Biblio

Found 2636 results

Filters: First Letter Of Last Name is Z  [Clear All Filters]
2020-09-28
Zhang, Xueru, Khalili, Mohammad Mahdi, Liu, Mingyan.  2018.  Recycled ADMM: Improve Privacy and Accuracy with Less Computation in Distributed Algorithms. 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton). :959–965.
Alternating direction method of multiplier (ADMM) is a powerful method to solve decentralized convex optimization problems. In distributed settings, each node performs computation with its local data and the local results are exchanged among neighboring nodes in an iterative fashion. During this iterative process the leakage of data privacy arises and can accumulate significantly over many iterations, making it difficult to balance the privacy-utility tradeoff. In this study we propose Recycled ADMM (R-ADMM), where a linear approximation is applied to every even iteration, its solution directly calculated using only results from the previous, odd iteration. It turns out that under such a scheme, half of the updates incur no privacy loss and require much less computation compared to the conventional ADMM. We obtain a sufficient condition for the convergence of R-ADMM and provide the privacy analysis based on objective perturbation.
2019-02-14
Chen, B., Lu, Z., Zhou, H..  2018.  Reliability Assessment of Distribution Network Considering Cyber Attacks. 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2). :1-6.

With the rapid development of the smart grid, a large number of intelligent sensors and meters have been introduced in distribution network, which will inevitably increase the integration of physical networks and cyber networks, and bring potential security threats to the operating system. In this paper, the functions of the information system on distribution network are described when cyber attacks appear at the intelligent electronic devices (lED) or at the distribution main station. The effect analysis of the distribution network under normal operating condition or in the fault recovery process is carried out, and the reliability assessment model of the distribution network considering cyber attacks is constructed. Finally, the IEEE-33-bus distribution system is taken as a test system to presented the evaluation process based on the proposed model.

2019-02-08
Zou, Z., Wang, D., Yang, H., Hou, Y., Yang, Y., Xu, W..  2018.  Research on Risk Assessment Technology of Industrial Control System Based on Attack Graph. 2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :2420-2423.

In order to evaluate the network security risks and implement effective defenses in industrial control system, a risk assessment method for industrial control systems based on attack graphs is proposed. Use the concept of network security elements to translate network attacks into network state migration problems and build an industrial control network attack graph model. In view of the current subjective evaluation of expert experience, the atomic attack probability assignment method and the CVSS evaluation system were introduced to evaluate the security status of the industrial control system. Finally, taking the centralized control system of the thermal power plant as the experimental background, the case analysis is performed. The experimental results show that the method can comprehensively analyze the potential safety hazards in the industrial control system and provide basis for the safety management personnel to take effective defense measures.

2020-12-02
Zhao, Q., Du, P., Gerla, M., Brown, A. J., Kim, J. H..  2018.  Software Defined Multi-Path TCP Solution for Mobile Wireless Tactical Networks. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :1—9.
Naval Battlefield Network communications rely on wireless network technologies to transmit data between different naval entities, such as ships and shore nodes. Existing naval battle networks heavily depend on the satellite communication system using single-path TCP for reliable, non-interactive data. While satisfactory for traditional use cases, this communication model may be inadequate for outlier cases, such as those arising from satellite failure and wireless signal outage. To promote network stability and assurance in such scenarios, the addition of unmanned aerial vehicles to function as relay points can complement network connectivity and alleviate potential strains in adverse conditions. The inherent mobility of aerial vehicles coupled with existing source node movements, however, leads to frequent network handovers with non-negligible overhead and communication interruption, particularly in the present single-path model. In this paper, we propose a solution based on multi-path TCP and software-defined networking, which, when applied to mobile wireless heterogeneous networks, reduces the network handover delay and improves the total throughput for transmissions among various naval entities at sea and littoral. In case of single link failure, the presence of a connectable relay point maintains TCP connectivity and reduces the risk of service interruption. To validate feasibility and to evaluate performance of our solution, we constructed a Mininet- WiFi emulation testbed. Compared against single-path TCP communication methods, execution of the testbed when configured to use multi-path TCP and UAV relays yields demonstrably more stable network handovers with relatively low overhead, greater reliability of network connectivity, and higher overall end-to-end throughput. Because the SDN global controller dynamically adjusts allocations per user, the solution effectively eliminates link congestion and promotes more efficient bandwidth utilization.
2019-09-26
Liu, Y., Zhang, J., Gao, Q..  2018.  A Blockchain-Based Secure Cloud Files Sharing Scheme with Fine-Grained Access Control. 2018 International Conference on Networking and Network Applications (NaNA). :277-283.

As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.

2020-11-04
Zeng, Z., Deng, Y., Hsiao, I., Huang, D., Chung, C..  2018.  Improving student learning performance in a virtual hands-on lab system in cybersecurity education. 2018 IEEE Frontiers in Education Conference (FIE). :1—5.

This Research Work in Progress paper presents a study on improving student learning performance in a virtual hands-on lab system in cybersecurity education. As the demand for cybersecurity-trained professionals rapidly increasing, virtual hands-on lab systems have been introduced into cybersecurity education as a tool to enhance students' learning. To improve learning in a virtual hands-on lab system, instructors need to understand: what learning activities are associated with students' learning performance in this system? What relationship exists between different learning activities? What instructors can do to improve learning outcomes in this system? However, few of these questions has been studied for using virtual hands-on lab in cybersecurity education. In this research, we present our recent findings by identifying that two learning activities are positively associated with students' learning performance. Notably, the learning activity of reading lab materials (p \textbackslashtextless; 0:01) plays a more significant role in hands-on learning than the learning activity of working on lab tasks (p \textbackslashtextless; 0:05) in cybersecurity education.In addition, a student, who spends longer time on reading lab materials, may work longer time on lab tasks (p \textbackslashtextless; 0:01).

Deng, Y., Lu, D., Chung, C., Huang, D., Zeng, Z..  2018.  Personalized Learning in a Virtual Hands-on Lab Platform for Computer Science Education. 2018 IEEE Frontiers in Education Conference (FIE). :1—8.

This Innovate Practice full paper presents a cloud-based personalized learning lab platform. Personalized learning is gaining popularity in online computer science education due to its characteristics of pacing the learning progress and adapting the instructional approach to each individual learner from a diverse background. Among various instructional methods in computer science education, hands-on labs have unique requirements of understanding learner's behavior and assessing learner's performance for personalization. However, it is rarely addressed in existing research. In this paper, we propose a personalized learning platform called ThoTh Lab specifically designed for computer science hands-on labs in a cloud environment. ThoTh Lab can identify the learning style from student activities and adapt learning material accordingly. With the awareness of student learning styles, instructors are able to use techniques more suitable for the specific student, and hence, improve the speed and quality of the learning process. With that in mind, ThoTh Lab also provides student performance prediction, which allows the instructors to change the learning progress and take other measurements to help the students timely. For example, instructors may provide more detailed instructions to help slow starters, while assigning more challenging labs to those quick learners in the same class. To evaluate ThoTh Lab, we conducted an experiment and collected data from an upper-division cybersecurity class for undergraduate students at Arizona State University in the US. The results show that ThoTh Lab can identify learning style with reasonable accuracy. By leveraging the personalized lab platform for a senior level cybersecurity course, our lab-use study also shows that the presented solution improves students engagement with better understanding of lab assignments, spending more effort on hands-on projects, and thus greatly enhancing learning outcomes.

2020-10-16
Liu, Liping, Piao, Chunhui, Jiang, Xuehong, Zheng, Lijuan.  2018.  Research on Governmental Data Sharing Based on Local Differential Privacy Approach. 2018 IEEE 15th International Conference on e-Business Engineering (ICEBE). :39—45.

With the construction and implementation of the government information resources sharing mechanism, the protection of citizens' privacy has become a vital issue for government departments and the public. This paper discusses the risk of citizens' privacy disclosure related to data sharing among government departments, and analyzes the current major privacy protection models for data sharing. Aiming at the issues of low efficiency and low reliability in existing e-government applications, a statistical data sharing framework among governmental departments based on local differential privacy and blockchain is established, and its applicability and advantages are illustrated through example analysis. The characteristics of the private blockchain enhance the security, credibility and responsiveness of information sharing between departments. Local differential privacy provides better usability and security for sharing statistics. It not only keeps statistics available, but also protects the privacy of citizens.

2019-08-05
Ma, S., Zeng, S., Guo, J..  2018.  Research on Trust Degree Model of Fault Alarms Based on Neural Network. 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS). :73-77.

False alarm and miss are two general kinds of alarm errors and they can decrease operator's trust in the alarm system. Specifically, there are two different forms of trust in such systems, represented by two kinds of responses to alarms in this research. One is compliance and the other is reliance. Besides false alarm and miss, the two responses are differentially affected by properties of the alarm system, situational factors or operator factors. However, most of the existing studies have qualitatively analyzed the relationship between a single variable and the two responses. In this research, all available experimental studies are identified through database searches using keyword "compliance and reliance" without restriction on year of publication to December 2017. Six relevant studies and fifty-two sets of key data are obtained as the data base of this research. Furthermore, neural network is adopted as a tool to establish the quantitative relationship between multiple factors and the two forms of trust, respectively. The result will be of great significance to further study the influence of human decision making on the overall fault detection rate and the false alarm rate of the human machine system.

2020-11-04
Huang, B., Zhang, P..  2018.  Software Runtime Accumulative Testing. 2018 12th International Conference on Reliability, Maintainability, and Safety (ICRMS). :218—222.

The "aging" phenomenon occurs after the long-term running of software, with the fault rate rising and running efficiency dropping. As there is no corresponding testing type for this phenomenon among conventional software tests, "software runtime accumulative testing" is proposed. Through analyzing several examples of software aging causing serious accidents, software is placed in the system environment required for running and the occurrence mechanism of software aging is analyzed. In addition, corresponding testing contents and recommended testing methods are designed with regard to all factors causing software aging, and the testing process and key points of testing requirement analysis for carrying out runtime accumulative testing are summarized, thereby providing a method and guidance for carrying out "software runtime accumulative testing" in software engineering.

2019-02-08
Zhao, Pu, Liu, Sijia, Wang, Yanzhi, Lin, Xue.  2018.  An ADMM-Based Universal Framework for Adversarial Attacks on Deep Neural Networks. Proceedings of the 26th ACM International Conference on Multimedia. :1065-1073.

Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. In a successful adversarial attack, the targeted mis-classification should be achieved with the minimal distortion added. In the literature, the added distortions are usually measured by \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ norms, namely, L\_0, L\_1, L\_2, and L\_$ınfty$ attacks, respectively. However, there lacks a versatile framework for all types of adversarial attacks. This work for the first time unifies the methods of generating adversarial examples by leveraging ADMM (Alternating Direction Method of Multipliers), an operator splitting optimization approach, such that \$L\_0\$, \$L\_1\$, \$L\_2\$, and \$L\_$\backslash$infty \$ attacks can be effectively implemented by this general framework with little modifications. Comparing with the state-of-the-art attacks in each category, our ADMM-based attacks are so far the strongest, achieving both the 100% attack success rate and the minimal distortion.

2018-11-19
Rüth, Jan, Zimmermann, Torsten, Wolsing, Konrad, Hohlfeld, Oliver.  2018.  Digging into Browser-Based Crypto Mining. Proceedings of the Internet Measurement Conference 2018. :70–76.

Mining is the foundation of blockchain-based cryptocurrencies such as Bitcoin rewarding the miner for finding blocks for new transactions. The Monero currency enables mining with standard hardware in contrast to special hardware (ASICs) as often used in Bitcoin, paving the way for in-browser mining as a new revenue model for website operators. In this work, we study the prevalence of this new phenomenon. We identify and classify mining websites in 138M domains and present a new fingerprinting method which finds up to a factor of 5.7 more miners than publicly available block lists. Our work identifies and dissects Coinhive as the major browser-mining stakeholder. Further, we present a new method to associate mined blocks in the Monero blockchain to mining pools and uncover that Coinhive currently contributes 1.18% of mined blocks having turned over 1293 Moneros in June 2018.

2019-01-21
Han, Dianqi, Chen, Yimin, Li, Tao, Zhang, Rui, Zhang, Yaochao, Hedgpeth, Terri.  2018.  Proximity-Proof: Secure and Usable Mobile Two-Factor Authentication. Proceedings of the 24th Annual International Conference on Mobile Computing and Networking. :401–415.

Mobile two-factor authentication (2FA) has become commonplace along with the popularity of mobile devices. Current mobile 2FA solutions all require some form of user effort which may seriously affect the experience of mobile users, especially senior citizens or those with disability such as visually impaired users. In this paper, we propose Proximity-Proof, a secure and usable mobile 2FA system without involving user interactions. Proximity-Proof automatically transmits a user's 2FA response via inaudible OFDM-modulated acoustic signals to the login browser. We propose a novel technique to extract individual speaker and microphone fingerprints of a mobile device to defend against the powerful man-in-the-middle (MiM) attack. In addition, Proximity-Proof explores two-way acoustic ranging to thwart the co-located attack. To the best of our knowledge, Proximity-Proof is the first mobile 2FA scheme resilient to the MiM and co-located attacks. We empirically analyze that Proximity-Proof is at least as secure as existing mobile 2FA solutions while being highly usable. We also prototype Proximity-Proof and confirm its high security, usability, and efficiency through comprehensive user experiments.

Meng, Leilei, Su, Xin, Zhang, Xuewu, Choi, Chang, Choi, Dongmin.  2018.  Signal Reception for Successive Interference Cancellation in NOMA Downlink. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :75–79.

Successive interference cancellation (SIC) receiver is adopted by power domain non-orthogonal multiple access (NOMA) at the receiver side as the baseline receiver scheme taking the forthcoming expected mobile device evolution into account. Development technologies and advanced techniques are boldly being considered in order to achieve power saving in many networks, to reach sustainability and reliability in communication due to envisioned huge amount of data delivery. In this paper, we propose a novel scheme of NOMA-SIC for the sake of balancing the trade-off between system performance and complexity. In the proposed scheme, each SIC level is comprised by a matching filter (MF), a MF detector and a regenerator. In simulations, the proposed scheme demonstrates the best performance on power saving, of which energy efficiency increases with an increase in the number of NOMA device pairs.

2019-08-05
Zhuang, Wei, Zeng, Qingfeng.  2018.  A Trust-Based Framework for Internet Word of Mouth Effect in B2C Environment. Proceedings of the 2Nd International Conference on Computer Science and Application Engineering. :151:1-151:5.

As a valuable source of information, Word Of Mouth1 has always been valued by consumers and business marketers. The Internet provides a new medium for Word Of Mouth communication. Consumers share their views and comments on products, services, brands and enterprises through online platforms, thus forming Internet Word Of Mouth, which will be of great importance to B2C enterprises. However, disturbing and even false information as well as uncertainties and risks existing in the online communication environment lead to the crisis of online trust. Accordingly, this study constructs a trust mechanism model of Internet Word Of Mouth effect, which shows that the professionalism of communicators, online relationship strength, communication channels, and product involvement are key factors significantly affecting the Word Of Mouth effect. This model can provide theoretical guidance in the word-of-mouth marketing and the operation of B2C e-commerce enterprises.

2020-10-05
Zamani, Majid, Arcak, Murat.  2018.  Compositional Abstraction for Networks of Control Systems: A Dissipativity Approach. IEEE Transactions on Control of Network Systems. 5:1003—1015.

In this paper, we propose a compositional scheme for the construction of abstractions for networks of control systems by using the interconnection matrix and joint dissipativity-type properties of subsystems and their abstractions. In the proposed framework, the abstraction, itself a control system (possibly with a lower dimension), can be used as a substitution of the original system in the controller design process. Moreover, we provide a procedure for constructing abstractions of a class of nonlinear control systems by using the bounds on the slope of system nonlinearities. We illustrate the proposed results on a network of linear control systems by constructing its abstraction in a compositional way without requiring any condition on the number or gains of the subsystems. We use the abstraction as a substitute to synthesize a controller enforcing a certain linear temporal logic specification. This example particularly elucidates the effectiveness of dissipativity-type compositional reasoning for large-scale systems.

2018-06-20
Wang, Qinglong, Guo, Wenbo, Zhang, Kaixuan, Ororbia, II, Alexander G., Xing, Xinyu, Liu, Xue, Giles, C. Lee.  2017.  Adversary Resistant Deep Neural Networks with an Application to Malware Detection. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1145–1153.
Outside the highly publicized victories in the game of Go, there have been numerous successful applications of deep learning in the fields of information retrieval, computer vision, and speech recognition. In cybersecurity, an increasing number of companies have begun exploring the use of deep learning (DL) in a variety of security tasks with malware detection among the more popular. These companies claim that deep neural networks (DNNs) could help turn the tide in the war against malware infection. However, DNNs are vulnerable to adversarial samples, a shortcoming that plagues most, if not all, statistical and machine learning models. Recent research has demonstrated that those with malicious intent can easily circumvent deep learning-powered malware detection by exploiting this weakness. To address this problem, previous work developed defense mechanisms that are based on augmenting training data or enhancing model complexity. However, after analyzing DNN susceptibility to adversarial samples, we discover that the current defense mechanisms are limited and, more importantly, cannot provide theoretical guarantees of robustness against adversarial sampled-based attacks. As such, we propose a new adversary resistant technique that obstructs attackers from constructing impactful adversarial samples by randomly nullifying features within data vectors. Our proposed technique is evaluated on a real world dataset with 14,679 malware variants and 17,399 benign programs. We theoretically validate the robustness of our technique, and empirically show that our technique significantly boosts DNN robustness to adversarial samples while maintaining high accuracy in classification. To demonstrate the general applicability of our proposed method, we also conduct experiments using the MNIST and CIFAR-10 datasets, widely used in image recognition research.
2018-12-03
Zhou, Zhe, Li, Zhou, Zhang, Kehuan.  2017.  All Your VMs Are Disconnected: Attacking Hardware Virtualized Network. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :249–260.
Single Root I/O Virtualization (SRIOV) allows one physical device to be used by multiple virtual machines simultaneously without the mediation from the hypervisor. Such technique significantly decreases the overhead of I/O virtualization. But according to our latest findings, in the meantime, it introduces a high-risk security issue that enables an adversary-controlled VM to cut off the connectivity of the host machine, given the limited filtering capabilities provided by the SRIOV devices. As showcase, we demonstrate two attacks against SRIOV NIC by exploiting a vulnerability in the standard network management protocol, OAM. The vulnerability surfaces because SRIOV NICs treat the packets passing through OAM as data-plane packets and allow untrusted VMs to send and receive these packets on behalf of the host. By examining several off-the-shelf SRIOV NICs and switches, we show such attack can easily turn off the network connection within a short period of time. In the end, we propose a defense mechanism which runs on the existing hardware and can be readily deployed.
2018-06-07
Liang, Jingxi, Zhao, Wen, Ye, Wei.  2017.  Anomaly-Based Web Attack Detection: A Deep Learning Approach. Proceedings of the 2017 VI International Conference on Network, Communication and Computing. :80–85.
As the era of cloud technology arises, more and more people are beginning to migrate their applications and personal data to the cloud. This makes web-based applications an attractive target for cyber-attacks. As a result, web-based applications now need more protections than ever. However, current anomaly-based web attack detection approaches face the difficulties like unsatisfying accuracy and lack of generalization. And the rule-based web attack detection can hardly fight unknown attacks and is relatively easy to bypass. Therefore, we propose a novel deep learning approach to detect anomalous requests. Our approach is to first train two Recurrent Neural Networks (RNNs) with the complicated recurrent unit (LSTM unit or GRU unit) to learn the normal request patterns using only normal requests unsupervisedly and then supervisedly train a neural network classifier which takes the output of RNNs as the input to discriminate between anomalous and normal requests. We tested our model on two datasets and the results showed that our model was competitive with the state-of-the-art. Our approach frees us from feature selection. Also to the best of our knowledge, this is the first time that the RNN is applied on anomaly-based web attack detection systems.
2018-08-23
Kolias, Constantinos, Copi, Lucas, Zhang, Fengwei, Stavrou, Angelos.  2017.  Breaking BLE Beacons For Fun But Mostly Profit. Proceedings of the 10th European Workshop on Systems Security. :4:1–4:6.
Bluetooth Low Energy (BLE) Beacons introduced a novel technology that enables devices to advertise their presence in an area by constantly broadcasting a static unique identifier. The aim was to enhance services with location and context awareness. Although the hardware components of typical BLE Beacons systems are able to support adequate cryptography, the design and implementation of most publicly available BLE Beacon protocols appears to render them vulnerable to a plethora of attacks. Indeed, in this paper, we were able to perform user tracking, user behavior monitoring, spoofing as well as denial of service (DoS) of many supported services. Our aim is to show that these attacks stem from design flaws of the underlying protocols and assumptions made for the BLE beacons protocols. Using a clearly defined threat model, we provide a formal analysis of the adversarial capabilities and requirements and the attack impact on security and privacy for the end-user. Contrary to popular belief, BLE technology can be exploited even by low-skilled adversaries leading to exposure of user information. To demonstrate our attacks in practice, we selected Apple's iBeacon technology, as a case study. However, our analysis can be easily generalized to other BLE Beacon technologies.
2018-06-07
Jha, Sagar, Behrens, Jonathan, Gkountouvas, Theo, Milano, Matthew, Song, Weijia, Tremel, Edward, Zink, Sydney, Birman, Ken, van Renesse, Robbert.  2017.  Building Smart Memories and High-speed Cloud Services for the Internet of Things with Derecho. Proceedings of the 2017 Symposium on Cloud Computing. :632–632.
The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores "interesting" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated\textbackslashtextlessT\textbackslashtextgreater template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent\textbackslashtextlessT\textbackslashtextgreater and volatile\textbackslashtextlessT\textbackslashtextgreater storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2–16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3–5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.
2018-05-15
2018-05-02
Shamsi, Kaveh, Li, Meng, Meade, Travis, Zhao, Zheng, Pan, David Z., Jin, Yier.  2017.  Circuit Obfuscation and Oracle-guided Attacks: Who Can Prevail? Proceedings of the on Great Lakes Symposium on VLSI 2017. :357–362.
This paper provides a systematization of knowledge in the domain of integrated circuit protection through obfuscation with a focus on the recent Boolean satisfiability (SAT) attacks. The study systematically combines real-world IC reverse engineering reports, experimental results using the most recent oracle-guided attacks, and concepts in machine-learning and cryptography to draw a map of the state-of-the-art of IC obfuscation and future challenges and opportunities.
2017-12-20
Wang, Y., Huang, Y., Zheng, W., Zhou, Z., Liu, D., Lu, M..  2017.  Combining convolutional neural network and self-adaptive algorithm to defeat synthetic multi-digit text-based CAPTCHA. 2017 IEEE International Conference on Industrial Technology (ICIT). :980–985.
We always use CAPTCHA(Completely Automated Public Turing test to Tell Computers and Humans Apart) to prevent automated bot for data entry. Although there are various kinds of CAPTCHAs, text-based scheme is still applied most widely, because it is one of the most convenient and user-friendly way for daily user [1]. The fact is that segmentations of different types of CAPTCHAs are not always the same, which means one of CAPTCHA's bottleneck is the segmentation. Once we could accurately split the character, the problem could be solved much easier. Unfortunately, the best way to divide them is still case by case, which is to say there is no universal way to achieve it. In this paper, we present a novel algorithm to achieve state-of-the-art performance, what was more, we also constructed a new convolutional neural network as an add-on recognition part to stabilize our state-of-the-art performance of the whole CAPTCHA system. The CAPTCHA datasets we are using is from the State Administration for Industry& Commerce of the People's Republic of China. In this datasets, there are totally 33 entrances of CAPTCHAs. In this experiments, we assume that each of the entrance is known. Results are provided showing how our algorithms work well towards these CAPTCHAs.
2018-03-05
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.