Biblio

Found 1162 results

Filters: Keyword is Collaboration  [Clear All Filters]
2018-02-28
Murdock, Austin, Li, Frank, Bramsen, Paul, Durumeric, Zakir, Paxson, Vern.  2017.  Target Generation for Internet-wide IPv6 Scanning. Proceedings of the 2017 Internet Measurement Conference. :242–253.
Fast IPv4 scanning has enabled researchers to answer a wealth of new security and measurement questions. However, while increased network speeds and computational power have enabled comprehensive scans of the IPv4 address space, a brute-force approach does not scale to IPv6. Systems are limited to scanning a small fraction of the IPv6 address space and require an algorithmic approach to determine a small set of candidate addresses to probe. In this paper, we first explore the considerations that guide designing such algorithms. We introduce a new approach that identifies dense address space regions from a set of known "seed" addresses and generates a set of candidates to scan. We compare our algorithm 6Gen against Entropy/IP—the current state of the art—finding that we can recover between 1–8 times as many addresses for the five candidate datasets considered in the prior work. However, during our analysis, we uncover widespread IP aliasing in IPv6 networks. We discuss its effect on target generation and explore preliminary approaches for detecting aliased regions.
2018-01-23
Chisanga, E., Ngassam, E. K..  2017.  Towards a conceptual framework for information security digital divide. 2017 IST-Africa Week Conference (IST-Africa). :1–8.
Continuously improving security on an information system requires unique combination of human aspect, policies, and technology. This acts as leverage for designing an access control management approach which avails only relevant parts of a system according to an end-users' scope of work. This paper introduces a framework for information security fundamentals at organizational and theoretical levels, to identify critical success factors that are vital in assessing an organization's security maturity through a model referred to as “information security digital divide maturity framework”. The foregoing is based on a developed conceptual framework for information security digital divide. The framework strives to divide system end-users into “specific information haves and have-nots”. It intends to assist organizations to continually evaluate and improve on their security governance, standards, and policies which permit access on the basis of each end-user's work scope. The framework was tested through two surveys targeting 90 end-users and 35 security experts.
2018-06-11
Rafique, Ansar, Van Landuyt, Dimitri, Reniers, Vincent, Joosen, Wouter.  2017.  Towards Scalable and Dynamic Data Encryption for Multi-tenant SaaS. Proceedings of the Symposium on Applied Computing. :411–416.
Application-level data management middleware solutions are becoming increasingly compelling to deal with the complexity of a multi-cloud or federated cloud storage and multitenant storage architecture. However, these systems typically support traditional data mapping strategies that are created under the assumption of a fixed and rigorous database schema, and mapping data objects while supporting varying data confidentiality requirements therefore leads to fragmentation of data over distributed storage nodes. This introduces performance over-head at the level of individual database transactions and negatively affects the overall scalability. This paper discusses these challenges and highlights the potential of leveraging the data schema flexibility of NoSQL databases to accomplish dynamic and fine-grained data encryption in a more efficient and scalable manner. We illustrate these ideas in the context of an industrial multi-tenant SaaS application.
2018-01-23
Yasin, M., Mazumdar, B., Rajendran, J. J. V., Sinanoglu, O..  2017.  TTLock: Tenacious and traceless logic locking. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :166–166.
Logic locking is an intellectual property (IP) protection technique that prevents IP piracy, reverse engineering and overbuilding attacks by the untrusted foundry or endusers. Existing logic locking techniques are all vulnerable to various attacks, such as sensitization, key-pruning and signal skew analysis enabled removal attacks. In this paper, we propose TTLock that provably withstands all known attacks. TTLock protects a designer-specified number of input patterns, enabling a controlled and provably-secure trade-off between key-pruning attack resilience and removal attack resilience. All the key-bits converge on a single signal, creating maximal interference and thus resisting sensitization attacks. And, obfuscation is performed by modifying the design IP in a secret and traceless way, thwarting signal skew analysis and the removal attack it enables. Experimental results confirm our theoretical expectations that the computational complexity of attacks launched on TTLock grows exponentially with increasing key-size, while the area, power, and delay overhead increases only linearly.
2018-06-07
Chen, Pin-Yu, Zhang, Huan, Sharma, Yash, Yi, Jinfeng, Hsieh, Cho-Jui.  2017.  ZOO: Zeroth Order Optimization Based Black-box Attacks to Deep Neural Networks Without Training Substitute Models. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :15–26.
Deep neural networks (DNNs) are one of the most prominent technologies of our time, as they achieve state-of-the-art performance in many machine learning tasks, including but not limited to image classification, text mining, and speech processing. However, recent research on DNNs has indicated ever-increasing concern on the robustness to adversarial examples, especially for security-critical tasks such as traffic sign identification for autonomous driving. Studies have unveiled the vulnerability of a well-trained DNN by demonstrating the ability of generating barely noticeable (to both human and machines) adversarial images that lead to misclassification. Furthermore, researchers have shown that these adversarial images are highly transferable by simply training and attacking a substitute model built upon the target model, known as a black-box attack to DNNs. Similar to the setting of training substitute models, in this paper we propose an effective black-box attack that also only has access to the input (images) and the output (confidence scores) of a targeted DNN. However, different from leveraging attack transferability from substitute models, we propose zeroth order optimization (ZOO) based attacks to directly estimate the gradients of the targeted DNN for generating adversarial examples. We use zeroth order stochastic coordinate descent along with dimension reduction, hierarchical attack and importance sampling techniques to efficiently attack black-box models. By exploiting zeroth order optimization, improved attacks to the targeted DNN can be accomplished, sparing the need for training substitute models and avoiding the loss in attack transferability. Experimental results on MNIST, CIFAR10 and ImageNet show that the proposed ZOO attack is as effective as the state-of-the-art white-box attack (e.g., Carlini and Wagner's attack) and significantly outperforms existing black-box attacks via substitute models.
2018-01-10
Vakilinia, I., Tosh, D. K., Sengupta, S..  2017.  3-Way game model for privacy-preserving cybersecurity information exchange framework. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :829–834.

With the growing number of cyberattack incidents, organizations are required to have proactive knowledge on the cybersecurity landscape for efficiently defending their resources. To achieve this, organizations must develop the culture of sharing their threat information with others for effectively assessing the associated risks. However, sharing cybersecurity information is costly for the organizations due to the fact that the information conveys sensitive and private data. Hence, making the decision for sharing information is a challenging task and requires to resolve the trade-off between sharing advantages and privacy exposure. On the other hand, cybersecurity information exchange (CYBEX) management is crucial in stabilizing the system through setting the correct values for participation fees and sharing incentives. In this work, we model the interaction of organizations, CYBEX, and attackers involved in a sharing system using dynamic game. With devising appropriate payoff models for each player, we analyze the best strategies of the entities by incorporating the organizations' privacy component in the sharing model. Using the best response analysis, the simulation results demonstrate the efficiency of our proposed framework.

2018-03-05
Bhatt, Smriti, Patwa, Farhan, Sandhu, Ravi.  2017.  ABAC with Group Attributes and Attribute Hierarchies Utilizing the Policy Machine. Proceedings of the 2Nd ACM Workshop on Attribute-Based Access Control. :17–28.

Attribute-Based Access Control (ABAC) has received significant attention in recent years, although the concept has been around for over two decades now. Many ABAC models, with different variations, have been proposed and formalized. Besides basic ABAC models, there are models designed with additional capabilities such as group attributes, group and attribute hierarchies and so on. Hierarchical relationship among groups and attributes enhances access control flexibility and facilitates attribute management and administration. However, implementation and demonstration of ABAC models in real-world applications is still lacking. In this paper, we present a restricted HGABAC (rHGABAC) model with user and object groups and group hierarchy. We then introduce attribute hierarchies in this model. We also present an authorization architecture for implementing rHGABAC utilizing the NIST Policy Machine (PM). PM allows to define attribute-based access control policies, however, the attributes in PM are different in nature than attributes in typical ABAC models as name-value pairs. We identify a policy configuration mechanism for our proposed model employing PM capabilities, and demonstrate use cases and their configuration and implementation in PM using our authorization architecture.

2018-02-21
Signorello, S., Marchal, S., François, J., Festor, O., State, R..  2017.  Advanced interest flooding attacks in named-data networking. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–10.

The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.

2018-05-30
Afrin, S., Mishra, S..  2017.  On the Analysis of Collaborative Anonymity Set Formation (CASF) Method for Privacy in the Smart Grid. 2017 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The collection of high frequency metering data in the emerging smart grid gives rise to the concern of consumer privacy. Anonymization of metering data is one of the proposed approaches in the literature, which enables transmission of unmasked data while preserving the privacy of the sender. Distributed anonymization methods can reduce the dependency on service providers, thus promising more privacy for the consumers. However, the distributed communication among the end-users introduces overhead and requires methods to prevent external attacks. In this paper, we propose four variants of a distributed anonymization method for smart metering data privacy, referred to as the Collaborative Anonymity Set Formation (CASF) method. The performance overhead analysis and security analysis of the variants are done using NS-3 simulator and the Scyther tool, respectively. It is shown that the proposed scheme enhances the privacy preservation functionality of an existing anonymization scheme, while being robust against external attacks.

2018-06-07
Uwagbole, S. O., Buchanan, W. J., Fan, L..  2017.  An applied pattern-driven corpus to predictive analytics in mitigating SQL injection attack. 2017 Seventh International Conference on Emerging Security Technologies (EST). :12–17.

Emerging computing relies heavily on secure backend storage for the massive size of big data originating from the Internet of Things (IoT) smart devices to the Cloud-hosted web applications. Structured Query Language (SQL) Injection Attack (SQLIA) remains an intruder's exploit of choice to pilfer confidential data from the back-end database with damaging ramifications. The existing approaches were all before the new emerging computing in the context of the Internet big data mining and as such will lack the ability to cope with new signatures concealed in a large volume of web requests over time. Also, these existing approaches were strings lookup approaches aimed at on-premise application domain boundary, not applicable to roaming Cloud-hosted services' edge Software-Defined Network (SDN) to application endpoints with large web request hits. Using a Machine Learning (ML) approach provides scalable big data mining for SQLIA detection and prevention. Unfortunately, the absence of corpus to train a classifier is an issue well known in SQLIA research in applying Artificial Intelligence (AI) techniques. This paper presents an application context pattern-driven corpus to train a supervised learning model. The model is trained with ML algorithms of Two-Class Support Vector Machine (TC SVM) and Two-Class Logistic Regression (TC LR) implemented on Microsoft Azure Machine Learning (MAML) studio to mitigate SQLIA. This scheme presented here, then forms the subject of the empirical evaluation in Receiver Operating Characteristic (ROC) curve.

2018-01-23
Mukherjee, Subhojeet, Ray, Indrakshi, Ray, Indrajit, Shirazi, Hossein, Ong, Toan, Kahn, Michael G..  2017.  Attribute Based Access Control for Healthcare Resources. Proceedings of the 2Nd ACM Workshop on Attribute-Based Access Control. :29–40.

Fast Health Interoperability Services (FHIR) is the most recent in the line of standards for healthcare resources. FHIR represents different types of medical artifacts as resources and also provides recommendations for their authorized disclosure using web-based protocols including O-Auth and OpenId Connect and also defines security labels. In most cases, Role Based Access Control (RBAC) is used to secure access to FHIR resources. We provide an alternative approach based on Attribute Based Access Control (ABAC) that allows attributes of subjects and objects to take part in authorization decision. Our system allows various stakeholders to define policies governing the release of healthcare data. It also authenticates the end user requesting access. Our system acts as a middle-layer between the end-user and the FHIR server. Our system provides efficient release of individual and batch resources both during normal operations and also during emergencies. We also provide an implementation that demonstrates the feasibility of our approach.

2018-03-05
Biswas, Prosunjit, Sandhu, Ravi, Krishnan, Ram.  2017.  Attribute Transformation for Attribute-Based Access Control. Proceedings of the 2Nd ACM Workshop on Attribute-Based Access Control. :1–8.

In this paper, we introduce the concept of transforming attribute-value assignments from one set to another set. We specify two types of transformations–-attribute reduction and attribute expansion. We distinguish policy attributes from non-policy attributes in that policy attributes are used in authorization policies whereas the latter are not. Attribute reduction is a process of contracting a large set of assignments of non-policy attributes into a possibly smaller set of policy attribute-value assignments. This process is useful for abstracting attributes that are too specific for particular types of objects or users, designing modular authorization policies, and modeling hierarchical policies. On the other hand, attribute expansion is a process of performing a large set of attribute-value assignments to users or objects from a possibly smaller set of assignments. We define a language for specifying mapping for the transformation process. We also identify and discuss various issues that stem from the transformation process.

Javadi, Elahe, Lai, Jianwei.  2017.  Attribution Apprehension, Automated Attribution, and Creative Integration. Companion of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing. :207–210.

Some online communities are better than others in standardizing and automating the attribution process. This study examines how automated attribution can alleviate attribution apprehension and thus facilitate creative integration in open communities. Attribution apprehension, i.e., a user's anxiety over proper attribution of reused artifacts, adversely impacts the tendencies to engage in the integration process. Because open communities thrive on the basis of fairness, automated attribution features are essential in fostering creative integration. This study draws upon task-technology fit to craft a theoretical framework for explaining this phenomenon, reviews current tools for automated attribution in different communities and describes findings of a pilot survey on how those tools can encourage creative integration.

2018-03-19
Ghosh, Shalini, Das, Ariyam, Porras, Phil, Yegneswaran, Vinod, Gehani, Ashish.  2017.  Automated Categorization of Onion Sites for Analyzing the Darkweb Ecosystem. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1793–1802.

Onion sites on the darkweb operate using the Tor Hidden Service (HS) protocol to shield their locations on the Internet, which (among other features) enables these sites to host malicious and illegal content while being resistant to legal action and seizure. Identifying and monitoring such illicit sites in the darkweb is of high relevance to the Computer Security and Law Enforcement communities. We have developed an automated infrastructure that crawls and indexes content from onion sites into a large-scale data repository, called LIGHTS, with over 100M pages. In this paper we describe Automated Tool for Onion Labeling (ATOL), a novel scalable analysis service developed to conduct a thematic assessment of the content of onion sites in the LIGHTS repository. ATOL has three core components – (a) a novel keyword discovery mechanism (ATOLKeyword) which extends analyst-provided keywords for different categories by suggesting new descriptive and discriminative keywords that are relevant for the categories; (b) a classification framework (ATOLClassify) that uses the discovered keywords to map onion site content to a set of categories when sufficient labeled data is available; (c) a clustering framework (ATOLCluster) that can leverage information from multiple external heterogeneous knowledge sources, ranging from domain expertise to Bitcoin transaction data, to categorize onion content in the absence of sufficient supervised data. The paper presents empirical results of ATOL on onion datasets derived from the LIGHTS repository, and additionally benchmarks ATOL's algorithms on the publicly available 20 Newsgroups dataset to demonstrate the reproducibility of its results. On the LIGHTS dataset, ATOLClassify gives a 12% performance gain over an analyst-provided baseline, while ATOLCluster gives a 7% improvement over state-of-the-art semi-supervised clustering algorithms. We also discuss how ATOL has been deployed and externally evaluated, as part of the LIGHTS system.

2018-06-07
Appelt, D., Panichella, A., Briand, L..  2017.  Automatically Repairing Web Application Firewalls Based on Successful SQL Injection Attacks. 2017 IEEE 28th International Symposium on Software Reliability Engineering (ISSRE). :339–350.

Testing and fixing Web Application Firewalls (WAFs) are two relevant and complementary challenges for security analysts. Automated testing helps to cost-effectively detect vulnerabilities in a WAF by generating effective test cases, i.e., attacks. Once vulnerabilities have been identified, the WAF needs to be fixed by augmenting its rule set to filter attacks without blocking legitimate requests. However, existing research suggests that rule sets are very difficult to understand and too complex to be manually fixed. In this paper, we formalise the problem of fixing vulnerable WAFs as a combinatorial optimisation problem. To solve it, we propose an automated approach that combines machine learning with multi-objective genetic algorithms. Given a set of legitimate requests and bypassing SQL injection attacks, our approach automatically infers regular expressions that, when added to the WAF's rule set, prevent many attacks while letting legitimate requests go through. Our empirical evaluation based on both open-source and proprietary WAFs shows that the generated filter rules are effective at blocking previously identified and successful SQL injection attacks (recall between 54.6% and 98.3%), while triggering in most cases no or few false positives (false positive rate between 0% and 2%).

2018-03-19
Llewellynn, Tim, Fernández-Carrobles, M. Milagro, Deniz, Oscar, Fricker, Samuel, Storkey, Amos, Pazos, Nuria, Velikic, Gordana, Leufgen, Kirsten, Dahyot, Rozenn, Koller, Sebastian et al..  2017.  BONSEYES: Platform for Open Development of Systems of Artificial Intelligence: Invited Paper. Proceedings of the Computing Frontiers Conference. :299–304.

The Bonseyes EU H2020 collaborative project aims to develop a platform consisting of a Data Marketplace, a Deep Learning Toolbox, and Developer Reference Platforms for organizations wanting to adopt Artificial Intelligence. The project will be focused on using artificial intelligence in low power Internet of Things (IoT) devices ("edge computing"), embedded computing systems, and data center servers ("cloud computing"). It will bring about orders of magnitude improvements in efficiency, performance, reliability, security, and productivity in the design and programming of systems of artificial intelligence that incorporate Smart Cyber-Physical Systems (CPS). In addition, it will solve a causality problem for organizations who lack access to Data and Models. Its open software architecture will facilitate adoption of the whole concept on a wider scale. To evaluate the effectiveness, technical feasibility, and to quantify the real-world improvements in efficiency, security, performance, effort and cost of adding AI to products and services using the Bonseyes platform, four complementary demonstrators will be built. Bonseyes platform capabilities are aimed at being aligned with the European FI-PPP activities and take advantage of its flagship project FIWARE. This paper provides a description of the project motivation, goals and preliminary work.

2018-01-23
Di Crescenzo, Giovanni, Rajendran, Jeyavijayan, Karri, Ramesh, Memon, Nasir.  2017.  Boolean Circuit Camouflage: Cryptographic Models, Limitations, Provable Results and a Random Oracle Realization. Proceedings of the 2017 Workshop on Attacks and Solutions in Hardware Security. :7–16.

Recent hardware advances, called gate camouflaging, have opened the possibility of protecting integrated circuits against reverse-engineering attacks. In this paper, we investigate the possibility of provably boosting the capability of physical camouflaging of a single Boolean gate into physical camouflaging of a larger Boolean circuit. We first propose rigorous definitions, borrowing approaches from modern cryptography and program obfuscation areas, for circuit camouflage. Informally speaking, gate camouflaging is defined as a transformation of a physical gate that appears to mask the gate to an attacker evaluating the circuit containing this gate. Under this assumption, we formally prove two results: a limitation and a construction. Our limitation result says that there are circuits for which, no matter how many gates we camouflaged, an adversary capable of evaluating the circuit will correctly guess all the camouflaged gates. Our construction result says that if pseudo-random functions exist (a common assumptions in cryptography), a small number of camouflaged gates suffices to: (a) leak no additional information about the camouflaged gates to an adversary evaluating the pseudo-random function circuit; and (b) turn these functions into random oracles. These latter results are the first results on circuit camouflaging provable in a cryptographic model (previously, construction were given under no formal model, and were eventually reverse-engineered, or were argued secure under specific classes of attacks). Our results imply a concrete and provable realization of random oracles, which, even if under a hardware-based assumption, is applicable in many scenarios, including public-key infrastructures. Finding special conditions under which provable realizations of random oracles has been an open problem for many years, since a software only provable implementation of random oracles was proved to be (almost certainly) impossible.

2018-05-09
Levy, Amit, Campbell, Bradford, Ghena, Branden, Pannuto, Pat, Dutta, Prabal, Levis, Philip.  2017.  The Case for Writing a Kernel in Rust. Proceedings of the 8th Asia-Pacific Workshop on Systems. :1:1–1:7.

An operating system kernel written in the Rust language would have extremely fine-grained isolation boundaries, have no memory leaks, and be safe from a wide range of security threats and memory bugs. Previous efforts towards this end concluded that writing a kernel requires changing Rust. This paper reaches a different conclusion, that no changes to Rust are needed and a kernel can be implemented with a very small amount of unsafe code. It describes how three sample kernel mechanisms–-DMA, USB, and buffer caches–-can be built using these abstractions.

2018-01-23
Amir, Sarah, Shakya, Bicky, Forte, Domenic, Tehranipoor, Mark, Bhunia, Swarup.  2017.  Comparative Analysis of Hardware Obfuscation for IP Protection. Proceedings of the on Great Lakes Symposium on VLSI 2017. :363–368.

In the era of globalized Integrated Circuit (IC) design and manufacturing flow, a rising issue to the silicon industry is various attacks on hardware intellectual property (IP). As a measure to ensure security along the supply chain against IP piracy, tampering and reverse engineering, hardware obfuscation is considered a reliable defense mechanism. Sequential and combinational obfuscations are the primary classes of obfuscation, and multiple methods have been proposed in each type in recent years. This paper presents an overview of obfuscation techniques and a qualitative comparison of the two major types.

2018-02-28
Zhang, N., Sirbu, M. A., Peha, J. M..  2017.  A comparison of migration and multihoming support in IPv6 and XIA. 2017 International Symposium on Networks, Computers and Communications (ISNCC). :1–8.

Mobility and multihoming have become the norm in Internet access, e.g. smartphones with Wi-Fi and LTE, and connected vehicles with LTE and DSRC links that change rapidly. Mobility creates challenges for active session continuity when provider-aggregatable locators are used, while multihoming brings opportunities for improving resiliency and allocative efficiency. This paper proposes a novel migration protocol, in the context of the eXpressive Internet Architecture (XIA), the XIA Migration Protocol. We compare it with Mobile IPv6, with respect to handoff latency and overhead, flow migration support, and defense against spoofing and replay of protocol messages. Handoff latencies of the XIA Migration Protocol and Mobile IPv6 Enhanced Route Optimization are comparable and neither protocol opens up avenues for spoofing or replay attacks. However, XIA requires no mobility anchor point to support client mobility while Mobile IPv6 always depends on a home agent. We show that XIA has significant advantage over IPv6 for multihomed hosts and networks in terms of resiliency, scalability, load balancing and allocative efficiency. IPv6 multihoming solutions either forgo scalability (BGP-based) or sacrifice resiliency (NAT-based), while XIA's fallback-based multihoming provides fault tolerance without a heavy-weight protocol. XIA also allows fine-grained incoming load-balancing and QoS-matching by supporting flow migration. Flow migration is not possible using Mobile IPv6 when a single IPv6 address is associated with multiple flows. From a protocol design and architectural perspective, the key enablers of these benefits are flow-level migration, XIA's DAG-based locators and self-certifying identifiers.

2018-05-09
Yaneva, Vanya, Rajan, Ajitha, Dubach, Christophe.  2017.  Compiler-Assisted Test Acceleration on GPUs for Embedded Software. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :35–45.

Embedded software is found everywhere from our highly visible mobile devices to the confines of our car in the form of smart sensors. Embedded software companies are under huge pressure to produce safe applications that limit risks, and testing is absolutely critical to alleviate concerns regarding safety and user privacy. This requires using large test suites throughout the development process, increasing time-to-market and ultimately hindering competitivity. Speeding up test execution is, therefore, of paramount importance for embedded software developers. This is traditionally achieved by running, in parallel, multiple tests on large-scale clusters of computers. However, this approach is costly in terms of infrastructure maintenance and energy consumed, and is at times inconvenient as developers have to wait for their tests to be scheduled on a shared resource. We propose to look at exploiting GPUs (Graphics Processing Units) for running embedded software testing. GPUs are readily available in most computers and offer tremendous amounts of parallelism, making them an ideal target for embedded software testing. In this paper, we demonstrate, for the first time, how test executions of embedded C programs can be automatically performed on a GPU, without involving the end user. We take a compiler-assisted approach which automatically compiles the C program into GPU kernels for parallel execution of the input tests. Using this technique, we achieve an average speedup of 16× when compared to CPU execution of input tests across nine programs from an industry standard embedded benchmark suite.

2018-05-24
Hassan, M., Hamada, M..  2017.  A Computational Model for Improving the Accuracy of Multi-Criteria Recommender Systems. 2017 IEEE 11th International Symposium on Embedded Multicore/Many-Core Systems-on-Chip (MCSoC). :114–119.

Artificial neural networks are complex biologically inspired algorithms made up of highly distributed, adaptive and self-organizing structures that make them suitable for optimization problems. They are made up of a group of interconnected nodes, similar to the great networks of neurons in the human brain. So far, artificial neural networks have not been applied to user modeling in multi-criteria recommender systems. This paper presents neural networks-based user modeling technique that exploits some of the characteristics of biological neurons for improving the accuracy of multi-criteria recommendations. The study was based upon the aggregation function approach that computes the overall rating as a function of the criteria ratings. The proposed technique was evaluated using different evaluation metrics, and the empirical results of the experiments were compared with that of the single rating-based collaborative filtering and two other similarity-based modeling approaches. The two similarity-based techniques used are: the worst-case and the average similarity techniques. The results of the comparative analysis have shown that the proposed technique is more efficient than the two similarity-based techniques and the single rating collaborative filtering technique.

2017-12-28
Tane, E., Fujigaki, Y..  2017.  Cross-Disciplinary Survey on \#34;Data Science \#34; Field Development: Historical Analysis from 1600s-2000s. 2017 Portland International Conference on Management of Engineering and Technology (PICMET). :1–10.

For the last several decades, the rapid development of information technology and computer performance accelerates generation, transportation and accumulation of digital data, it came to be called "Big Data". In this context, researchers and companies are eager to utilize the data to create new values or manage a wide range of issues, and much focus is being placed on "Data Science" to extract useful information (knowledge) from digital data. Data Science has been developed from several independent fields such as Mathematics/Operations Research, Computer Science, Data Engineering, Visualization and Statistics since 1800s. In addition, Artificial Intelligence converges on this stream recent years. On the other hand, the national projects have been established to utilize data for society with concerns surrounding the security and privacy. In this paper, through detailed analysis on history of this field, processes of development and integration among related fields are discussed as well as comparative aspects between Japan and the United States. This paper also includes a brief discussion of future directions.

2018-05-30
Su, W., Antoniou, A., Eagle, C..  2017.  Cyber Security of Industrial Communication Protocols. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.

In this paper, an industrial testbed is proposed utilizing commercial-off-the-shelf equipment, and it is used to study the weakness of industrial Ethernet, i.e., PROFINET. The investigation is based on observation of the principles of operation of PROFINET and the functionality of industrial control systems.

2018-03-05
Ikuesan, A. R., Venter, H. S..  2017.  Digital Forensic Readiness Framework Based on Behavioral-Biometrics for User Attribution. 2017 IEEE Conference on Application, Information and Network Security (AINS). :54–59.

Whilst the fundamental composition of digital forensic readiness have been expounded by myriad literature, the integration of behavioral modalities have not been considered. Behavioral modalities such as keystroke and mouse dynamics are key components of human behavior that have been widely used in complementing security in an organization. However, these modalities present better forensic properties, thus more relevant in investigation/incident response, than its deployment in security. This study, therefore, proposes a forensic framework which encompasses a step-by-step guide on how to integrate behavioral biometrics into digital forensic readiness process. The proposed framework, behavioral biometrics-based digital forensics readiness framework (BBDFRF) comprised four phases which include data acquisition, preservation, user-authentication, and user pattern attribution phase. The proposed BBDFRF is evaluated in line with the ISO/IEC 27043 standard for proactive forensics, to address the gap on the integration of the behavioral biometrics into proactive forensics. BBDFRF thus extends the body of literature on the forensic capability of behavioral biometrics. The implementation of this framework can be used to also strengthen the security mechanism of an organization, particularly on continuous authentication.