Biblio

Found 2636 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2019-02-08
Xiong, Xinli, Zhao, Guangsheng, Wang, Xian.  2018.  A System Attack Surface Based MTD Effectiveness and Cost Quantification Framework. Proceedings of the 2Nd International Conference on Cryptography, Security and Privacy. :175-179.

Moving Target Defense (MTD) is a game-changing method to thwart adversaries and reverses the imbalance situation in network countermeasures. Introducing Attack Surface (AS) into MTD security assessment brings productive concepts to qualitative and quantitative analysis. The quantification of MTD effectiveness and cost (E&C) has been under researched, using simulation models and emulation testbeds, to give accurate and reliable results for MTD technologies. However, the lack of system-view evaluation impedes MTD to move toward large-scale applications. In this paper, a System Attack Surface Based Quantification Framework (SASQF) is proposed to establish a system-view based framework for further research in Attack Surface and MTD E&C quantification. And a simulated model based on SASQF is developed to provide illustrations and software simulation methods. A typical C/S scenario and Cyber Kill Chain (CKC) attacks are presented in case study and several simulated results are given. From the simulated results, IP mutation frequency is the key to increase consumptions of adversaries, while the IP mutation pool is not the principal factor to thwart adversaries in reconnaissance and delivery of CKC steps. For system user operational cost, IP mutation frequency influence legitimate connections in relative values under ideal link state without delay, packet lose and jitter. The simulated model based on SASQF also provides a basic method to find the optimal IP mutation frequency through simulations.

2019-12-16
Xing, Han, Zhang, Ke, Yang, Zifan, Sun, Lianying, Liu, Yi.  2018.  Traffic State Estimation with Big Data. Proceedings of the 4th ACM SIGSPATIAL International Workshop on Safety and Resilience. :9:1-9:5.

Traffic state estimation helps urban traffic control and management. In this paper, a traffic state estimation model based on the fusion of Hidden Markov model and SEA algorithm is proposed considering the randomness and volatility of traffic systems. Traffic data of average travel speed in selected city were collected, and the mean and fluctuation values of average travel speed in adjacent time windows were calculated. With Hidden Markov model, the system state network is defined according to mean values and fluctuation values. The operation efficiency of traffic system, as well as stability and trend values, were calculated with System Effectiveness Analysis (SEA) algorithm based on system state network. Calculation results show that the method perform well and can be applied to both traffic state assessment of certain road sections and large scale road networks.

2019-01-31
Chakraborty, Arpita, Zhang, Yue, Ramesh, Arti.  2018.  Understanding Types of Cyberbullying in an Anonymous Messaging Application. Companion Proceedings of the The Web Conference 2018. :1001–1005.

The possibility of anonymity and lack of effective ways to identify inappropriate messages have resulted in a significant amount of online interaction data that attempt to harass, bully, or offend the recipient. In this work, we perform a preliminary linguistic study on messages exchanged using one such popular web/smartphone application—Sarahah, that allows friends to exchange messages anonymously. Since messages exchanged via Sarahah are private, we collect them when the recipient shares it on Twitter. We then perform an analysis of the different kinds of messages exchanged through this application. Our linguistic analysis reveals that a significant number of these messages ($\backslash$textasciitilde20%) include inappropriate, hurtful, or profane language intended to embarrass, offend, or bully the recipient. Our analysis helps in understanding the different ways in which anonymous message exchange platforms are used and the different types of bullying present in such exchanges.

2019-12-10
Sun, Jie, Yu, Jiancheng, Zhang, Aiqun, Song, Aijun, Zhang, Fumin.  2018.  Underwater Acoustic Intensity Field Reconstruction by Kriged Compressive Sensing. Proceedings of the Thirteenth ACM International Conference on Underwater Networks & Systems. :5:1-5:8.

This paper presents a novel Kriged Compressive Sensing (KCS) approach for the reconstruction of underwater acoustic intensity fields sampled by multiple gliders following sawtooth sampling patterns. Blank areas in between the sampling trajectories may cause unsatisfying reconstruction results. The KCS method leverages spatial statistical correlation properties of the acoustic intensity field being sampled to improve the compressive reconstruction process. Virtual data samples generated from a kriging method are inserted into the blank areas. We show that by using the virtual samples along with real samples, the acoustic intensity field can be reconstructed with higher accuracy when coherent spatial patterns exist. Corresponding algorithms are developed for both unweighted and weighted KCS methods. By distinguishing the virtual samples from real samples through weighting, the reconstruction results can be further improved. Simulation results show that both algorithms can improve the reconstruction results according to the PSNR and SSIM metrics. The methods are applied to process the ocean ambient noise data collected by the Sea-Wing acoustic gliders in the South China Sea.

2019-01-31
Ouyang, Deqiang, Shao, Jie, Zhang, Yonghui, Yang, Yang, Shen, Heng Tao.  2018.  Video-Based Person Re-Identification via Self-Paced Learning and Deep Reinforcement Learning Framework. Proceedings of the 26th ACM International Conference on Multimedia. :1562–1570.

Person re-identification is an important task in video surveillance, focusing on finding the same person across different cameras. However, most existing methods of video-based person re-identification still have some limitations (e.g., the lack of effective deep learning framework, the robustness of the model, and the same treatment for all video frames) which make them unable to achieve better recognition performance. In this paper, we propose a novel self-paced learning algorithm for video-based person re-identification, which could gradually learn from simple to complex samples for a mature and stable model. Self-paced learning is employed to enhance video-based person re-identification based on deep neural network, so that deep neural network and self-paced learning are unified into one frame. Then, based on the trained self-paced learning, we propose to employ deep reinforcement learning to discard misleading and confounding frames and find the most representative frames from video pairs. With the advantage of deep reinforcement learning, our method can learn strategies to select the optimal frame groups. Experiments show that the proposed framework outperforms the existing methods on the iLIDS-VID, PRID-2011 and MARS datasets.

2018-05-17
2019-11-12
Wei, Shengjun, Zhong, Hao, Shan, Chun, Ye, Lin, Du, Xiaojiang, Guizani, Mohsen.  2018.  Vulnerability Prediction Based on Weighted Software Network for Secure Software Building. 2018 IEEE Global Communications Conference (GLOBECOM). :1-6.

To build a secure communications software, Vulnerability Prediction Models (VPMs) are used to predict vulnerable software modules in the software system before software security testing. At present many software security metrics have been proposed to design a VPM. In this paper, we predict vulnerable classes in a software system by establishing the system's weighted software network. The metrics are obtained from the nodes' attributes in the weighted software network. We design and implement a crawler tool to collect all public security vulnerabilities in Mozilla Firefox. Based on these data, the prediction model is trained and tested. The results show that the VPM based on weighted software network has a good performance in accuracy, precision, and recall. Compared to other studies, it shows that the performance of prediction has been improved greatly in Pr and Re.

2019-11-27
Gao, Yang, Li, Borui, Wang, Wei, Xu, Wenyao, Zhou, Chi, Jin, Zhanpeng.  2018.  Watching and Safeguarding Your 3D Printer: Online Process Monitoring Against Cyber-Physical Attacks. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.. 2:108:1–108:27.

The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.

2019-07-01
Zieger, A., Freiling, F., Kossakowski, K..  2018.  The β-Time-to-Compromise Metric for Practical Cyber Security Risk Estimation. 2018 11th International Conference on IT Security Incident Management IT Forensics (IMF). :115–133.

To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose β-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a β-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.

2020-11-02
Wu, Yuming, Liu, Yutao, Liu, Ruifeng, Chen, Haibo, Zang, Binyu, Guan, Haibing.  2018.  Comprehensive VM Protection Against Untrusted Hypervisor Through Retrofitted AMD Memory Encryption. 2018 IEEE International Symposium on High Performance Computer Architecture (HPCA).

The confidentiality of tenant's data is confronted with high risk when facing hardware attacks and privileged malicious software. Hardware-based memory encryption is one of the promising means to provide strong guarantees of data security. Recently AMD has proposed its new memory encryption hardware called SME and SEV, which can selectively encrypt memory regions in a fine-grained manner, e.g., by setting the C-bits in the page table entries. More importantly, SEV further supports encrypted virtual machines. This, intuitively, has provided a new opportunity to protect data confidentiality in guest VMs against an untrusted hypervisor in the cloud environment. In this paper, we first provide a security analysis on the (in)security of SEV and uncover a set of security issues of using SEV as a means to defend against an untrusted hypervisor. Based on the study, we then propose a software-based extension to the SEV feature, namely Fidelius, to address those issues while retaining performance efficiency. Fidelius separates the management of critical resources from service provisioning and revokes the permissions of accessing specific resources from the un-trusted hypervisor. By adopting a sibling-based protection mechanism with non-bypassable memory isolation, Fidelius embraces both security and efficiency, as it introduces no new layer of abstraction. Meanwhile, Fidelius reuses the SEV API to provide a full VM life-cycle protection, including two sets of para-virtualized I/O interfaces to encode the I/O data, which is not considered in the SEV hardware design. A detailed and quantitative security analysis shows its effectiveness in protecting tenant's data from a variety of attack surfaces, and the performance evaluation confirms the performance efficiency of Fidelius.

2019-01-16
Khan, F., Quweider, M., Torres, M., Goldsmith, C., Lei, H., Zhang, L..  2018.  Block Level Streaming Based Alternative Approach for Serving a Large Number of Workstations Securely and Uniformly. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :92–98.
There are different traditional approaches to handling a large number of computers or workstations in a campus setting, ranging from imaging to virtualized environments. The common factor among the traditional approaches is to have a user workstation with a local hard drive (nonvolatile storage), scratchpad volatile memory, a CPU (Central Processing Unit) and connectivity to access resources on the network. This paper presents the use of block streaming, normally used for storage, to serve operating system and applications on-demand over the network to a workstation, also referred to as a client, a client computer, or a client workstation. In order to avoid per seat licensing, an Open Source solution is used, and in order to minimize the field maintenance and meet security privacy constraints, a workstation need not have a permanent storage such as a hard disk drive. A complete blue print, based on performance analyses, is provided to determine the type of network architecture, servers, workstations per server, and minimum workstation configuration, suitable for supporting such a solution. The results of implementing the proposed solution campus wide, supporting more than 450 workstations, are presented as well.
2020-01-20
Xiao, Kaiming, Zhu, Cheng, Xie, Junjie, Zhou, Yun, Zhu, Xianqiang, Zhang, Weiming.  2018.  Dynamic Defense Strategy against Stealth Malware Propagation in Cyber-Physical Systems. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1790–1798.
Stealth malware, a representative tool of advanced persistent threat (APT) attacks, in particular poses an increased threat to cyber-physical systems (CPS). Due to the use of stealthy and evasive techniques (e.g., zero-day exploits, obfuscation techniques), stealth malwares usually render conventional heavyweight countermeasures (e.g., exploits patching, specialized ant-malware program) inapplicable. Light-weight countermeasures (e.g., containment techniques), on the other hand, can help retard the spread of stealth malwares, but the ensuing side effects might violate the primary safety requirement of CPS. Hence, defenders need to find a balance between the gain and loss of deploying light-weight countermeasures. To address this challenge, we model the persistent anti-malware process as a shortest-path tree interdiction (SPTI) Stackelberg game, and safety requirements of CPS are introduced as constraints in the defender's decision model. Specifically, we first propose a static game (SSPTI), and then extend it to a multi-stage dynamic game (DSPTI) to meet the need of real-time decision making. Both games are modelled as bi-level integer programs, and proved to be NP-hard. We then develop a Benders decomposition algorithm to achieve the Stackelberg Equilibrium of SSPTI. Finally, we design a model predictive control strategy to solve DSPTI approximately by sequentially solving an approximation of SSPTI. The extensive simulation results demonstrate that the proposed dynamic defense strategy can achieve a balance between fail-secure ability and fail-safe ability while retarding the stealth malware propagation in CPS.
2019-01-31
Shahbar, K., Zincir-Heywood, A. N..  2018.  How Far Can We Push Flow Analysis to Identify Encrypted Anonymity Network Traffic? NOMS 2018 - 2018 IEEE/IFIP Network Operations and Management Symposium. :1–6.

Anonymity networks provide privacy to the users by relaying their data to multiple destinations in order to reach the final destination anonymously. Multilayer of encryption is used to protect the users' privacy from attacks or even from the operators of the stations. In this research, we showed how flow analysis could be used to identify encrypted anonymity network traffic under four scenarios: (i) Identifying anonymity networks compared to normal background traffic; (ii) Identifying the type of applications used on the anonymity networks; (iii) Identifying traffic flow behaviors of the anonymity network users; and (iv) Identifying / profiling the users on an anonymity network based on the traffic flow behavior. In order to study these, we employ a machine learning based flow analysis approach and explore how far we can push such an approach.

2019-06-10
Zalte, S. S., Ghorpade, V. R..  2018.  Intrusion Detection System for MANET. 2018 3rd International Conference for Convergence in Technology (I2CT). :1–4.

In Mobile Ad-hoc Network (MANET), we cannot predict the clear picture of the topology of a node because of its varying nature. Without notice participation and departure of nodes results in lack of trust relationship between nodes. In such circumstances, there is no guarantee that path between two nodes would be secure or free of malicious nodes. The presence of single malicious node could lead repeatedly compromised node. After providing security to route and data packets still, there is a need for the implementation of defense mechanism that is intrusion detection system(IDS) against compromised nodes. In this paper, we have implemented IDS, which defend against some routing attacks like the black hole and gray hole successfully. After measuring performance we get marginally increased Packet delivery ratio and Throughput.

2019-03-22
Quweider, M., Lei, H., Zhang, L., Khan, F..  2018.  Managing Big Data in Visual Retrieval Systems for DHS Applications: Combining Fourier Descriptors and Metric Space Indexing. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :188-193.

Image retrieval systems have been an active area of research for more than thirty years progressively producing improved algorithms that improve performance metrics, operate in different domains, take advantage of different features extracted from the images to be retrieved, and have different desirable invariance properties. With the ever-growing visual databases of images and videos produced by a myriad of devices comes the challenge of selecting effective features and performing fast retrieval on such databases. In this paper, we incorporate Fourier descriptors (FD) along with a metric-based balanced indexing tree as a viable solution to DHS (Department of Homeland Security) needs to for quick identification and retrieval of weapon images. The FDs allow a simple but effective outline feature representation of an object, while the M-tree provide a dynamic, fast, and balanced search over such features. Motivated by looking for applications of interest to DHS, we have created a basic guns and rifles databases that can be used to identify weapons in images and videos extracted from media sources. Our simulations show excellent performance in both representation and fast retrieval speed.

2019-03-04
Berscheid, A., Makarov, Y., Hou, Z., Diao, R., Zhang, Y., Samaan, N., Yuan, Y., Zhou, H..  2018.  An Open-Source Tool for Automated Power Grid Stress Level Prediction at Balancing Authorities. 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T D). :1–5.
The behavior of modern power systems is becoming more stochastic and dynamic, due to the increased penetration of variable generation, demand response, new power market structure, extreme weather conditions, contingencies, and unexpected events. It is critically important to predict potential system operational issues so that grid planners and operators can take preventive actions to mitigate the impact, e.g., lack of operational reserves. In this paper, an innovative software tool is presented to assist power grid operators in a balancing authority in predicting the grid stress level over the next operating day. It periodically collects necessary information from public domain such as weather forecasts, electricity demand, and automatically estimates the stress levels on a daily basis. Advanced Neural Network and regression tree algorithms are developed as the prediction engines to achieve this goal. The tool has been tested on a few key balancing authorities and successfully predicted the growing system peak load and increased stress levels under extreme heat waves.
2019-01-16
Turaev, H., Zavarsky, P., Swar, B..  2018.  Prevention of Ransomware Execution in Enterprise Environment on Windows OS: Assessment of Application Whitelisting Solutions. 2018 1st International Conference on Data Intelligence and Security (ICDIS). :110–118.

Application whitelisting software allows only examined and trusted applications to run on user's machine. Since many malicious files don't require administrative privileges in order for them to be executed, whitelisting can be the only way to block the execution of unauthorized applications in enterprise environment and thus prevent infection or data breach. In order to assess the current state of such solutions, the access to three whitelisting solution licenses was obtained with the purpose to test their effectiveness against different modern types of ransomware found in the wild. To conduct this study a virtual environment was used with Windows Server and Enterprise editions installed. The objective of this paper is not to evaluate each vendor or make recommendations of purchasing specific software but rather to assess the ability of application control solutions to block execution of ransomware files, as well as assess the potential for future research. The results of the research show the promise and effectiveness of whitelisting solutions.

2019-06-10
Xue, S., Zhang, L., Li, A., Li, X., Ruan, C., Huang, W..  2018.  AppDNA: App Behavior Profiling via Graph-Based Deep Learning. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1475-1483.

Better understanding of mobile applications' behaviors would lead to better malware detection/classification and better app recommendation for users. In this work, we design a framework AppDNA to automatically generate a compact representation for each app to comprehensively profile its behaviors. The behavior difference between two apps can be measured by the distance between their representations. As a result, the versatile representation can be generated once for each app, and then be used for a wide variety of objectives, including malware detection, app categorizing, plagiarism detection, etc. Based on a systematic and deep understanding of an app's behavior, we propose to perform a function-call-graph-based app profiling. We carefully design a graph-encoding method to convert a typically extremely large call-graph to a 64-dimension fix-size vector to achieve robust app profiling. Our extensive evaluations based on 86,332 benign and malicious apps demonstrate that our system performs app profiling (thus malware detection, classification, and app recommendation) to a high accuracy with extremely low computation cost: it classifies 4024 (benign/malware) apps using around 5.06 second with accuracy about 93.07%; it classifies 570 malware's family (total 21 families) using around 0.83 second with accuracy 82.3%; it classifies 9,730 apps' functionality with accuracy 33.3% for a total of 7 categories and accuracy of 88.1 % for 2 categories.

2020-05-08
Zhi-wen, Wang, Yang, Cheng.  2018.  Bandwidth Allocation Strategy of Networked Control System under Denial-of-Service Attack. 2018 4th Annual International Conference on Network and Information Systems for Computers (ICNISC). :49—55.

In this paper, security of networked control system (NCS) under denial of service (DoS) attack is considered. Different from the existing literatures from the perspective of control systems, this paper considers a novel method of dynamic allocation of network bandwidth for NCS under DoS attack. Firstly, time-constrained DoS attack and its impact on the communication channel of NCS are introduced. Secondly, details for the proposed dynamic bandwidth allocation structure are presented along with an implementation, which is a bandwidth allocation strategy based on error between current state and equilibrium state and available bandwidth. Finally, a numerical example is given to demonstrate the effectiveness of the proposed bandwidth allocation approach.

2019-01-31
Zheng, Erkang, Gates-Idem, Phil, Lavin, Matt.  2018.  Building a Virtually Air-Gapped Secure Environment in AWS: With Principles of Devops Security Program and Secure Software Delivery. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :11:1–11:8.

This paper presents the development and configuration of a virtually air-gapped cloud environment in AWS, to secure the production software workloads and patient data (ePHI) and to achieve HIPAA compliance.

2018-12-10
Potteiger, Bradley, Zhang, Zhenkai, Koutsoukos, Xenofon.  2018.  Integrated Instruction Set Randomization and Control Reconfiguration for Securing Cyber-physical Systems. Proceedings of the 5th Annual Symposium and Bootcamp on Hot Topics in the Science of Security. :5:1–5:10.

Cyber-Physical Systems (CPS) have been increasingly subject to cyber-attacks including code injection attacks. Zero day attacks further exasperate the threat landscape by requiring a shift to defense in depth approaches. With the tightly coupled nature of cyber components with the physical domain, these attacks have the potential to cause significant damage if safety-critical applications such as automobiles are compromised. Moving target defense techniques such as instruction set randomization (ISR) have been commonly proposed to address these types of attacks. However, under current implementations an attack can result in system crashing which is unacceptable in CPS. As such, CPS necessitate proper control reconfiguration mechanisms to prevent a loss of availability in system operation. This paper addresses the problem of maintaining system and security properties of a CPS under attack by integrating ISR, detection, and recovery capabilities that ensure safe, reliable, and predictable system operation. Specifically, we consider the problem of detecting code injection attacks and reconfiguring the controller in real-time. The developed framework is demonstrated with an autonomous vehicle case study.

2020-12-01
Zhang, Y., Deng, L., Chen, M., Wang, P..  2018.  Joint Bidding and Geographical Load Balancing for Datacenters: Is Uncertainty a Blessing or a Curse? IEEE/ACM Transactions on Networking. 26:1049—1062.

We consider the scenario where a cloud service provider (CSP) operates multiple geo-distributed datacenters to provide Internet-scale service. Our objective is to minimize the total electricity and bandwidth cost by jointly optimizing electricity procurement from wholesale markets and geographical load balancing (GLB), i.e., dynamically routing workloads to locations with cheaper electricity. Under the ideal setting where exact values of market prices and workloads are given, this problem reduces to a simple linear programming and is easy to solve. However, under the realistic setting where only distributions of these variables are available, the problem unfolds into a non-convex infinite-dimensional one and is challenging to solve. One of our main contributions is to develop an algorithm that is proven to solve the challenging problem optimally, by exploring the full design space of strategic bidding. Trace-driven evaluations corroborate our theoretical results, demonstrate fast convergence of our algorithm, and show that it can reduce the cost for the CSP by up to 20% as compared with baseline alternatives. This paper highlights the intriguing role of uncertainty in workloads and market prices, measured by their variances. While uncertainty in workloads deteriorates the cost-saving performance of joint electricity procurement and GLB, counter-intuitively, uncertainty in market prices can be exploited to achieve a cost reduction even larger than the setting without price uncertainty.

2019-01-21
Lu, L., Yu, J., Chen, Y., Liu, H., Zhu, Y., Liu, Y., Li, M..  2018.  LipPass: Lip Reading-based User Authentication on Smartphones Leveraging Acoustic Signals. IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. :1466–1474.

To prevent users' privacy from leakage, more and more mobile devices employ biometric-based authentication approaches, such as fingerprint, face recognition, voiceprint authentications, etc., to enhance the privacy protection. However, these approaches are vulnerable to replay attacks. Although state-of-art solutions utilize liveness verification to combat the attacks, existing approaches are sensitive to ambient environments, such as ambient lights and surrounding audible noises. Towards this end, we explore liveness verification of user authentication leveraging users' lip movements, which are robust to noisy environments. In this paper, we propose a lip reading-based user authentication system, LipPass, which extracts unique behavioral characteristics of users' speaking lips leveraging build-in audio devices on smartphones for user authentication. We first investigate Doppler profiles of acoustic signals caused by users' speaking lips, and find that there are unique lip movement patterns for different individuals. To characterize the lip movements, we propose a deep learning-based method to extract efficient features from Doppler profiles, and employ Support Vector Machine and Support Vector Domain Description to construct binary classifiers and spoofer detectors for user identification and spoofer detection, respectively. Afterwards, we develop a binary tree-based authentication approach to accurately identify each individual leveraging these binary classifiers and spoofer detectors with respect to registered users. Through extensive experiments involving 48 volunteers in four real environments, LipPass can achieve 90.21% accuracy in user identification and 93.1% accuracy in spoofer detection.

Sun, Xuguang, Zhou, Yi, Shu, Xiaofeng.  2018.  Multi-Channel Linear Prediction Speech Dereverberation Algorithm Based on QR-RLS Adaptive Filter. Proceedings of the 3rd International Conference on Multimedia Systems and Signal Processing. :109–113.

This paper proposes a multi-channel linear prediction (MCLP) speech dereverberation algorithm based on QR-decomposition recursive least squares (QR-RLS) adaptive filter, which can avoid the possible instability caused by the RLS algorithm, and achieve same speech dereverberation performance as the prototype MCLP dereverberation algorithm based on RLS. This can be confirmed by the theoretical derivation and experiments. Thus, the proposed algorithm can be a good alternative for practical speech applications.

2019-03-04
Lin, Y., Qi, Z., Wu, H., Yang, Z., Zhang, J., Wenyin, L..  2018.  CoderChain: A BlockChain Community for Coders. 2018 1st IEEE International Conference on Hot Information-Centric Networking (HotICN). :246–247.
An online community based on blockchain is proposed for software developers to share, assess, and learn codes and other codes or software related knowledge. It involves three modules or roles, namely: developer (or coder, or more generally, knowledge contributor), code (or knowledge contribution), and jury (or assessor, who is usually a developer with advanced skills), in addition to the blockchain based database. Each full node of the blockchain hosts a copy of all activities of developers in such community, including uploading contributions, assessing others' contributions, and conducting transactions. Smart contracts are applicable to automate transactions after code assessment or other related activities. The system aims to assess and improve the value of codes accurately, stimulate the creativity of the developers, and improve software development efficiency, so as to establish a virtuous cycle of a software development community.