Biblio
A new approach of a formalism of hybrid automatons has been proposed for the analysis of conflict processes between the information system and the information's security malefactor. An example of probability-based assessment on malefactor's victory has been given and the possibility to abstract from a specific type of probability density function for the residence time of parties to the conflict in their possible states. A model of the distribution of destructive informational influences in the information system to connect the process of spread of destructive information processes and the process of changing subjects' states of the information system has been proposed. An example of the destructive information processes spread analysis has been given.
Building natural and conversational virtual humans is a task of formidable complexity. We believe that, especially when building agents that affectively interact with biological humans in real-time, a cognitive science-based, multilayered sensing and artificial intelligence (AI) systems approach is needed. For this demo, we show a working version (through human interaction with it) our modular system of natural, conversation 3D virtual human using AI or sensing layers. These including sensing the human user via facial emotion recognition, voice stress, semantic meaning of the words, eye gaze, heart rate, and galvanic skin response. These inputs are combined with AI sensing and recognition of the environment using deep learning natural language captioning or dense captioning. These are all processed by our AI avatar system allowing for an affective and empathetic conversation using an NLP topic-based dialogue capable of using facial expressions, gestures, breath, eye gaze and voice language-based two-way back and forth conversations with a sensed human. Our lab has been building these systems in stages over the years.
The network coding optimization based on niche genetic algorithm can observably reduce the network overhead of encoding technology, however, security issues haven't been considered in the coding operation. In order to solve this problem, we propose a network coding optimization scheme for niche algorithm based on security performance (SNGA). It is on the basis of multi-target niche genetic algorithm(NGA)to construct a fitness function which with k-secure network coding mechanism, and to ensure the realization of information security and achieve the maximum transmission of the network. The simulation results show that SNGA can effectively improve the security of network coding, and ensure the running time and convergence speed of the optimal solution.
The Time and the Time Synchronization are veryimportant especially for the computer networks performing timesensitive operations. It is very important for all the datacenters, markets, finance companies, industrial networks, commercial applications, e-mail and communication-related Clients and servers, active directory services, authentication mechanisms, and wired and wireless communication. For instance. a sensitive time system is crucial for financial networks processing a large amount of data on a daily basis. If the computer does not communicate with other Computers Or Other systems using time, then the time information might not be important. The NTP acts as a Single time source in order to synchronize all the devices in a network. While the computer networks communicate with each other between different time zones and different locations on the earth; the main time doesn't need to be the same all around the world but it must be very sensitive otherwise the networks at different locations might work on different times.As the main time sources, most of networks uses the Coordinated Universal Time The is important also for security. The hackers and the malware such as computer Viruses use the time inconsistencies in order to overcome all the security measures such as firewalls or antivirus software; without a correct time, any system might be taken under control. If all the devices are connected to STP time. then it would be more difficult for malicious to the System.
In traditional steganographic schemes, RGB three channels payloads are assigned equally in a true color image. In fact, the security of color image steganography relates not only to data-embedding algorithms but also to different payload partition. How to exploit inter-channel correlations to allocate payload for performance enhancement is still an open issue in color image steganography. In this paper, a novel channel-dependent payload partition strategy based on amplifying channel modification probabilities is proposed, so as to adaptively assign the embedding capacity among RGB channels. The modification probabilities of three corresponding pixels in RGB channels are simultaneously increased, and thus the embedding impacts could be clustered, in order to improve the empirical steganographic security against the channel co-occurrences detection. Experimental results show that the new color image steganographic schemes incorporated with the proposed strategy can effectively make the embedding changes concentrated mainly in textured regions, and achieve better performance on resisting the modern color image steganalysis.
In order to develop a `common session secret key' though the insecure channel, cryptographic Key Agreement Protocol plays a major role. Many researchers' cryptographic protocol uses smart card as a medium to store transaction secret values. The tampered resistance property of smart card is unable to defend the secret values from side channel attacks. It means a lost smart card is an easy target for any attacker. Though password authentication helps the protocol to give secrecy but on-line as well as off-line password guessing attack can make the protocol vulnerable. The concerned paper manifested key agreement protocol based on three party authenticated key agreement protocol to defend all password related attacks. The security analysis of our paper has proven that the accurate guess of the password of a legitimate user will not help the adversary to generate a common session key.
With the rising popularity of file-sharing services such as Google Drive and Dropbox in the workflows of individuals and corporations alike, the protection of client-outsourced data from unauthorized access or tampering remains a major security concern. Existing cryptographic solutions to this problem typically require server-side support, involve non-trivial key management on the part of users, and suffer from severe re-encryption penalties upon access revocations. This combination of performance overheads and management burdens makes this class of solutions undesirable in situations where performant, platform-agnostic, dynamic sharing of user content is required. We present NEXUS, a stackable filesystem that leverages trusted hardware to provide confidentiality and integrity for user files stored on untrusted platforms. NEXUS is explicitly designed to balance security, portability, and performance: it supports dynamic sharing of protected volumes on any platform exposing a file access API without requiring server-side support, enables the use of fine-grained access control policies to allow for selective sharing, and avoids the key revocation and file re-encryption overheads associated with other cryptographic approaches to access control. This combination of features is made possible by the use of a client-side Intel SGX enclave that is used to protect and share NEXUS volumes, ensuring that cryptographic keys never leave enclave memory and obviating the need to reencrypt files upon revocation of access rights. We implemented a NEXUS prototype that runs on top of the AFS filesystem and show that it incurs ×2 overhead for a variety of common file and database operations.
Cooperative Intelligent Transport Systems (C-ITS) are expected to play an important role in our lives. They will improve the traffic safety and bring about a revolution on the driving experience. However, these benefits are counterbalanced by possible attacks that threaten not only the vehicle's security, but also passengers' lives. One of the most common attacks is the Sybil attack, which is even more dangerous than others because it could be the starting point of many other attacks in C-ITS. This paper proposes a distributed approach allowing the detection of Sybil attacks by using the traffic flow theory. The key idea here is that each vehicle will monitor its neighbourhood in order to detect an eventual Sybil attack. This is achieved by a comparison between the real accurate speed of the vehicle and the one estimated using the V2V communications with vehicles in the vicinity. The estimated speed is derived by using the traffic flow fundamental diagram of the road's portion where the vehicles are moving. This detection algorithm is validated through some extensive simulations conducted using the well-known NS3 network simulator with SUMO traffic simulator.
Mobile crowd sensing (MCS) is a rapidly developing technique for information collection from the users of mobile devices. This technique deals with participants' personal information such as their identities and locations, thus raising significant security and privacy concerns. Accordingly, anonymous authentication schemes have been widely considered for preserving participants' privacy in MCS. However, mobile devices are easy to lose and vulnerable to device capture attacks, which enables an attacker to extract the private authentication key of a mobile application and to further invade the user's privacy by linking sensed data with the user's identity. To address this issue, we have devised a special anonymous authentication scheme where the authentication request algorithm can be obfuscated into an unintelligible form and thus the authentication key is not explicitly used. This scheme not only achieves authenticity and unlinkability for participants, but also resists impersonation, replay, denial-of-service, man-in-the-middle, collusion, and insider attacks. The scheme's obfuscation algorithm is the first obfuscator for anonymous authentication, and it satisfies the average-case secure virtual black-box property. The scheme also supports batch verification of authentication requests for improving efficiency. Performance evaluations on a workstation and smart phones have indicated that our scheme works efficiently on various devices.
With evolution of the communication technology remote monitoring has rooted into many applications. Swift innovation in Internet of Things (IoT) technology led to development of electronics embedded devices capable of sensing into the remote location and transferring the data through internet across the globe. Such devices transfers the sensitive data, which are susceptible to security attacks by the intruder and network hacker. Paper studies the existing security solutions and limitations for IoT environment and provides a pragmatic lightweight security scheme on Transmission Control Protocol (TCP) network for Remote Monitoring System devices over internet. This security scheme will aid Original Equipment Manufacturer (OEM) developing massive IoT products for remote monitoring. Real time evaluation of this scheme has been analyzed.
Techniques applied in response to detrimental digital incidents vary in many respects according to their attributes. Models of techniques exist in current research but are typically restricted to some subset with regards to the discipline of the incident. An enormous collection of techniques is actually available for use. There is no single model representing all these techniques. There is no current categorisation of digital forensics reactive techniques that classify techniques according to the attribute of function and nor is there an attempt to classify techniques in a means that goes beyond a subset. In this paper, an ontology that depicts digital forensic reactive techniques classified by function is presented. The ontology itself contains additional information for each technique useful for merging into a cognate system where the relationship between techniques and other facets of the digital investigative process can be defined. A number of existing techniques were collected and described according to their function - a verb. The function then guided the placement and classification of the techniques in the ontology according to the ontology development process. The ontology contributes to a knowledge base for digital forensics - essentially useful as a resource for the various people operating in the field of digital forensics. The benefit of this that the information can be queried, assumptions can be made explicit, and there is a one-stop-shop for digital forensics reactive techniques with their place in the investigation detailed.
Several assessment techniques and methodologies exist to analyze the security of an application dynamically. However, they either are focused on a particular product or are mainly concerned about the assessment process rather than the product's security confidence. Most crucially, they tend to assess the security of a target application as a standalone artifact without assessing its host infrastructure. Such attempts can undervalue the overall security posture since the infrastructure becomes crucial when it hosts a critical application. We present an ontology-based security model that aims to provide the necessary knowledge, including network settings, application configurations, testing techniques and tools, and security metrics to evaluate the security aptitude of a critical application in the context of its hosting infrastructure. The objective is to integrate the current good practices and standards in security testing and virtualization to furnish an on-demand and test-ready virtual target infrastructure to execute the critical application and to initiate a context-aware and quantifiable security assessment process in an automated manner. Furthermore, we present a security assessment architecture to reflect on how the ontology can be integrated into a standard process.
Nowadays, video streaming over HTTP is one of the most dominant Internet applications, using adaptive video techniques. Network assisted approaches have been proposed and are being standardized in order to provide high QoE for the end-users of such applications. SAND is a recent MPEG standard where DASH Aware Network Elements (DANEs) are introduced for this purpose. As web-caches are one of the main components of the SAND architecture, the location and the connectivity of these web-caches plays an important role in the user's QoE. The nature of SAND and DANE provides a good foundation for software controlled virtualized DASH environments, and in this paper, we propose a cache location algorithm and a cache migration algorithm for virtualized SAND deployments. The optimal locations for the virtualized DANEs is determined by an SDN controller and migrates it based on gathered statistics. The performance of the resulting system shows that, when SDN and NFV technologies are leveraged in such systems, software controlled virtualized approaches can provide an increase in QoE.
DNA cryptography becomes a burgeoning new area of study along with the fast-developing of DNA computing and modern cryptography. Point-doubling, point-addition and point-multiplication are three fundamental point-operations to construct encryption protocols in some cryptosystem over mathematical curves such as elliptic curves and conic curves. This paper proposes a DNA computing model to calculate point-doubling in conic curves cryptosystem over finite held GF(2n). By decomposing and rearranging the computing steps of point-doubling, the assembly process could be fulfilled by using 8 different types of computation tiles performing different functions with 1097 encoding ways. This model could also figure out point-multiplication if its coefficient is 2k. The assembly time complexity is 2kn+n-k-1, and the space complexity is k2n2+kn2-k2n.
A blockchain is a distributed ledger forming a distributed consensus on a history of transactions, and is the underlying technology for the Bitcoin cryptocurrency. However, its applications are far beyond the financial sector. The transaction verification process for cryptocurrencies is much slower than traditional digital transaction systems. One approach to increase transaction speed and scalability is to identify a solution that offers faster Proof of Work. In this paper, we propose a method for accelerating the process of Proof of Work based on parallel mining rather than solo mining. The goal is to ensure that no more than two or more miners put the same effort into solving a specific block. The proposed method includes a process for selection of a manager, distribution of work and a reward system. This method has been implemented in a test environment that contains all the characteristics needed to perform Proof of Work for Bitcoin and has been tested, using a variety of case scenarios, by varying the difficulty level and number of validators. Preliminary results show improvement in the scalability of Proof of Work up to 34% compared to the current system.
A common tool to defend against Sybil attacks is proof-of-work, whereby computational puzzles are used to limit the number of Sybil participants. Unfortunately, current Sybil defenses require significant computational effort to offset an attack. In particular, good participants must spend computationally at a rate that is proportional to the spending rate of an attacker. In this paper, we present the first Sybil defense algorithm which is asymmetric in the sense that good participants spend at a rate that is asymptotically less than an attacker. In particular, if T is the rate of the attacker's spending, and J is the rate of joining good participants, then our algorithm spends at a rate f O($\surd$(TJ) + J). We provide empirical evidence that our algorithm can be significantly more efficient than previous defenses under various attack scenarios. Additionally, we prove a lower bound showing that our algorithm's spending rate is asymptotically optimal among a large family of algorithms.
The nodes in Mobile Ad hoc Network (MANET) can self-assemble themselves, locomote unreservedly and can interact with one another without taking any help from a centralized authority or fixed infrastructure. Due to its continuously changing and self-organizing nature, MANET is vulnerable to a variety of attacks like spoofing attack, wormhole attack, black hole attack, etc. This paper compares and analyzes the repercussion of the wormhole attack on MANET's two common routing protocols of reactive category, specifically, Dynamic Source Routing (DSR) and Ad-hoc On-Demand Distance Vector (AODV) by increasing the number of wormhole tunnels in MANET. The results received by simulation will reveal that DSR is greatly affected by this attack. So, as a solution, a routing algorithm for DSR which is based on trust is proposed to prevent the routes from caching malicious nodes.
This paper work is focused on Performance comparison of intrusion detection system between DBN Algorithm and SPELM Algorithm. Researchers have used this new algorithm SPELM to perform experiments in the area of face recognition, pedestrian detection, and for network intrusion detection in the area of cyber security. The scholar used the proposed State Preserving Extreme Learning Machine(SPELM) algorithm as machine learning classifier and compared it's performance with Deep Belief Network (DBN) algorithm using NSL KDD dataset. The NSL- KDD dataset has four lakhs of data record; out of which 40% of data were used for training purposes and 60% data used in testing purpose while calculating the performance of both the algorithms. The experiment as performed by the scholar compared the Accuracy, Precision, recall and Computational Time of existing DBN algorithm with proposed SPELM Algorithm. The findings have show better performance of SPELM; when compared its accuracy of 93.20% as against 52.8% of DBN algorithm;69.492 Precision of SPELM as against 66.836 DBN and 90.8 seconds of Computational time taken by SPELM as against 102 seconds DBN Algorithm.
An experiment and numerical simulations analyze low-speed OSC derived XPM-induced phase noise penalty in 100-Gbps WDM systems. WDM transmission performance exhibits signal bit-pattern dependence on OSC, which is due to deterioration in SD-FEC performance.
UAANET (UAV Ad hoc Network) is defined as an autonomous system made of swarm of UAVs (Unmanned Aerial Vehicle) and GCS (Ground Control Station). Compared to other types of MANET (Mobile Ad hoc network), UAANET have some unique features and bring several challenges. One of them is the design of routing protocol. It must be efficient for creating routes between nodes and dynamically adjusting to the rapidly changing topology. It must also be secure to protect the integrity of the network against malicious attackers. In this paper, we will present the architecture and the performance evaluation (based on both real-life experimental and emulation studies) of a secure routing protocol called SUAP (Secure UAV Ad hoc routing Protocol). SUAP ensures routing services between nodes to exchange real-time traffic and also guarantees message authentication and integrity to protect the network integrity. Additional security mechanisms were added to detect Wormhole attacks. Wormhole attacks represent a high level of risk for UAV ad hoc network and this is the reason why we choose to focus on this specific multi node attack. Through performance evaluation campaign, our results show that SUAP ensures the expected security services against different types of attacks while providing an acceptable quality of service for real-time data exchanges.
Phishing attacks have reached record volumes in recent years. Simultaneously, modern phishing websites are growing in sophistication by employing diverse cloaking techniques to avoid detection by security infrastructure. In this paper, we present PhishFarm: a scalable framework for methodically testing the resilience of anti-phishing entities and browser blacklists to attackers' evasion efforts. We use PhishFarm to deploy 2,380 live phishing sites (on new, unique, and previously-unseen .com domains) each using one of six different HTTP request filters based on real phishing kits. We reported subsets of these sites to 10 distinct anti-phishing entities and measured both the occurrence and timeliness of native blacklisting in major web browsers to gauge the effectiveness of protection ultimately extended to victim users and organizations. Our experiments revealed shortcomings in current infrastructure, which allows some phishing sites to go unnoticed by the security community while remaining accessible to victims. We found that simple cloaking techniques representative of real-world attacks- including those based on geolocation, device type, or JavaScript- were effective in reducing the likelihood of blacklisting by over 55% on average. We also discovered that blacklisting did not function as intended in popular mobile browsers (Chrome, Safari, and Firefox), which left users of these browsers particularly vulnerable to phishing attacks. Following disclosure of our findings, anti-phishing entities are now better able to detect and mitigate several cloaking techniques (including those that target mobile users), and blacklisting has also become more consistent between desktop and mobile platforms- but work remains to be done by anti-phishing entities to ensure users are adequately protected. Our PhishFarm framework is designed for continuous monitoring of the ecosystem and can be extended to test future state-of-the-art evasion techniques used by malicious websites.
This paper presents a methodology for utilizing Phasor Measurement units (PMUs) for procuring real time synchronized measurements for assessing the security of the power system dynamically. The concept of wide-area dynamic security assessment considers transient instability in the proposed methodology. Intelligent framework based approach for online dynamic security assessment has been suggested wherein the database consisting of critical features associated with the system is generated for a wide range of contingencies, which is utilized to build the data mining model. This data mining model along with the synchronized phasor measurements is expected to assist the system operator in assessing the security of the system pertaining to a particular contingency, thereby also creating possibility of incorporating control and preventive measures in order to avoid any unforeseen instability in the system. The proposed technique has been implemented on IEEE 39 bus system for accurately indicating the security of the system and is found to be quite robust in the case of noise in the measurement data obtained from the PMUs.
This article presents a practical approach for secure key exchange exploiting reciprocity in wireless transmission. The method relies on the reciprocal channel phase to mask points of a Phase Shift Keying (PSK) constellation. Masking is achieved by adding (modulo 2π) the measured reciprocal channel phase to the PSK constellation points carrying some of the key bits. As the channel phase is uniformly distributed in [0, 2π], knowing the sum of the two phases does not disclose any information about any of its two components. To enlarge the key size over a static or slow fading channel, the Radio Frequency (RF) propagation path is perturbed to create independent realizations of multi-path fading. Prior techniques have relied on quantizing the reciprocal channel state measured at the two ends and thereby suffer from information leakage in the process of key consolidation (ensuring the two ends have access to the same key). The proposed method does not suffer from such shortcomings as raw key bits can be equipped with Forward Error Correction (FEC) without affecting the masking (zero information leakage) property. To eavesdrop a phase value shared in this manner, the Eavesdropper (Eve) would require to solve a system of linear equations defined over angles, each equation corresponding to a possible measurement by the Eve. Channel perturbation is performed such that each new channel state creates an independent channel realization for the legitimate nodes, as well as for each of Eves antennas. As a result, regardless of the Eves Signal-to-Noise Ratio (SNR) and number of antennas, Eve will always face an under-determined system of equations. On the other hand, trying to solve any such under-determined system of linear equations in terms of an unknown phase will not reveal any useful information about the actual answer, meaning that the distribution of the answer remains uniform in [0, 2π].
Blockchain technology is useful with the record keeping of digital transactions, IoT, supply chain management etc. However, we have observed that the traditional attacks are possible on blockchain due to lack of robust identity management. We found that Sybil attack can cause severe impact in public/permissionless blockchain, in which an attacker can subvert the blockchain by creating a large number of pseudonymous identities (i.e. Fake user accounts) and push legitimate entities in the minority. Such virtual nodes can act like genuine nodes to create disproportionately large influence on the network. This may lead to several other attacks like DoS, DDoS etc. In this paper, a Sybil attack is demonstrated on a blockchain test bed with its impact on the throughput of the system. We propose a solution directive, in which each node monitors the behavior of other nodes and checks for the nodes which are forwarding the blocks of only particular user. Such nodes are quickly identified, blacklisted and notified to other nodes, and thus the Sybil attack can be restricted. We analyze experimental results of the proposed solution.
Older adults (65+) are becoming primary users of emerging smart systems, especially in health care. However, these technologies are often not designed for older users and can pose serious privacy and security concerns due to their novelty, complexity, and propensity to collect and communicate vast amounts of sensitive information. Efforts to address such concerns must build on an in-depth understanding of older adults' perceptions and preferences about data privacy and security for these technologies, and accounting for variance in physical and cognitive abilities. In semi-structured interviews with 46 older adults, we identified a range of complex privacy and security attitudes and needs specific to this population, along with common threat models, misconceptions, and mitigation strategies. Our work adds depth to current models of how older adults' limited technical knowledge, experience, and age-related declines in ability amplify vulnerability to certain risks; we found that health, living situation, and finances play a notable role as well. We also found that older adults often experience usability issues or technical uncertainties in mitigating those risks -- and that managing privacy and security concerns frequently consists of limiting or avoiding technology use. We recommend educational approaches and usable technical protections that build on seniors' preferences.