Biblio

Found 5938 results

Filters: First Letter Of Last Name is S  [Clear All Filters]
2022-05-24
Pellenz, Marcelo E., Lachowski, Rosana, Jamhour, Edgard, Brante, Glauber, Moritz, Guilherme Luiz, Souza, Richard Demo.  2021.  In-Network Data Aggregation for Information-Centric WSNs using Unsupervised Machine Learning Techniques. 2021 IEEE Symposium on Computers and Communications (ISCC). :1–7.
IoT applications are changing our daily lives. These innovative applications are supported by new communication technologies and protocols. Particularly, the information-centric network (ICN) paradigm is well suited for many IoT application scenarios that involve large-scale wireless sensor networks (WSNs). Even though the ICN approach can significantly reduce the network traffic by optimizing the process of information recovery from network nodes, it is also possible to apply data aggregation strategies. This paper proposes an unsupervised machine learning-based data aggregation strategy for multi-hop information-centric WSNs. The results show that the proposed algorithm can significantly reduce the ICN data traffic while having reduced information degradation.
2022-06-07
Sun, Xiaoshuang, Wang, Yu, Shi, Zengkai.  2021.  Insider Threat Detection Using An Unsupervised Learning Method: COPOD. 2021 International Conference on Communications, Information System and Computer Engineering (CISCE). :749–754.
In recent years, insider threat incidents and losses of companies or organizations are on the rise, and internal network security is facing great challenges. Traditional intrusion detection methods cannot identify malicious behaviors of insiders. As an effective method, insider threat detection technology has been widely concerned and studied. In this paper, we use the tree structure method to analyze user behavior, form feature sequences, and combine the Copula Based Outlier Detection (COPOD) method to detect the difference between feature sequences and identify abnormal users. We experimented on the insider threat dataset CERT-IT and compared it with common methods such as Isolation Forest.
Pantelidis, Efthimios, Bendiab, Gueltoum, Shiaeles, Stavros, Kolokotronis, Nicholas.  2021.  Insider Threat Detection using Deep Autoencoder and Variational Autoencoder Neural Networks. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :129–134.
Internal attacks are one of the biggest cybersecurity issues to companies and businesses. Despite the implemented perimeter security systems, the risk of adversely affecting the security and privacy of the organization’s information remains very high. Actually, the detection of such a threat is known to be a very complicated problem, presenting many challenges to the research community. In this paper, we investigate the effectiveness and usefulness of using Autoencoder and Variational Autoencoder deep learning algorithms to automatically defend against insider threats, without human intervention. The performance evaluation of the proposed models is done on the public CERT dataset (CERT r4.2) that contains both benign and malicious activities generated from 1000 simulated users. The comparison results with other models show that the Variational Autoencoder neural network provides the best overall performance with a higher detection accuracy and a reasonable false positive rate.
2022-04-20
Keshk, Marwa, Sitnikova, Elena, Moustafa, Nour, Hu, Jiankun, Khalil, Ibrahim.  2021.  An Integrated Framework for Privacy-Preserving Based Anomaly Detection for Cyber-Physical Systems. IEEE Transactions on Sustainable Computing. 6:66–79.
Protecting Cyber-physical Systems (CPSs) is highly important for preserving sensitive information and detecting cyber threats. Developing a robust privacy-preserving anomaly detection method requires physical and network data about the systems, such as Supervisory Control and Data Acquisition (SCADA), for protecting original data and recognising cyber-attacks. In this paper, a new privacy-preserving anomaly detection framework, so-called PPAD-CPS, is proposed for protecting confidential information and discovering malicious observations in power systems and their network traffic. The framework involves two main modules. First, a data pre-processing module is suggested for filtering and transforming original data into a new format that achieves the target of privacy preservation. Second, an anomaly detection module is suggested using a Gaussian Mixture Model (GMM) and Kalman Filter (KF) for precisely estimating the posterior probabilities of legitimate and anomalous events. The performance of the PPAD-CPS framework is assessed using two public datasets, namely the Power System and UNSW-NB15 dataset. The experimental results show that the framework is more effective than four recent techniques for obtaining high privacy levels. Moreover, the framework outperforms seven peer anomaly detection techniques in terms of detection rate, false positive rate, and computational time.
Conference Name: IEEE Transactions on Sustainable Computing
2022-11-18
Alali, Mohammad, Shimim, Farshina Nazrul, Shahooei, Zagros, Bahramipanah, Maryam.  2021.  Intelligent Line Congestion Prognosis in Active Distribution System Using Artificial Neural Network. 2021 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.
This paper proposes an intelligent line congestion prognosis scheme based on wide-area measurements, which accurately identifies an impending congestion and the problem causing the congestion. Due to the increasing penetration of renewable energy resources and uncertainty of load/generation patterns in the Active Distribution Networks (ADNs), power line congestion is one of the issues that could happen during peak load conditions or high-power injection by renewable energy resources. Congestion would have devastating effects on both the economical and technical operation of the grid. Hence, it is crucial to accurately predict congestions to alleviate the problem in-time and command proper control actions; such as, power redispatch, incorporating ancillary services and energy storage systems, and load curtailment. We use neural network methods in this work due to their outstanding performance in predicting the nonlinear behavior of the power system. Bayesian Regularization, along with Levenberg-Marquardt algorithm, is used to train the proposed neural networks to predict an impending congestion and its cause. The proposed method is validated using the IEEE 13-bus test system. Utilizing the proposed method, extreme control actions (i.e., protection actions and load curtailment) can be avoided. This method will improve the distribution grid resiliency and ensure the continuous supply of power to the loads.
2022-08-12
Ooi, Boon-Yaik, Liew, Soung-Yue, Beh, Woan-Lin, Shirmohammadi, Shervin.  2021.  Inter-Batch Gap Filling Using Compressive Sampling for Low-Cost IoT Vibration Sensors. 2021 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). :1—6.
To measure machinery vibration, a sensor system consisting of a 3-axis accelerometer, ADXL345, attached to a self-contained system-on-a-chip with integrated Wi-Fi capabilities, ESP8266, is a low-cost solution. In this work, we first show that in such a system, the widely used direct-read-and-send method which samples and sends individually acquired vibration data points to the server is not effective, especially using Wi-Fi connection. We show that the micro delays in each individual data transmission will limit the sensor sampling rate and will also affect the time of the acquired data points not evenly spaced. Then, we propose that vibration should be sampled in batches before sending the acquired data out from the sensor node. The vibration for each batch should be acquired continuously without any form of interruption in between the sampling process to ensure the data points are evenly spaced. To fill the data gaps between the batches, we propose the use of compressive sampling technique. Our experimental results show that the maximum sampling rate of the direct-read-and-send method is 350Hz with a standard uncertainty of 12.4, and the method loses more information compared to our proposed solution that can measure the vibration wirelessly and continuously up to 633Hz. The gaps filled using compressive sampling can achieve an accuracy in terms of mean absolute error (MAE) of up to 0.06 with a standard uncertainty of 0.002, making the low-cost vibration sensor node a cost-effective solution.
2022-09-09
Saini, Anu, Sri, Manepalli Ratna, Thakur, Mansi.  2021.  Intrinsic Plagiarism Detection System Using Stylometric Features and DBSCAN. 2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS). :13—18.
Plagiarism is the act of using someone else’s words or ideas without giving them due credit and representing it as one’s own work. In today's world, it is very easy to plagiarize others' work due to advancement in technology, especially by the use of the Internet or other offline sources such as books or magazines. Plagiarism can be classified into two broad categories on the basis of detection namely extrinsic and intrinsic plagiarism. Extrinsic plagiarism detection refers to detecting plagiarism in a document by comparing it against a given reference dataset, whereas, Intrinsic plagiarism detection refers to detecting plagiarism with the help of variation in writing styles without using any reference corpus. Although there are many approaches which can be adopted to detect extrinsic plagiarism, few are available for intrinsic plagiarism detection. In this paper, a simplified approach is proposed for developing an intrinsic plagiarism detector which is helpful in detecting plagiarism even when no reference corpus is available. The approach deals with development of an intrinsic plagiarism detection system by identifying the writing style of authors in the document using stylometric features and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) clustering. The proposed system has an easy to use interactive interface where user has to upload a text document to be checked for plagiarism and the result is displayed on the web page itself. In addition, the user can also see the analysis of the document in the form of graphs.
2022-11-25
Shipunov, Ilya S., Nyrkov, Anatoliy P., Ryabenkov, Maksim U., Morozova, Elena V., Goloskokov, Konstantin P..  2021.  Investigation of Computer Incidents as an Important Component in the Security of Maritime Transportation. 2021 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :657—660.
The risk of detecting incidents in the field of computer technology in Maritime transport is considered. The structure of the computer incident investigation system and its functions are given. The system of conducting investigations of computer incidents on sea transport is considered. A possible algorithm for investigating the incident using the tools of forensic science and an algorithm for transmitting the received data for further processing are presented.
2022-09-30
Robert Doebbert, Thomas, Krush, Dmytro, Cammin, Christoph, Jockram, Jonas, Heynicke, Ralf, Scholl, Gerd.  2021.  IO-Link Wireless Device Cryptographic Performance and Energy Efficiency. 2021 22nd IEEE International Conference on Industrial Technology (ICIT). 1:1106–1112.
In the context of the Industry 4.0 initiative, Cyber-Physical Production Systems (CPPS) or Cyber Manufacturing Systems (CMS) can be characterized as advanced networked mechatronic production systems gaining their added value by interaction with different systems using advanced communication technologies. Appropriate wired and wireless communication technologies and standards need to add timing in combination with security concepts to realize the potential improvements in the production process. One of these standards is IO-Link Wireless, which is used for sensor/actuator network operation. In this paper cryptographic performance and energy efficiency of an IO-Link Wireless Device are analyzed. The power consumption and the influence of the cryptographic operations on the trans-mission timing of the IO-Link Wireless protocol are exemplary measured employing a Phytec module based on a CC2650 system-on-chip (SoC) radio transceiver [2]. Confidentiality is considered in combination with the cryptographic performance as well as the energy efficiency. Different cryptographic algorithms are evaluated using the on chip hardware accelerator compared to a cryptographic software implementation.
2022-04-12
Dutta, Arjun, Chaki, Koustav, Sen, Ayushman, Kumar, Ashutosh, Chakrabarty, Ratna.  2021.  IoT based Sanitization Tunnel. 2021 5th International Conference on Electronics, Materials Engineering Nano-Technology (IEMENTech). :1—5.
The Covid-19 Pandemic has caused huge losses worldwide and is still affecting people all around the world. Even after rigorous, incessant and dedicated efforts from people all around the world, it keeps mutating and spreading at an alarming rate. In times such as these, it is extremely important to take proper precautionary measures to stay safe and help to contain the spread of the virus. In this paper, we propose an innovative design of one such commonly used public disinfection method, an Automatic Walkthrough Sanitization Tunnel. It is a walkthrough sanitization tunnel which uses sensors to detect the target and automatically disinfects it followed by irradiation using UV-C rays for extra protection. There is a proposition to add an IoT based Temperature sensor and data relay module used to detect the temperature of any person entering the tunnel and in case of any anomaly, contact nearby covid wards to facilitate rapid treatment.
2022-04-01
Setzler, Thomas, Mountrouidou, Xenia.  2021.  IoT Metrics and Automation for Security Evaluation. 2021 IEEE 18th Annual Consumer Communications Networking Conference (CCNC). :1—4.
Internet of Things (IoT) devices are ubiquitous, with web cameras, smart refrigerators, and digital assistants appearing in homes, offices, and public spaces. However, these devices are lacking in security measures due to their low time to market and insufficient funding for security research and development. In order to improve the security of IoTs, we have defined novel security metrics based on generic IoT characteristics. Furthermore, we have developed automation for experimentation with IoT devices that results to repeatable and reproducible calculations of security metrics within a realistic IoT testbed. Our results demonstrate that repeatable IoT security measurements are feasible with automation. They prove quantitatively intuitive hypotheses. For example, an large number of inbound / outbound network connections contributes to higher probability of compromise or measuring password strength leads to a robust estimation of IoT security.
2022-11-18
Goldstein, Brunno F., Ferreira, Victor C., Srinivasan, Sudarshan, Das, Dipankar, Nery, Alexandre S., Kundu, Sandip, França, Felipe M. G..  2021.  A Lightweight Error-Resiliency Mechanism for Deep Neural Networks. 2021 22nd International Symposium on Quality Electronic Design (ISQED). :311–316.
In recent years, Deep Neural Networks (DNNs) have made inroads into a number of applications involving pattern recognition - from facial recognition to self-driving cars. Some of these applications, such as self-driving cars, have real-time requirements, where specialized DNN hardware accelerators help meet those requirements. Since DNN execution time is dominated by convolution, Multiply-and-Accumulate (MAC) units are at the heart of these accelerators. As hardware accelerators push the performance limits with strict power constraints, reliability is often compromised. In particular, power-constrained DNN accelerators are more vulnerable to transient and intermittent hardware faults due to particle hits, manufacturing variations, and fluctuations in power supply voltage and temperature. Methods such as hardware replication have been used to deal with these reliability problems in the past. Unfortunately, the duplication approach is untenable in a power constrained environment. This paper introduces a low-cost error-resiliency scheme that targets MAC units employed in conventional DNN accelerators. We evaluate the reliability improvements from the proposed architecture using a set of 6 CNNs over varying bit error rates (BER) and demonstrate that our proposed solution can achieve more than 99% of fault coverage with a 5-bits arithmetic code, complying with the ASIL-D level of ISO26262 standards with a negligible area and power overhead. Additionally, we evaluate the proposed detection mechanism coupled with a word masking correction scheme, demonstrating no loss of accuracy up to a BER of 10-2.
2022-10-12
Kumar, Yogendra, Subba, Basant.  2021.  A lightweight machine learning based security framework for detecting phishing attacks. 2021 International Conference on COMmunication Systems & NETworkS (COMSNETS). :184—188.
A successful phishing attack is prelude to various other severe attacks such as login credentials theft, unauthorized access to user’s confidential data, malware and ransomware infestation of victim’s machine etc. This paper proposes a real time lightweight machine learning based security framework for detection of phishing attacks through analysis of Uniform Resource Locators (URLs). The proposed framework initially extracts a set of highly discriminating and uncorrelated features from the URL string corpus. These extracted features are then used to transform the URL strings into their corresponding numeric feature vectors, which are eventually used to train various machine learning based classifier models for identification of malicious phishing URLs. Performance analysis of the proposed security framework on two well known datasets: Kaggle dataset and UNB dataset shows that it is capable of detecting malicious phishing URLs with high precision, while at the same time maintain a very low level of false positive rate. The proposed framework is also shown to outperform other similar security frameworks proposed in the literature.121https://www.kaggle.com/antonyj453/ur1dataset2https://www.unb.ca/cic/datasets/ur1-2016.htm1
2022-04-12
Dalvi, Ashwini, Siddavatam, Irfan, Thakkar, Viraj, Jain, Apoorva, Kazi, Faruk, Bhirud, Sunil.  2021.  Link Harvesting on the Dark Web. 2021 IEEE Bombay Section Signature Conference (IBSSC). :1—5.
In this information age, web crawling on the internet is a prime source for data collection. And with the surface web already being dominated by giants like Google and Microsoft, much attention has been on the Dark Web. While research on crawling approaches is generally available, a considerable gap is present for URL extraction on the dark web. With most literature using the regular expressions methodology or built-in parsers, the problem with these methods is the higher number of false positives generated with the Dark Web, which makes the crawler less efficient. This paper proposes the dedicated parsers methodology for extracting URLs from the dark web, which when compared proves to be better than the regular expression methodology. Factors that make link harvesting on the Dark Web a challenge are discussed in the paper.
2022-07-01
Soltani, Sanaz, Shojafar, Mohammad, Mostafaei, Habib, Pooranian, Zahra, Tafazolli, Rahim.  2021.  Link Latency Attack in Software-Defined Networks. 2021 17th International Conference on Network and Service Management (CNSM). :187–193.
Software-Defined Networking (SDN) has found applications in different domains, including wired- and wireless networks. The SDN controller has a global view of the network topology, which is vulnerable to topology poisoning attacks, e.g., link fabrication and host-location hijacking. The adversaries can leverage these attacks to monitor the flows or drop them. However, current defence systems such as TopoGuard and TopoGuard+ can detect such attacks. In this paper, we introduce the Link Latency Attack (LLA) that can successfully bypass the systems' defence mechanisms above. In LLA, the adversary can add a fake link into the network and corrupt the controller's view from the network topology. This can be accomplished by compromising the end hosts without the need to attack the SDN-enabled switches. We develop a Machine Learning-based Link Guard (MLLG) system to provide the required defence for LLA. We test the performance of our system using an emulated network on Mininet, and the obtained results show an accuracy of 98.22% in detecting the attack. Interestingly, MLLG improves 16% the accuracy of TopoGuard+.
2022-01-25
Shepherd, Carlton, Markantonakis, Konstantinos, Jaloyan, Georges-Axel.  2021.  LIRA-V: Lightweight Remote Attestation for Constrained RISC-V Devices. 2021 IEEE Security and Privacy Workshops (SPW). :221–227.
This paper presents LIRA-V, a lightweight system for performing remote attestation between constrained devices using the RISC-V architecture. We propose using read-only memory and the RISC-V Physical Memory Protection (PMP) primitive to build a trust anchor for remote attestation and secure channel creation. Moreover, we show how LIRA-V can be used for trusted communication between two devices using mutual attestation. We present the design, implementation and evaluation of LIRA-V using an off-the-shelf RISC-V microcontroller and present performance results to demonstrate its suitability. To our knowledge, we present the first remote attestation mechanism suitable for constrained RISC-V devices, with applications to cyber-physical systems and Internet of Things (IoT) devices.
2022-06-09
Xiang, Guangli, Shao, Can.  2021.  Low Noise Homomorphic Encryption Scheme Supporting Multi-Bit Encryption. 2021 2nd International Conference on Computer Communication and Network Security (CCNS). :150–156.
Fully homomorphic encryption (FHE) provides effective security assurance for privacy computing in cloud environments. But the existing FHE schemes are generally faced with challenges including using single-bit encryption and large ciphertext noise, which greatly affects the encryption efficiency and practicability. In this paper, a low-noise FHE scheme supporting multi-bit encryption is proposed based on the HAO scheme. The new scheme redesigns the encryption method without changing the system parameters and expands the plaintext space to support the encryption of integer matrices. In the process of noise reduction, we introduce a PNR method and use the subGaussian distribution theory to analyze the ciphertext noise. The security and the efficiency analysis show that the improved scheme can resist the chosen plaintext attack and effectively reduce the noise expansion rate. Comparative experiments show that the scheme has high encryption efficiency and is suitable for the privacy-preserving computation of integer matrices.
2022-05-19
Ali, Nora A., Shokry, Beatrice, Rumman, Mahmoud H., ElSayed, Hany M., Amer, Hassanein H., Elsoudani, Magdy S..  2021.  Low-overhead Solutions For Preventing Information Leakage Due To Hardware Trojan Horses. 2021 16th International Conference on Computer Engineering and Systems (ICCES). :1–5.
The utilization of Third-party modules is very common nowadays. Hence, combating Hardware Trojans affecting the applications' functionality and data security becomes inevitably essential. This paper focuses on the detection/masking of Hardware Trojans' undesirable effects concerned with spying and information leakage due to the growing care about applications' data confidentiality. It is assumed here that the Trojan-infected system consists mainly of a Microprocessor module (MP) followed by an encryption module and then a Medium Access Control (MAC) module. Also, the system can be application-specific integrated circuit (ASIC) based or Field Programmable Gate Arrays (FPGA) based. A general solution, including encryption, CRC encoder/decoder, and zero padding modules, is presented to handle such Trojans. Special cases are then discussed carefully to prove that Trojans will be detected/masked with a corresponding overhead that depends on the Trojan's location, and the system's need for encryption. An implementation of the CRC encoder along with the zero padding module is carried out on an Altera Cyclone IV E FPGA to illustrate the extra resource utilization required by such a system, given that it is already using encryption.
2022-08-10
Usman, Ali, Rafiq, Muhammad, Saeed, Muhammad, Nauman, Ali, Almqvist, Andreas, Liwicki, Marcus.  2021.  Machine Learning Computational Fluid Dynamics. 2021 Swedish Artificial Intelligence Society Workshop (SAIS). :1—4.
Numerical simulation of fluid flow is a significant research concern during the design process of a machine component that experiences fluid-structure interaction (FSI). State-of-the-art in traditional computational fluid dynamics (CFD) has made CFD reach a relative perfection level during the last couple of decades. However, the accuracy of CFD is highly dependent on mesh size; therefore, the computational cost depends on resolving the minor feature. The computational complexity grows even further when there are multiple physics and scales involved making the approach time-consuming. In contrast, machine learning (ML) has shown a highly encouraging capacity to forecast solutions for partial differential equations. A trained neural network has offered to make accurate approximations instantaneously compared with conventional simulation procedures. This study presents transient fluid flow prediction past a fully immersed body as an integral part of the ML-CFD project. MLCFD is a hybrid approach that involves initialising the CFD simulation domain with a solution forecasted by an ML model to achieve fast convergence in traditional CDF. Initial results are highly encouraging, and the entire time-based series of fluid patterns past the immersed structure is forecasted using a deep learning algorithm. Prepared results show a strong agreement compared with fluid flow simulation performed utilising CFD.
2022-01-31
Bergmans, Lodewijk, Schrijen, Xander, Ouwehand, Edwin, Bruntink, Magiel.  2021.  Measuring source code conciseness across programming languages using compression. 2021 IEEE 21st International Working Conference on Source Code Analysis and Manipulation (SCAM). :47–57.
It is well-known, and often a topic of heated debates, that programs in some programming languages are more concise than in others. This is a relevant factor when comparing or aggregating volume-impacted metrics on source code written in a combination of programming languages. In this paper, we present a model for measuring the conciseness of programming languages in a consistent, objective and evidence-based way. We present the approach, explain how it is founded on information theoretical principles, present detailed analysis steps and show the quantitative results of applying this model to a large benchmark of diverse commercial software applications. We demonstrate that our metric for language conciseness is strongly correlated with both an alternative analytical approach, and with a large scale developer survey, and show how its results can be applied to improve software metrics for multi-language applications.
2022-06-09
Saputro, Elang Dwi, Purwanto, Yudha, Ruriawan, Muhammad Faris.  2021.  Medium Interaction Honeypot Infrastructure on The Internet of Things. 2020 IEEE International Conference on Internet of Things and Intelligence System (IoTaIS). :98–102.
New technologies from day to day are submitted with many vulnerabilities that can make data exploitation. Nowadays, IoT is a target for Cybercrime attacks as it is one of the popular platforms in the century. This research address the IoT security problem by carried a medium-interaction honeypot. Honeypot is one of the solutions that can be done because it is a system feed for the introduction of attacks and fraudulent devices. This research has created a medium interaction honeypot using Cowrie, which is used to maintain the Internet of Things device from malware attacks or even attack patterns and collect information about the attacker's machine. From the result analysis, the honeypot can record all trials and attack activities, with CPU loads averagely below 6,3%.
2022-03-14
Soares, Luigi, Pereira, Fernando Magno Quintãn.  2021.  Memory-Safe Elimination of Side Channels. 2021 IEEE/ACM International Symposium on Code Generation and Optimization (CGO). :200—210.
A program is said to be isochronous if its running time does not depend on classified information. The programming languages literature contains much work that transforms programs to ensure isochronicity. The current state-of-the-art approach is a code transformation technique due to Wu et al., published in 2018. That technique has an important virtue: it ensures that the transformed program runs exactly the same set of operations, regardless of inputs. However, in this paper we demonstrate that it has also a shortcoming: it might add out-of-bounds memory accesses into programs that were originally memory sound. From this observation, we show how to deliver the same runtime guarantees that Wu et al. provide, in a memory-safe way. In addition to being safer, our LLVM-based implementation is more efficient than its original inspiration, achieving shorter repairing times, and producing code that is smaller and faster.
2022-02-07
Yuhua, Lu, Wenqiang, Wang, Zhenjiang, Pang, Yan, Li, Binbin, Xue, Shan, Ba.  2021.  A Method and System for Program Management of Security Chip Production. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :461–464.
This paper analyzes the current situation and shortcomings of traditional security chip production program management, then proposes a management approach of a chip issue program management method and develope a management system based on Webservice technology. The program management method and system of chip production proposed in this paper simplifies the program management process of chip production and improves the working efficiency of chip production management.
2022-04-19
Evstafyev, G. A., Selyanskaya, E. A..  2021.  Method of Ensuring Structural Secrecy of the Signal. 2021 Systems of Signal Synchronization, Generating and Processing in Telecommunications (SYNCHROINFO. :1–4.
A method for providing energy and structural secrecy of a signal is presented, which is based on the method of pseudo-random restructuring of the spreading sequence. This method complicates the implementation of the accumulation mode, and therefore the detection of the signal-code structure of the signal in a third-party receiver, due to the use of nested pseudo-random sequences (PRS) and their restructuring. And since the receiver-detector is similar to the receiver of the communication system, it is necessary to ensure optimal signal processing to implement an acceptable level of structural secrecy.
2022-03-09
Barannik, Vladimir, Shulgin, Sergii, Holovchenko, Serhii, Hurzhiy, Pavlo, Sidchenko, Sergy, Gennady, Pris.  2021.  Method of Hierarchical Protection of Biometric Information. 2021 IEEE 4th International Conference on Advanced Information and Communication Technologies (AICT). :277—281.
This paper contains analysis of methods of increasing the information protection from unauthorized access using a multifactor authentication algorithm; figuring out the best, most efficient and secure method of scanning biometric data; development of a method to store and compare a candidate’s and existisng system user’s information in steganographic space. The urgency of the work is confirmed by the need to increase information security of special infocommunication systems with the help of biometric information and protection of this information from intruders by means of steganographic transformation.