Biblio
Filters: First Letter Of Last Name is T [Clear All Filters]
Large scale multi-node simulations of ℤ2 gauge theory quantum circuits using Google Cloud Platform. 2021 IEEE/ACM Second International Workshop on Quantum Computing Software (QCS). :72—79.
.
2021. Simulating quantum field theories on a quantum computer is one of the most exciting fundamental physics applications of quantum information science. Dynamical time evolution of quantum fields is a challenge that is beyond the capabilities of classical computing, but it can teach us important lessons about the fundamental fabric of space and time. Whether we may answer scientific questions of interest using near-term quantum computing hardware is an open question that requires a detailed simulation study of quantum noise. Here we present a large scale simulation study powered by a multi-node implementation of qsim using the Google Cloud Platform. We additionally employ newly-developed GPU capabilities in qsim and show how Tensor Processing Units — Application-specific Integrated Circuits (ASICs) specialized for Machine Learning — may be used to dramatically speed up the simulation of large quantum circuits. We demonstrate the use of high performance cloud computing for simulating ℤ2 quantum field theories on system sizes up to 36 qubits. We find this lattice size is not able to simulate our problem and observable combination with sufficient accuracy, implying more challenging observables of interest for this theory are likely beyond the reach of classical computation using exact circuit simulation.
Link Harvesting on the Dark Web. 2021 IEEE Bombay Section Signature Conference (IBSSC). :1—5.
.
2021. In this information age, web crawling on the internet is a prime source for data collection. And with the surface web already being dominated by giants like Google and Microsoft, much attention has been on the Dark Web. While research on crawling approaches is generally available, a considerable gap is present for URL extraction on the dark web. With most literature using the regular expressions methodology or built-in parsers, the problem with these methods is the higher number of false positives generated with the Dark Web, which makes the crawler less efficient. This paper proposes the dedicated parsers methodology for extracting URLs from the dark web, which when compared proves to be better than the regular expression methodology. Factors that make link harvesting on the Dark Web a challenge are discussed in the paper.
Link Latency Attack in Software-Defined Networks. 2021 17th International Conference on Network and Service Management (CNSM). :187–193.
.
2021. Software-Defined Networking (SDN) has found applications in different domains, including wired- and wireless networks. The SDN controller has a global view of the network topology, which is vulnerable to topology poisoning attacks, e.g., link fabrication and host-location hijacking. The adversaries can leverage these attacks to monitor the flows or drop them. However, current defence systems such as TopoGuard and TopoGuard+ can detect such attacks. In this paper, we introduce the Link Latency Attack (LLA) that can successfully bypass the systems' defence mechanisms above. In LLA, the adversary can add a fake link into the network and corrupt the controller's view from the network topology. This can be accomplished by compromising the end hosts without the need to attack the SDN-enabled switches. We develop a Machine Learning-based Link Guard (MLLG) system to provide the required defence for LLA. We test the performance of our system using an emulated network on Mininet, and the obtained results show an accuracy of 98.22% in detecting the attack. Interestingly, MLLG improves 16% the accuracy of TopoGuard+.
LL-ATPG: Logic-Locking Aware Test Using Valet Keys in an Untrusted Environment. 2021 IEEE International Test Conference (ITC). :180—189.
.
2021. The ever-increasing cost and complexity of cutting-edge manufacturing and test processes have migrated the semiconductor industry towards a globalized business model. With many untrusted entities involved in the supply chain located across the globe, original intellectual property (IP) owners face threats such as IP theft/piracy, tampering, counterfeiting, reverse engineering, and overproduction. Logic locking has emerged as a promising solution to protect integrated circuits (ICs) against supply chain vulnerabilities. It inserts key gates to corrupt circuit functionality for incorrect key inputs. A logic-locked chip test can be performed either before or after chip activation (becoming unlocked) by loading the unlocking key into the on-chip tamperproof memory. However, both pre-activation and post-activation tests suffer from lower test coverage, higher test cost, and critical security vulnerabilities. To address the shortcomings, we propose LL-ATPG, a logic-locking aware test method that applies a set of valet (dummy) keys based on a target test coverage to perform manufacturing test in an untrusted environment. LL-ATPG achieves high test coverage and minimizes test time overhead when testing the logic-locked chip before activation without sharing the unlocking key. We perform security analysis of LL-ATPG and experimentally demonstrate that sharing the valet keys with the untrusted foundry does not create additional vulnerability for the underlying locking method.
LSB Steganography Using Pixel Locator Sequence with AES. 2021 2nd International Conference on Secure Cyber Computing and Communications (ICSCCC). :302—307.
.
2021. Image steganography is a technique of hiding confidential data in the images. We do this by incorporating the LSB(Least Significant Bit) of the image pixels. LSB steganography has been there for a while, and much progress has been made in it. In this paper, we try to increase the security of the LSB steganography process by incorporating a random data distribution method which we call pixel locator sequence (PLS). This method scatters the data to be infused into the image by randomly picking up the pixels and changing their LSB value accordingly. This random distribution makes it difficult for unknowns to look for the data. This PLS file is also encrypted using AES and is key for the data encryption/decryption process between the two parties. This technique is not very space-efficient and involves sending meta-data (PLS), but that trade-off was necessary for the additional security. We evaluated the proposed approach using two criteria: change in image dynamics and robustness against steganalysis attacks. To assess change in image dynamics, we measured the MSE and PSNR values. To find the robustness of the proposed method, we used the tool StegExpose which uses the stego image produced from the proposed algorithm and analyzes them using the major steganalysis attacks such as Primary Sets, Chi-Square, Sample Pairs, and RS Analysis. Finally, we show that this method has good security metrics for best known LSB steganography detection tools and techniques.
Machine Learning-based Vulnerability Study of Interpose PUFs as Security Primitives for IoT Networks. 2021 IEEE International Conference on Networking, Architecture and Storage (NAS). :1–7.
.
2021. Security is of importance for communication networks, and many network nodes, like sensors and IoT devices, are resource-constrained. Physical Unclonable Functions (PUFs) leverage physical variations of the integrated circuits to produce responses unique to individual circuits and have the potential for delivering security for low-cost networks. But before a PUF can be adopted for security applications, all security vulnerabilities must be discovered. Recently, a new PUF known as Interpose PUF (IPUF) was proposed, which was tested to be secure against reliability-based modeling attacks and machine learning attacks when the attacked IPUF is of small size. A recent study showed IPUFs succumbed to a divide-and-conquer attack, and the attack method requires the position of the interpose bit known to the attacker, a condition that can be easily obfuscated by using a random interpose position. Thus, large IPUFs may still remain secure against all known modeling attacks if the interpose position is unknown to attackers. In this paper, we present a new modeling attack method of IPUFs using multilayer neural networks, and the attack method requires no knowledge of the interpose position. Our attack was tested on simulated IPUFs and silicon IPUFs implemented on FPGAs, and the results showed that many IPUFs which were resilient against existing attacks cannot withstand our new attack method, revealing a new vulnerability of IPUFs by re-defining the boundary between secure and insecure regions in the IPUF parameter space.
Malicious Nodes Detection Scheme Based On Dynamic Trust Clouds for Wireless Sensor Networks. 2021 6th International Symposium on Computer and Information Processing Technology (ISCIPT). :57—61.
.
2021. The randomness, ambiguity and some other uncertainties of trust relationships in Wireless Sensor Networks (WSNs) make existing trust management methods often unsatisfactory in terms of accuracy. This paper proposes a trust evaluation method based on cloud model for malicious node detection. The conversion between qualitative and quantitative sensor node trust degree is achieved. Firstly, nodes cooperate with each other to establish a standard cloud template for malicious nodes and a standard cloud template for normal nodes, so that malicious nodes have a qualitative description to be either malicious or normal. Secondly, the trust cloud template obtained during the interactions is matched against the previous standard templates to achieve the detection of malicious nodes. Simulation results demonstrate that the proposed method greatly improves the accuracy of malicious nodes detection.
A Miniaturized All-GNSS Bands Antenna Array Incorporating Multipath Suppression for Robust Satellite Navigation on UAV Platforms. 2021 15th European Conference on Antennas and Propagation (EuCAP). :1—4.
.
2021. Nowadays, an increasing trend to use autonomous Unmanned Aerial Vehicles (UAV) for applications like logistics as well as security and surveillance can be recorded. Autonomic UAVs require robust and precise navigation to ensure efficient and safe operation even in strong multipath environments and (intended) interference. The need for robust navigation on UAVs implies the necessary integration of low-cost, lightweight, and compact array antennas as well as structures for multipath mitigation into the UAV platform. This article investigates a miniaturized antenna array mounted on top of vertical choke rings for robust navigation purposes. The array employs four 3D printed elements based on dielectric resonators capable of operating in all GNSS bands while compact enough for mobile applications such as UAV.
ML-based NIDS to secure RPL from Routing Attacks. 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC). :1000–1006.
.
2021. Low power and lossy networks (LLNs) devices resource-constrained nature make it difficult to implement security mechanisms to defend against RPL routing attacks. RPLs inbuilt security functions are not efficient in preventing a wide majority of routing attacks. RPLs optional security schemes can defend against external attacks, but cannot mitigate internal attacks. Moreover, RPL does not have any mechanism to verify the integrity of control messages used to keep topology updated and route the traffic. All these factors play a major role in increasing the RPLs threat level against routing attacks. In this paper, a comparative literature review of various researchers suggesting security mechanisms to mitigate security attacks aimed at RPL has been performed and methods have been contrasted.
Modelling Cyber-Risk in an Economic Perspective. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :372–377.
.
2021. In this paper, we present a theoretical approach concerning the econometric modelling for the estimation of cyber-security risk, with the use of time-series analysis methods and alternatively with Machine Learning (ML) based, deep learning methodology. Also we present work performed in the framework of SAINT H2020 Project [1], concerning innovative data mining techniques, based on automated web scrapping, for the retrieving of the relevant time-series data. We conclude with a review of emerging challenges in cyber-risk assessment brought by the rapid development of adversarial AI.
Multi-Link Failure Effects on MPLS Resilient Fast-Reroute Network Architectures. 2021 IEEE 24th International Symposium on Real-Time Distributed Computing (ISORC). :29–33.
.
2021. MPLS has been in the forefront of high-speed Wide Area Networks (WANs), for almost two decades [1], [12]. The performance advantages in implementing Multi-Protocol Label Switching (MPLS) are mainly its superior speed based on fast label switching and its capability to perform Fast Reroute rapidly when failure(s) occur - in theory under 50 ms [16], [17], which makes MPLS also interesting for real-time applications. We investigate the aforementioned advantages of MPLS by creating two real testbeds using actual routers that commercial Internet Service Providers (ISPs) use, one with a ring and one with a partial mesh architecture. In those two testbeds we compare the performance of MPLS channels versus normal routing, both using the Open Shortest Path First (OSPF) routing protocol. The speed of the Fast Reroute mechanism for MPLS when failures are occurring is investigated. Firstly, baseline experiments are performed consisting of MPLS versus normal routing. Results are evaluated and compared using both single and dual failure scenarios within the two architectures. Our results confirm recovery times within 50 ms.
A Named Entity Recognition Based Approach for Privacy Requirements Engineering. 2021 IEEE 29th International Requirements Engineering Conference Workshops (REW). :406—411.
.
2021. The presence of experts, such as a data protection officer (DPO) and a privacy engineer is essential in Privacy Requirements Engineering. This task is carried out in various forms including threat modeling and privacy impact assessment. The knowledge required for performing privacy threat modeling can be a serious challenge for a novice privacy engineer. We aim to bridge this gap by developing an automated approach via machine learning that is able to detect privacy-related entities in the user stories. The relevant entities include (1) the Data Subject, (2) the Processing, and (3) the Personal Data entities. We use a state-of-the-art Named Entity Recognition (NER) model along with contextual embedding techniques. We argue that an automated approach can assist agile teams in performing privacy requirements engineering techniques such as threat modeling, which requires a holistic understanding of how personally identifiable information is used in a system. In comparison to other domain-specific NER models, our approach achieves a reasonably good performance in terms of precision and recall.
Named Entity Recognition in Cyber Threat Intelligence Using Transformer-based Models. 2021 IEEE International Conference on Cyber Security and Resilience (CSR). :348—353.
.
2021. The continuous increase in sophistication of threat actors over the years has made the use of actionable threat intelligence a critical part of the defence against them. Such Cyber Threat Intelligence is published daily on several online sources, including vulnerability databases, CERT feeds, and social media, as well as on forums and web pages from the Surface and the Dark Web. Named Entity Recognition (NER) techniques can be used to extract the aforementioned information in an actionable form from such sources. In this paper we investigate how the latest advances in the NER domain, and in particular transformer-based models, can facilitate this process. To this end, the dataset for NER in Threat Intelligence (DNRTI) containing more than 300 pieces of threat intelligence reports from open source threat intelligence websites is used. Our experimental results demonstrate that transformer-based techniques are very effective in extracting cybersecurity-related named entities, by considerably outperforming the previous state- of-the-art approaches tested with DNRTI.
Natural Language Processing based Human Assistive Health Conversational Agent for Multi-Users. 2021 Second International Conference on Electronics and Sustainable Communication Systems (ICESC). :1414–1420.
.
2021. Background: Most of the people are not medically qualified for studying or understanding the extremity of their diseases or symptoms. This is the place where natural language processing plays a vital role in healthcare. These chatbots collect patients' health data and depending on the data, these chatbot give more relevant data to patients regarding their body conditions and recommending further steps also. Purposes: In the medical field, AI powered healthcare chatbots are beneficial for assisting patients and guiding them in getting the most relevant assistance. Chatbots are more useful for online search that users or patients go through when patients want to know for their health symptoms. Methods: In this study, the health assistant system was developed using Dialogflow application programming interface (API) which is a Google's Natural language processing powered algorithm and the same is deployed on google assistant, telegram, slack, Facebook messenger, and website and mobile app. With this web application, a user can make health requests/queries via text message and might also get relevant health suggestions/recommendations through it. Results: This chatbot acts like an informative and conversational chatbot. This chatbot provides medical knowledge such as disease symptoms and treatments. Storing patients personal and medical information in a database for further analysis of the patients and patients get real time suggestions from doctors. Conclusion: In the healthcare sector AI-powered applications have seen a remarkable spike in recent days. This covid crisis changed the whole healthcare system upside down. So this NLP powered chatbot system reduced office waiting, saving money, time and energy. Patients might be getting medical knowledge and assisting ourselves within their own time and place.
Network and Software Architecture Improvements for a Highly Automated, Robust and Efficient Realization of the Italian National Time Scale. 2021 Joint Conference of the European Frequency and Time Forum and IEEE International Frequency Control Symposium (EFTF/IFCS). :1—4.
.
2021. Recently, the informatics infrastructure of INRiM Time and Frequency Laboratory has been completely renewed with particular attention to network security and software architecture aspects, with the aims to improve the reliability, robustness and automation of the overall set-up. This upgraded infrastructure has allowed, since January 2020, a fully automated generation and monitoring of the Italian time scale UTC(IT), based on dedicated software developed in-house [1]. We focus in this work on the network and software aspects of our set-up, which enable a robust and reliable automatic time scale generation with continuous monitoring and minimal human intervention.
Non-Invertibility for Random Projection based Biometric Template Protection Scheme. 2021 15th International Conference on Ubiquitous Information Management and Communication (IMCOM). :1—8.
.
2021. Nowadays, biometric-based authentication systems are widely used. This fact has led to increased attacks on biometric data of users. Therefore, biometric template protection is sure to keep the attention of researchers for the security of the authentication systems. Many previous works proposed the biometric template protection schemes by transforming the original biometric data into a secure domain, or establishing a cryptographic key with the use of biometric data. The main purpose was that fulfill the all three requirements: cancelability, security, and performance as many as possible. In this paper, using random projection merged with fuzzy commitment, we will introduce a hybrid scheme of biometric template protection. We try to limit their own drawbacks and take full advantages of these techniques at the same time. In addition, an analysis of non-invertibility property will be exercised with regards to the use of random projection aiming at enhancing the security of the system while preserving the discriminability of the original biometric template.
A Novel Authentication Mechanism for Securing Underwater Wireless Sensors from Sybil Attack. 2021 5th International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). :1—6.
.
2021. Underwater Wireless Sensor Networks (UWSN) has vast application areas. Due to the unprotected nature, underwater security is a prime concern. UWSN becomes vulnerable to different attacks due to malicious nodes. Sybil attack is one of the major attacks in UWSN. Most of the proposed security methods are based on encryption and decryption which consumes resources of the sensor nodes. In this paper, a simple authentication mechanism is proposed for securing the UWSN from the Sybil attack. As the nodes have very less computation power and energy resources so this work is not followed any kind of encryption and decryption technique. An authentication process is designed in such a way that node engaged in communication authenticate neighboring nodes by node ID and the data stored in the cluster head. This work is also addressed sensor node compromisation issue through Hierarchical Fuzzy System (HFS) based trust management model. The trust management model has been simulated in Xfuzzy-3.5. After the simulation conducted, the proposed trust management mechanism depicts significant performance on detecting compromised nodes.
Optimal Linear Coding Schemes for the Secure Decentralized Pliable Index Coding Problem. 2020 IEEE Information Theory Workshop (ITW). :1—5.
.
2021. This paper studies the secure decentralized Pliable Index CODing (PICOD) problem, where the security constraint forbids users to decode more than one message while the decentralized setting imposes that there is no central transmitter in the system, and thus transmissions occur only among users. A converse bound from the Authors' previous work showed a factor of three difference in optimal code-length between the centralized and the decentralized versions of the problem, under the constraint of linear encoding. This paper first lists all linearly infeasible cases, that is, problems where no linear code can simultaneously achieve both correctness/decodability and security. Then, it proposes linear coding schemes for the remaining cases and shows that their code-length is to within an additive constant gap from the converse bound.
Optimal Load Scheduling in Coupled Power and Transportation Networks. 2021 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia). :1512–1517.
.
2021. As a part of the global decarbonization agenda, the electrification of the transport sector involving the large-scale integration of electric vehicles (EV) constitues one of the key initiatives. However, the introduction of EV loads results in more variable electrical demand profiles and higher demand peaks, challenging power system balancing, voltage and network congestion management. In this paper, a novel optimal load scheduling approach for a coupled power and transportation network is proposed. It employs an EV charging demand forecasting model to generate the temporal-spatial distribution of the aggregate EV loads taking into account the uncertainties stemmed from the traffic condition. An AC optimal power flow (ACOPF) problem is formulated and solved to determine the scheduling decisions for the EVs, energy storage units as well as other types of flexible loads, taking into account their operational characteristics. Convex relaxation is performed to convert the original non-convex ACOPF problem to a second order conic program. Case studies demonstrate the effectiveness of the proposed scheduling strategy in accurately forecasting the EV load distribution as well as effectively alleviating the voltage deviation and network congestion in the distribution network through optimal load scheduling control decisions.
PDGraph: A Large-Scale Empirical Study on Project Dependency of Security Vulnerabilities. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :161–173.
.
2021. The reuse of libraries in software development has become prevalent for improving development efficiency and software quality. However, security vulnerabilities of reused libraries propagated through software project dependency pose a severe security threat, but they have not yet been well studied. In this paper, we present the first large-scale empirical study of project dependencies with respect to security vulnerabilities. We developed PDGraph, an innovative approach for analyzing publicly known security vulnerabilities among numerous project dependencies, which provides a new perspective for assessing security risks in the wild. As a large-scale software collection in dependency, we find 337,415 projects and 1,385,338 dependency relations. In particular, PDGraph generates a project dependency graph, where each node is a project, and each edge indicates a dependency relationship. We conducted experiments to validate the efficacy of PDGraph and characterized its features for security analysis. We revealed that 1,014 projects have publicly disclosed vulnerabilities, and more than 67,806 projects are directly dependent on them. Among these, 42,441 projects still manifest 67,581 insecure dependency relationships, indicating that they are built on vulnerable versions of reused libraries even though their vulnerabilities are publicly known. During our eight-month observation period, only 1,266 insecure edges were fixed, and corresponding vulnerable libraries were updated to secure versions. Furthermore, we uncovered four underlying dependency risks that can significantly reduce the difficulty of compromising systems. We conducted a quantitative analysis of dependency risks on the PDGraph.
PEP-DNA: A Performance Enhancing Proxy for Deploying Network Architectures. 2021 IEEE 29th International Conference on Network Protocols (ICNP). :1—6.
.
2021. Deploying a new network architecture in the Internet requires changing some, but not necessarily all elements between communicating applications. One way to achieve gradual deployment is a proxy or gateway which "translates" between the new architecture and TCP/IP. We present such a proxy, called "Performance Enhancing Proxy for Deploying Network Architectures (PEP-DNA)", which allows TCP/IP applications to benefit from advanced features of a new network architecture without having to be redeveloped. Our proxy is a kernel-based Linux implementation which can be installed wherever a translation needs to occur between a new architecture and TCP/IP domains. We discuss the proxy operation in detail and evaluate its efficiency and performance in a local testbed, demonstrating that it achieves high throughput with low additional latency overhead. In our experiments, we use the Recursive InterNetwork Architecture (RINA) and Information-Centric Networking (ICN) as examples, but our proxy is modular and flexible, and hence enables realistic gradual deployment of any new "clean-slate" approaches.
Performance Analysis of High-Speed Wavelength Division Multiplexing Communication Between Chaotic Secure and Optical Fiber Channels Using DP-16QAM Scheme. 2020 IEEE Eighth International Conference on Communications and Electronics (ICCE). :33—38.
.
2021. In this paper, we propose a numerical simulation investigation of the wavelength division multiplexing mechanism between a chaotic secure channel and a traditional fiber channel using the advanced modulation method DP-16QAM at the bitrate of 80Gbps, the fiber length of 80 km and 100 GHz channel spacing in C-band. Our paper investigates correlation coefficients between the transmitter and also the receiver for two forms of communication channels. Our simulation results demonstrate that, in all cases, BER is always below 2.10-4 even when we have not used the forward-error-correction method. Besides, cross-interaction between the chaotic channel and also the non-chaotic channel is negligible showing a highly independent level between two channels.
Performance Impact of Host Kernel Page Table Isolation on Virtualized Servers. 2021 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :912–919.
.
2021. As Meltdown mitigation, Kernel Page Table I solation (KPTI) was merged into Linux kernel mainline, and the performance impact is significant on x86 processors. Most of the previous work focuses on how KPTI affects Linux kernel performance within the scope of virtual machines or physical machines on x86. However, whether host KPTI affects virtual machines has not been well studied. What's more, there is relatively little research on ARM CPUs. This paper presents an in-depth study of how KPTI on the host affects the virtualized server performance and compares ARMv8 and x86. We first run several application benchmarks to demonstrate the performance impact does exist. The reason is that with a para-virtual I/O scheme, guest offloads I/O requests to the host side, which may incur user/kernel transitions. For the network I/O, when using QEMU as the back-end device, we saw a 1.7% and 5.5% slowdown on ARMv8 and x86, respectively. vhost and vhost-user, originally proposed to optimize performance, inadvertently mitigate the performance impact introduced by host KPTI. For CPU and memory-intensive benchmarks, the performance impact is trivial. We also find that virtual machines on ARMv8 are less affected by KPTI. To diagnose the root cause, we port HyperBench to the ARM virtualization platform. The final results show that swapping the translation table pointer register on ARMv8 is about 3.5x faster than x86. Our findings have significant implications for tuning the x86 virtualization platform's performance and helping ARMv8 administrators enable KPTI with confidence.
Practical and Efficient In-Enclave Verification of Privacy Compliance. 2021 51st Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :413–425.
.
2021. A trusted execution environment (TEE) such as Intel Software Guard Extension (SGX) runs attestation to prove to a data owner the integrity of the initial state of an enclave, including the program to operate on her data. For this purpose, the data-processing program is supposed to be open to the owner or a trusted third party, so its functionality can be evaluated before trust being established. In the real world, however, increasingly there are application scenarios in which the program itself needs to be protected (e.g., proprietary algorithm). So its compliance with privacy policies as expected by the data owner should be verified without exposing its code.To this end, this paper presents DEFLECTION, a new model for TEE-based delegated and flexible in-enclave code verification. Given that the conventional solutions do not work well under the resource-limited and TCB-frugal TEE, we come up with a new design inspired by Proof-Carrying Code. Our design strategically moves most of the workload to the code generator, which is responsible for producing easy-to-check code, while keeping the consumer simple. Also, the whole consumer can be made public and verified through a conventional attestation. We implemented this model on Intel SGX and demonstrate that it introduces a very small part of TCB. We also thoroughly evaluated its performance on micro-and macro-benchmarks and real-world applications, showing that the design only incurs a small overhead when enforcing several categories of security policies.
Privacy Preserved Secure Offloading in the Multi-access Edge Computing Network. 2021 IEEE Wireless Communications and Networking Conference Workshops (WCNCW). :1–6.
.
2021. Mobile edge computing (MEC) emerges recently to help process the computation-intensive and delay-sensitive applications of resource limited mobile devices in support of MEC servers. Due to the wireless offloading, MEC faces many security challenges, like eavesdropping and privacy leakage. The anti-eavesdropping offloading or privacy preserving offloading have been studied in existing researches. However, both eavesdropping and privacy leakage may happen in the meantime in practice. In this paper, we propose a privacy preserved secure offloading scheme aiming to minimize the energy consumption, where the location privacy, usage pattern privacy and secure transmission against the eavesdropper are jointly considered. We formulate this problem as a constrained Markov decision process (CMDP) with the constraints of secure offloading rate and pre-specified privacy level, and solve it with reinforcement learning (RL). It can be concluded from the simulation that this scheme can save the energy consumption as well as improve the privacy level and security of the mobile device compared with the benchmark scheme.