Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2020-02-26
Vlachokostas, Alex, Prousalidis, John, Spathis, Dimosthenis, Nikitas, Mike, Kourmpelis, Theo, Dallas, Stefanos, Soghomonian, Zareh, Georgiou, Vassilis.  2019.  Ship-to-Grid Integration: Environmental Mitigation and Critical Infrastructure Resilience. 2019 IEEE Electric Ship Technologies Symposium (ESTS). :542–547.

The United States and European Union have an increasing number of projects that are engaging end-use devices for improved grid capabilities. Areas such as building-to-grid and vehicle-to-grid are simple examples of these advanced capabilities. In this paper, we present an innovative concept study for a ship-to-grid integration. The goal of this study is to simulate a two-way power flow between ship(s) and the grid with GridLAB-D for the port of Kyllini in Greece, where a ship-to-shore interconnection was recently implemented. Extending this further, we explore: (a) the ability of ships to meet their load demand needs, while at berth, by being supplied with energy from the electric grid and thus powering off their diesel engines; and (b) the ability of ships to provide power to critical loads onshore. As a result, the ship-to-grid integration helps (a) mitigate environmental pollutants from the ships' diesel engines and (b) provide resilience to nearby communities during a power disruption due to natural disasters or man-made threats.

2020-04-17
Liu, Sihang, Wei, Yizhou, Chi, Jianfeng, Shezan, Faysal Hossain, Tian, Yuan.  2019.  Side Channel Attacks in Computation Offloading Systems with GPU Virtualization. 2019 IEEE Security and Privacy Workshops (SPW). :156—161.

The Internet of Things (IoT) and mobile systems nowadays are required to perform more intensive computation, such as facial detection, image recognition and even remote gaming, etc. Due to the limited computation performance and power budget, it is sometimes impossible to perform these workloads locally. As high-performance GPUs become more common in the cloud, offloading the computation to the cloud becomes a possible choice. However, due to the fact that offloaded workloads from different devices (belonging to different users) are being computed in the same cloud, security concerns arise. Side channel attacks on GPU systems have been widely studied, where the threat model is the attacker and the victim are running on the same operating system. Recently, major GPU vendors have provided hardware and library support to virtualize GPUs for better isolation among users. This work studies the side channel attacks from one virtual machine to another where both share the same physical GPU. We show that it is possible to infer other user's activities in this setup and can further steal others deep learning model.

2020-02-10
Dan, Kenya, Kitagawa, Naoya, Sakuraba, Shuji, Yamai, Nariyoshi.  2019.  Spam Domain Detection Method Using Active DNS Data and E-Mail Reception Log. 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). 1:896–899.

E-mail is widespread and an essential communication technology in modern times. Since e-mail has problems with spam mails and spoofed e-mails, countermeasures are required. Although SPF, DKIM and DMARC have been proposed as sender domain authentication, these mechanisms cannot detect non-spoofing spam mails. To overcome this issue, this paper proposes a method to detect spam domains by supervised learning with features extracted from e-mail reception log and active DNS data, such as the result of Sender Authentication, the Sender IP address, the number of each DNS record, and so on. As a result of the experiment, our method can detect spam domains with 88.09% accuracy and 97.11% precision. We confirmed that our method can detect spam domains with detection accuracy 19.40% higher than the previous study by utilizing not only active DNS data but also e-mail reception log in combination.

Shyry, S. Prayla, Charan K, Venkat Sai, Kumar, V. Sudheer.  2019.  Spam Mail Detection and Prevention at Server Side. 2019 Innovations in Power and Advanced Computing Technologies (i-PACT). 1:1–6.

Spam is a genuine and irritating issue for quite a longtime. Despite the fact that a lot of arrangements have been advanced, there still remains a considerable measure to be advanced in separating spam messages all the more proficiently. These days a noteworthy issue in spam separating also as content characterization in common dialect handling is the colossal size of vector space because of the various element terms, which is normally the reason for broad figuring and moderate order. Extracting semantic implications from the substance of writings and utilizing these as highlight terms to develop the vector space, rather than utilizing words as highlight terms in convention ways, could decrease the component of vectors viably and advance the characterization in the meantime. In spite of the fact that there are a wide range of techniques to square spam messages, a large portion of program designers just mean to square spam messages from being conveyed to their customers. In this paper, we present an effective way to deal with keep spam messages from being exchanged.In this work, a Collaborative filtering approach with semantics-based text classification technology was proposed and the related feature terms were selected from the semantic meanings of the text content.

Yao, Chuhao, Wang, Jiahong, Kodama, Eiichiro.  2019.  A Spam Review Detection Method by Verifying Consistency among Multiple Review Sites. 2019 IEEE 21st International Conference on High Performance Computing and Communications; IEEE 17th International Conference on Smart City; IEEE 5th International Conference on Data Science and Systems (HPCC/SmartCity/DSS). :2825–2830.

In recent years, websites that incorporate user reviews, such as Amazon, IMDB and YELP, have become exceedingly popular. As an important factor affecting users purchasing behavior, review information has been becoming increasingly important, and accordingly, the reliability of review information becomes an important issue. This paper proposes a method to more accurately detect the appearance period of spam reviews and to identify the spam reviews by verifying the consistency of review information among multiple review sites. Evaluation experiments were conducted to show the accuracy of the detection results, and compared the newly proposed method with our previously proposed method.

2019-06-24
Ijaz, M., Durad, M. H., Ismail, M..  2019.  Static and Dynamic Malware Analysis Using Machine Learning. 2019 16th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :687–691.

Malware detection is an indispensable factor in security of internet oriented machines. The combinations of different features are used for dynamic malware analysis. The different combinations are generated from APIs, Summary Information, DLLs and Registry Keys Changed. Cuckoo sandbox is used for dynamic malware analysis, which is customizable, and provide good accuracy. More than 2300 features are extracted from dynamic analysis of malware and 92 features are extracted statically from binary malware using PEFILE. Static features are extracted from 39000 malicious binaries and 10000 benign files. Dynamically 800 benign files and 2200 malware files are analyzed in Cuckoo Sandbox and 2300 features are extracted. The accuracy of dynamic malware analysis is 94.64% while static analysis accuracy is 99.36%. The dynamic malware analysis is not effective due to tricky and intelligent behaviours of malwares. The dynamic analysis has some limitations due to controlled network behavior and it cannot be analyzed completely due to limited access of network.

2020-03-02
Takemoto, Shu, Nozaki, Yusuke, Yoshikawa, Masaya.  2019.  Statistical Power Analysis for IoT Device Oriented Encryption with Glitch Canceller. 2019 IEEE 11th International Workshop on Computational Intelligence and Applications (IWCIA). :73–76.

Big data which is collected by IoT devices is utilized in various businesses. For security and privacy, some data must be encrypted. IoT devices for encryption require not only to tamper resistance but also low latency and low power. PRINCE is one of the lowest latency cryptography. A glitch canceller reduces power consumption, although it affects tamper resistance. Therefore, this study evaluates the tamper resistance of dedicated hardware with glitch canceller for PRINCE by statistical power analysis and T-test. The evaluation experiments in this study performed on field-programmable gate array (FPGA), and the results revealed the vulnerability of dedicated hardware implementation with glitch canceller.

2020-02-10
Zhang, Yu, Zhao, Shiman, Zhang, Jianzhong, Ma, Xiaowei, Huang, Feilong.  2019.  STNN: A Novel TLS/SSL Encrypted Traffic Classification System Based on Stereo Transform Neural Network. 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS). :907–910.

Nowadays, encrypted traffic classification has become a challenge for network monitoring and cyberspace security. However, the existing methods cannot meet the requirements of encrypted traffic classification because of the encryption protocol in communication. Therefore, we design a novel neural network named Stereo Transform Neural Network (STNN) to classify encrypted network traffic. In STNN, we combine Long Short Term Memory (LSTM) and Convolution Neural Network (CNN) based on statistical features. STNN gains average precision about 95%, average recall about 95%, average F1-measure about 95% and average accuracy about 99.5% in multi-classification. Besides, the experiment shows that STNN obviously accelerates the convergence rate and improves the classification accuracy.

2020-02-17
Paul, Shuva, Ni, Zhen.  2019.  A Strategic Analysis of Attacker-Defender Repeated Game in Smart Grid Security. 2019 IEEE Power Energy Society Innovative Smart Grid Technologies Conference (ISGT). :1–5.

Traditional power grid security schemes are being replaced by highly advanced and efficient smart security schemes due to the advancement in grid structure and inclusion of cyber control and monitoring tools. Smart attackers create physical, cyber, or cyber-physical attacks to gain the access of the power system and manipulate/override system status, measurements and commands. In this paper, we formulate the environment for the attacker-defender interaction in the smart power grid. We provide a strategic analysis of the attacker-defender strategic interaction using a game theoretic approach. We apply repeated game to formulate the problem, implement it in the power system, and investigate for optimal strategic behavior in terms of mixed strategies of the players. In order to define the utility or cost function for the game payoffs calculation, generation power is used. Attack-defense budget is also incorporated with the attacker-defender repeated game to reflect a more realistic scenario. The proposed game model is validated using IEEE 39 bus benchmark system. A comparison between the proposed game model and the all monitoring model is provided to validate the observations.

2020-07-16
Ma, Siyou, Feng, Gao, Yan, Yunqiang.  2019.  Study on Hybrid Collaborative Simulation Testing Method Towards CPS. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C). :51—56.

CPS is generally complex to study, analyze, and design, as an important means to ensure the correctness of design and implementation of CPS system, simulation test is difficult to fully test, verify and evaluate the components or subsystems in the CPS system due to the inconsistent development progress of the com-ponents or subsystems in the CPS system. To address this prob-lem, we designed a hybrid P2P based collaborative simulation test framework composed of full physical nodes, hardware in the loop(HIL) nodes and full digital nodes to simulate the compo-nents or subsystems in the CPS system of different development progress, based on the framework, we then proposed collabora-tive simulation control strategy comprising sliding window based clock synchronization, dynamic adaptive time advancement and multi-priority task scheduling with preemptive time threshold. Experiments showed that the hybrid collaborative simulation testing method proposed in this paper can fully test CPS more effectively.

2020-07-03
Singh, Neha, Joshi, Sandeep, Birla, Shilpi.  2019.  Suitability of Singular Value Decomposition for Image Watermarking. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). :983—986.

Digital images are extensively used and exchanged through internet, which gave rise to the need of establishing authorship of images. Image watermarking has provided a solution to prevent false claims of ownership of the media. Information about the owner, generally in the form of a logo, text or image is imperceptibly hid into the subject. Many transforms have been explored by the researcher community for image watermarking. Many watermarking techniques have been developed based on Singular Value Decomposition (SVD) of images. This paper analyses Singular Value Decomposition to understand its use, ability and limitations to hide additional information into the cover image for Digital Image Watermarking application.

2019-06-10
Hussain, K., Hussain, S. J., Jhanjhi, N., Humayun, M..  2019.  SYN Flood Attack Detection based on Bayes Estimator (SFADBE) For MANET. 2019 International Conference on Computer and Information Sciences (ICCIS). :1–4.

SYN flood attack is a very serious cause for disturbing the normal traffic in MANET. SYN flood attack takes advantage of the congestion caused by populating a specific route with unwanted traffic that results in the denial of services. In this paper, we proposed an Adaptive Detection Mechanism using Artificial Intelligence technique named as SYN Flood Attack Detection Based on Bayes Estimator (SFADBE) for Mobile ad hoc Network (MANET). In SFADBE, every node will gather the current information of the available channel and the secure and congested free (Best Path) channel for the traffic is selected. Due to constant congestion, the availability of the data path can be the cause of SYN Flood attack. By using this AI technique, we experienced the SYN Flood detection probability more than the others did. Simulation results show that our proposed SFADBE algorithm is low cost and robust as compared to the other existing approaches.

2020-02-26
Qiu, Tongsheng, Wang, Xianyi, Tian, Yusen, Du, Qifei, Sun, Yueqiang.  2019.  A System Design of Real-Time Narrowband Rfi Detection And Mitigation for Gnss-R Receiver. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium. :5167–5170.

With the rapid development of radio detection and wireless communication, narrowband radio-frequency interference (NB-RFI) is a serious threat for GNSS-R (global navigation satellite systems - reflectometry) receivers. However, interferometric GNSS-R (iGNSS-R) is more prone to the NB-RFIs than conventional GNSS-R (cGNSS-R), due to wider bandwidth and unclean replica. Therefore, there is strong demand of detecting and mitigating NB-RFIs for GNSS-R receivers, especially iGNSS-R receivers. Hence, focusing on working with high sampling rate and simplifying the fixed-point implementation on FPGA, this paper proposes a system design exploiting cascading IIR band-stop filters (BSFs) to suppress NB-RFIs. Furthermore, IIR BSF compared with IIR notch filter (NF) and IIR band-pass filter (BPF) is the merely choice that is able to mitigate both white narrowband interference (WNBI) and continuous wave interference (CWI) well. Finally, validation and evaluation are conducted, and then it is indicated that the system design can detect NB-RFIs and suppress WNBI and CWI effectively, which improves the signal-to-noise ratio (SNR) of the Delay-Doppler map (DDM).

2020-03-09
Hettiarachchi, Charitha, Do, Hyunsook.  2019.  A Systematic Requirements and Risks-Based Test Case Prioritization Using a Fuzzy Expert System. 2019 IEEE 19th International Conference on Software Quality, Reliability and Security (QRS). :374–385.

The use of risk information can help software engineers identify software components that are likely vulnerable or require extra attention when testing. Some studies have shown that the requirements risk-based approaches can be effective in improving the effectiveness of regression testing techniques. However, the risk estimation processes used in such approaches can be subjective, time-consuming, and costly. In this research, we introduce a fuzzy expert system that emulates human thinking to address the subjectivity related issues in the risk estimation process in a systematic and an efficient way and thus further improve the effectiveness of test case prioritization. Further, the required data for our approach was gathered by employing a semi-automated process that made the risk estimation process less subjective. The empirical results indicate that the new prioritization approach can improve the rate of fault detection over several existing test case prioritization techniques, while reducing threats to subjective risk estimation.

2020-03-02
Noor, Nafisa, Khan, Raihan Sayeed, Muneer, Sadid, Silva, Helena.  2019.  Tamper Evidence of SEM Imaging Attack in Phase Change Memory Nanodevices. 2019 IEEE 19th International Conference on Nanotechnology (IEEE-NANO). :400–404.

Breach of security due to unauthorized access to electronic hardware devices or chips has recently become a serious concern for the internet-connected daily activities. Imaging with electron microscopy is one of the invasive techniques used to gain knowledge about a chip layout and extract secret information by the attackers. Automatic destruction or disturbance of the secret key during such invasive attacks are required to ensure protection against these attacks. We have characterized the disturbance caused to programmed phase change memory (PCM) cells by the imaging electron beam during scanning electron microscopy (SEM) in terms of the measured cell resistance. A sudden increase of resistance is observed on all imaged amorphous cells while the cells programmed to intermediate states show either abrupt increase or erratic decrease. These erratic disturbances of state are promising to mislead an attacker that is trying to acquire a stored key and leave indelible marks of tampering. Since PCM is recently being considered for implementation of various hardware security primitives, these beam-induced state change and tamper-evidence features enhance security of PCM devices against physical attacks.

2020-02-26
Belehaki, Anna, Galkin, Ivan, Borries, Claudia, Pintor, Pedro, Altadill, David, Sanz, Jaume, Juan, J. Miguel, Buresova, Dalia, Verhulst, Tobias, Mielich, Jens et al..  2019.  TechTIDE: Warning and Mitigation Technologies for Travelling Ionospheric Disturbances Effects. 2019 URSI Asia-Pacific Radio Science Conference (AP-RASC). :1–1.

Travelling Ionospheric Disturbances (TIDs) are ionospheric manifestations of internal atmospheric gravity waves (AGW) in the neutral atmosphere driven by near-Earth space dynamics and by lower atmosphere phenomena. They constitute a threat for operational systems such as precise navigation (e.g., EGNOS and NRTK) and high frequency geolocation as they can impose disturbances with amplitudes of up to 20% of the ambient electron density, and Doppler frequency shifts of the order of 0.5 Hz on HF signals. The Horizon 2020 Project TechTIDE (http://techtide.space.noa.gr/) funded by the European Commission aims at designing and testing new viable TID impact mitigation strategies for the technologies affected by developing a system able to calculate in real-time the main TID characteristics (velocity, amplitude, propagation drection), to realistically specify background ionospheric conditions and to specify those ionospheric characteristics whose perturbation, because of TIDs, cause the impact in each specific technology. The TechTIDE system will contribute new understanding of the physical processes resulting in the formation of TIDs, and will consequently help to identify the drivers in the interplanetary medium, the magnetosphere and the atmosphere. This paper will provide a description of the instrumentation involved and outline the project methodologies for the identification and tracking of TIDs based on the exploitation of real-time observations from networks of Digisonde, GNSS receivers and Continuous Doppler Sounding Systems.

2020-02-18
Yu, Jing, Fu, Yao, Zheng, Yanan, Wang, Zheng, Ye, Xiaojun.  2019.  Test4Deep: An Effective White-Box Testing for Deep Neural Networks. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :16–23.

Current testing for Deep Neural Networks (DNNs) focuses on quantity of test cases but ignores diversity. To the best of our knowledge, DeepXplore is the first white-box framework for Deep Learning testing by triggering differential behaviors between multiple DNNs and increasing neuron coverage to improve diversity. Since it is based on multiple DNNs facing problems that (1) the framework is not friendly to a single DNN, (2) if incorrect predictions made by all DNNs simultaneously, DeepXplore cannot generate test cases. This paper presents Test4Deep, a white-box testing framework based on a single DNN. Test4Deep avoids mistakes of multiple DNNs by inducing inconsistencies between predicted labels of original inputs and that of generated test inputs. Meanwhile, Test4Deep improves neuron coverage to capture more diversity by attempting to activate more inactivated neurons. The proposed method was evaluated on three popular datasets with nine DNNs. Compared to DeepXplore, Test4Deep produced average 4.59% (maximum 10.49%) more test cases that all found errors and faults of DNNs. These test cases got 19.57% more diversity increment and 25.88% increment of neuron coverage. Test4Deep can further be used to improve the accuracy of DNNs by average up to 5.72% (maximum 7.0%).

2020-04-03
Calvert, Chad L., Khoshgoftaar, Taghi M..  2019.  Threshold Based Optimization of Performance Metrics with Severely Imbalanced Big Security Data. 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). :1328—1334.

Proper evaluation of classifier predictive models requires the selection of appropriate metrics to gauge the effectiveness of a model's performance. The Area Under the Receiver Operating Characteristic Curve (AUC) has become the de facto standard metric for evaluating this classifier performance. However, recent studies have suggested that AUC is not necessarily the best metric for all types of datasets, especially those in which there exists a high or severe level of class imbalance. There is a need to assess which specific metrics are most beneficial to evaluate the performance of highly imbalanced big data. In this work, we evaluate the performance of eight machine learning techniques on a severely imbalanced big dataset pertaining to the cyber security domain. We analyze the behavior of six different metrics to determine which provides the best representation of a model's predictive performance. We also evaluate the impact that adjusting the classification threshold has on our metrics. Our results find that the C4.5N decision tree is the optimal learner when evaluating all presented metrics for severely imbalanced Slow HTTP DoS attack data. Based on our results, we propose that the use of AUC alone as a primary metric for evaluating highly imbalanced big data may be ineffective, and the evaluation of metrics such as F-measure and Geometric mean can offer substantial insight into the true performance of a given model.

2019-12-16
McDermott, Christopher D., Jeannelle, Bastien, Isaacs, John P..  2019.  Towards a Conversational Agent for Threat Detection in the Internet of Things. 2019 International Conference on Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–8.

A conversational agent to detect anomalous traffic in consumer IoT networks is presented. The agent accepts two inputs in the form of user speech received by Amazon Alexa enabled devices, and classified IDS logs stored in a DynamoDB Table. Aural analysis is used to query the database of network traffic, and respond accordingly. In doing so, this paper presents a solution to the problem of making consumers situationally aware when their IoT devices are infected, and anomalous traffic has been detected. The proposed conversational agent addresses the issue of how to present network information to non-technical users, for better comprehension, and improves awareness of threats derived from the mirai botnet malware.

2020-10-29
Roseline, S. Abijah, Sasisri, A. D., Geetha, S., Balasubramanian, C..  2019.  Towards Efficient Malware Detection and Classification using Multilayered Random Forest Ensemble Technique. 2019 International Carnahan Conference on Security Technology (ICCST). :1—6.

The exponential growth rate of malware causes significant security concern in this digital era to computer users, private and government organizations. Traditional malware detection methods employ static and dynamic analysis, which are ineffective in identifying unknown malware. Malware authors develop new malware by using polymorphic and evasion techniques on existing malware and escape detection. Newly arriving malware are variants of existing malware and their patterns can be analyzed using the vision-based method. Malware patterns are visualized as images and their features are characterized. The alternative generation of class vectors and feature vectors using ensemble forests in multiple sequential layers is performed for classifying malware. This paper proposes a hybrid stacked multilayered ensembling approach which is robust and efficient than deep learning models. The proposed model outperforms the machine learning and deep learning models with an accuracy of 98.91%. The proposed system works well for small-scale and large-scale data since its adaptive nature of setting parameters (number of sequential levels) automatically. It is computationally efficient in terms of resources and time. The method uses very fewer hyper-parameters compared to deep neural networks.

2020-01-21
Bao, Xuhua, Zhang, Xiaokun, Lin, Jingqiang, Chu, Dawei, Wang, Qiongxiao, Li, Fengjun.  2019.  Towards the Trust-Enhancements of Single Sign-On Services. 2019 IEEE Conference on Dependable and Secure Computing (DSC). :1–8.

Single sign-on (SSO) becomes popular as the identity management and authentication infrastructure in the Internet. A user receives an SSO ticket after being authenticated by the identity provider (IdP), and this IdP-issued ticket enables him to sign onto the relying party (RP). However, there are vulnerabilities (e.g., Golden SAML) that allow attackers to arbitrarily issue SSO tickets and then sign onto any RP on behalf of any user. Meanwhile, several incidents of certification authorities (CAs) also indicate that the trusted third party of security services is not so trustworthy as expected, and fraudulent TLS server certificates are signed by compromised or deceived CAs to launch TLS man-in-the-middle attacks. Various approaches are then proposed to tame the absolute authority of (compromised) CAs, to detect or prevent fraudulent TLS server certificates in the TLS handshakes. The trust model of SSO services is similar to that of certificate services. So this paper investigates the defense strategies of these trust-enhancements of certificate services, and attempts to apply these strategies to SSO to derive the trust-enhancements applicable in the SSO services. Our analysis derives (a) some security designs which have been commonly-used in the SSO services or non-SSO authentication services, and (b) two schemes effectively improving the trustworthiness of SSO services, which are not widely discussed or adopted.

2020-07-16
Yousef, Muhammad, Torad, Mohamed A..  2019.  A Treatise On Conversational AI Agents: Learning From Humans’ Behaviour As A Design Outlook. 2019 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1—4.

Engineering a successful conversational AI agent is a tough process, and requires the consideration of achieving an effective communication between its various endpoints. In this paper, we present our perspective for designing an efficient conversational agent according to our belief that the existence of a centralized learning module that is capable of analyzing and understanding humans' behaviour from day one, and acting upon this behaviour is a must.

2020-01-21
Aldairi, Maryam, Karimi, Leila, Joshi, James.  2019.  A Trust Aware Unsupervised Learning Approach for Insider Threat Detection. 2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI). :89–98.

With the rapidly increasing connectivity in cyberspace, Insider Threat is becoming a huge concern. Insider threat detection from system logs poses a tremendous challenge for human analysts. Analyzing log files of an organization is a key component of an insider threat detection and mitigation program. Emerging machine learning approaches show tremendous potential for performing complex and challenging data analysis tasks that would benefit the next generation of insider threat detection systems. However, with huge sets of heterogeneous data to analyze, applying machine learning techniques effectively and efficiently to such a complex problem is not straightforward. In this paper, we extract a concise set of features from the system logs while trying to prevent loss of meaningful information and providing accurate and actionable intelligence. We investigate two unsupervised anomaly detection algorithms for insider threat detection and draw a comparison between different structures of the system logs including daily dataset and periodically aggregated one. We use the generated anomaly score from the previous cycle as the trust score of each user fed to the next period's model and show its importance and impact in detecting insiders. Furthermore, we consider the psychometric score of users in our model and check its effectiveness in predicting insiders. As far as we know, our model is the first one to take the psychometric score of users into consideration for insider threat detection. Finally, we evaluate our proposed approach on CERT insider threat dataset (v4.2) and show how it outperforms previous approaches.

Headrick, William J, Subramanian, Gokul.  2019.  Using Layer 2 or 3 Switches to Augment Information Assurance in Modern ATE. 2019 IEEE AUTOTESTCON. :1–4.

For modern Automatic Test Equipment (ATE) one of the most daunting tasks is now Information Assurance (IA). What was once at most a secondary item consisting mainly of installing an Anti-Virus suite is now becoming one of the most important aspects of ATE. Given the current climate of IA it has become important to ensure ATE is kept safe from any breaches of security or loss of information. Even though most ATE are not on the Internet (or even on a local network for many) they are still vulnerable to some of the same attack vectors plaguing common computers and other electronic devices. This paper will discuss one method which can be used to ensure that modern ATE can continue to be used to test and detect faults in the systems they are designed to test. Most modern ATE include one or more Ethernet switches to allow communication to the many Instruments or devices contained within them. If the switches purchased are managed and support layer 2 or layer 3 of the Open Systems Interconnection (OSI) model they can also be used to help in the IA footprint of the station. Simple configurations such as limiting broadcast or multicast packets to the appropriate devices is the first step of limiting access to devices to what is needed. If the switch also includes some layer 3 like capabilities Virtual Local Area Networks can be created to further limit the communication pathways to only what is required to perform the required tasks. These and other simple switch configurations while not required can help limit the access of a virus or worm. This paper will discuss these and other configuration tools which can help prevent an ATE system from being compromised.

2020-02-26
Al-issa, Abdulaziz I., Al-Akhras, Mousa, ALsahli, Mohammed S., Alawairdhi, Mohammed.  2019.  Using Machine Learning to Detect DoS Attacks in Wireless Sensor Networks. 2019 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT). :107–112.

Widespread use of Wireless Sensor Networks (WSNs) introduced many security threats due to the nature of such networks, particularly limited hardware resources and infrastructure less nature. Denial of Service attack is one of the most common types of attacks that face such type of networks. Building an Intrusion Detection and Prevention System to mitigate the effect of Denial of Service attack is not an easy task. This paper proposes the use of two machine learning techniques, namely decision trees and Support Vector Machines, to detect attack signature on a specialized dataset. The used dataset contains regular profiles and several Denial of Service attack scenarios in WSNs. The experimental results show that decision trees technique achieved better (higher) true positive rate and better (lower) false positive rate than Support Vector Machines, 99.86% vs 99.62%, and 0.05% vs. 0.09%, respectively.