Biblio
To solve the high-resolution three-dimensional (3D) microwave imaging is a challenging topic due to its inherent unmanageable computation. Recently, deep learning techniques that can fully explore the prior of meaningful pattern embodied in data have begun to show its intriguing merits in various areas of inverse problem. Motivated by this observation, we here present a deep-learning-inspired approach to the high-resolution 3D microwave imaging in the context of Generative Adversarial Network (GAN), termed as GANMI in this work. Simulation and experimental results have been provided to demonstrate that the proposed GANMI can remarkably outperform conventional methods in terms of both the image quality and computational time.
Software-Defined Network's (SDN) core working depends on the centralized controller which implements the control plane. With the help of this controller, security threats like Distributed Denial of Service (DDoS) attacks can be identified easily. A DDoS attack is usually instigated on servers by sending a huge amount of unwanted traffic that exhausts its resources, denying their services to genuine users. Earlier research work has been carried out to mitigate DDoS attacks at the switch and the host level. Mitigation at switch level involves identifying the switch which sends a lot of unwanted traffic in the network and blocking it from the network. But this solution is not feasible as it will also block genuine hosts connected to that switch. Later mitigation at the host level was introduced wherein the compromised hosts were identified and blocked thereby allowing genuine hosts to send their traffic in the network. Though this solution is feasible, it will block the traffic from the genuine applications of the compromised host as well. In this paper, we propose a new way to identify and mitigate the DDoS attack at the application level so that only the application generating the DDoS traffic is blocked and other genuine applications are allowed to send traffic in the network normally.
There are increasing threats for cyberspace. This paper tries to identify how extreme cybersecurity incidents occur based on the scenario of a targeted attack through emails. Knowledge on how extreme cybersecurity incidents occur helps in identifying the key points on how they can be prevented from occurring. The model based on system thinking approach to the understanding how communication influences entities and how tiny initiating events scale up into extreme events provides a condensed figure of the cyberspace and surrounding threats. By taking cyberspace layers and characteristics of cyberspace identified by this model into consideration, it predicts most suitable risk mitigations.
Software security is a major concern of the developers who intend to deliver a reliable software. Although there is research that focuses on vulnerability prediction and discovery, there is still a need for building security-specific metrics to measure software security and vulnerability-proneness quantitatively. The existing methods are either based on software metrics (defined on the physical characteristics of code; e.g. complexity or lines of code) which are not security-specific or some generic patterns known as nano-patterns (Java method-level traceable patterns that characterize a Java method or function). Other methods predict vulnerabilities using text mining approaches or graph algorithms which perform poorly in cross-project validation and fail to be a generalized prediction model for any system. In this paper, we envision to construct an automated framework that will assist developers to assess the security level of their code and guide them towards developing secure code. To accomplish this goal, we aim to refine and redefine the existing nano-patterns and software metrics to make them more security-centric so that they can be used for measuring the software security level of a source code (either file or function) with higher accuracy. In this paper, we present our visionary approach through a series of three consecutive studies where we (1) will study the challenges of the current software metrics and nano-patterns in vulnerability prediction, (2) will redefine and characterize the nano-patterns and software metrics so that they can capture security-specific properties of code and measure the security level quantitatively, and finally (3) will implement an automated framework for the developers to automatically extract the values of all the patterns and metrics for the given code segment and then flag the estimated security level as a feedback based on our research results. We accomplished some preliminary experiments and presented the results which indicate that our vision can be practically implemented and will have valuable implications in the community of software security.
Jeopardy to cybersecurity threats in electronic systems is persistent and growing. Such threats present in hardware, by means such as Trojans and counterfeits, and in software, by means such as viruses and other malware. Against such threats, we propose a range of embedded instruments that are capable of real-time hardware assurance and online monitoring.
Vehicular Ad-hoc Network (VANET) can provide vehicle to vehicle (V2V) and vehicle to infrastructure (V2I) communications for efficient and safe transportation. The vehicles features high mobility, thus undergoing frequent handovers when they are moving, which introduces the significant overload on the network entities. To address the problem, the distributed mobility management (DMM) protocol for next generation mobile network has been proposed, which can be well combined with VANETs. Although the existing DMM solutions can guarantee the smooth handovers of vehicles, the security has not been fully considered in the mobility management. Moreover, the most of existing schemes cannot support group communication scenario. In this paper, we propose an efficient and secure group mobility management scheme based on the blockchain. Specifically, to reduce the handover latency and signaling cost during authentication, aggregate message authentication code (AMAC) and one-time password (OTP) are adopted. The security analysis and the performance evaluation results show that the proposed scheme can not only enhance the security functionalities but also support fast handover authentication.
We consider information theoretic security in a two-hop combination network where there are groups of end users with distinct degrees of connectivity served by a layer of relays. The model represents a network set up with users having access to asymmetric resources, here the number of relays that they are connected to, yet demand security guarantees uniformly. We study two security constraints separately and simultaneously: secure delivery where the information must be kept confidential from an external entity that wiretaps the delivery phase; and secure caching where each cache-aided end-user can retrieve the file it requests and cannot obtain any information on files it does not. The achievable schemes we construct are multi-stage where each stage completes requests by a class of users.
Searchable encryption will become more important as medical services intensify their use of big data and artificial intelligence. To use searchable encryption safely, the resistance of terminals with embedded searchable encryption to illegal attacks (tamper resistance) is extremely important. This study proposes a searchable encryption system embedded in terminals and evaluate the tamper resistance of the proposed system. This study also proposes attack scenarios and quantitatively evaluates the tamper resistance of the proposed system by performing experiments following the proposed attack scenarios.