, Sai Manoj, Sayadi, Hossein, Makrani, Hosein Mohammadi, Nowzari, Cameron, Rafatirad, Setareh, Homayoun, Houman.  2019.  Lightweight Node-level Malware Detection and Network-level Malware Confinement in IoT Networks. 2019 Design, Automation Test in Europe Conference Exhibition (DATE). :776–781.
The sheer size of IoT networks being deployed today presents an "attack surface" and poses significant security risks at a scale never before encountered. In other words, a single device/node in a network that becomes infected with malware has the potential to spread malware across the network, eventually ceasing the network functionality. Simply detecting and quarantining the malware in IoT networks does not guarantee to prevent malware propagation. On the other hand, use of traditional control theory for malware confinement is not effective, as most of the existing works do not consider real-time malware control strategies that can be implemented using uncertain infection information of the nodes in the network or have the containment problem decoupled from network performance. In this work, we propose a two-pronged approach, where a runtime malware detector (HaRM) that employs Hardware Performance Counter (HPC) values to detect the malware and benign applications is devised. This information is fed during runtime to a stochastic model predictive controller to confine the malware propagation without hampering the network performance. With the proposed solution, a runtime malware detection accuracy of 92.21% with a runtime of 10ns is achieved, which is an order of magnitude faster than existing malware detection solutions. Synthesizing this output with the model predictive containment strategy lead to achieving an average network throughput of nearly 200% of that of IoT networks without any embedded defense.