Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2019-01-16
Dao, Ha, Mazel, Johan, Fukuda, Kensuke.  2018.  Understanding Abusive Web Resources: Characteristics and Counter-measures of Malicious Web Resources and Cryptocurrency Mining. Proceedings of the Asian Internet Engineering Conference. :54–61.
Web security is a big concern in the current Internet; users may visit websites that automatically download malicious codes for leaking user's privacy information, or even mildly their web browser may help for someone's cryptomining. In this paper, we analyze abusive web resources (i.e. malicious resources and cryptomining) crawled from the Alexa Top 150,000 sites. We highlight the abusive web resources on Alexa ranking, TLD usage, website geolocation, and domain lifetime. Our results show that abusive resources are spread in the Alexa ranking, websites particularly generic Top Level Domain (TLD) and their recently registered domains. In addition, websites with malicious resources are mainly located in China while cryptomining is located in USA. We further evaluate possible counter-measures against abusive web resources. We observe that ad or privacy block lists are ineffective to block against malicious resources while coin-blocking lists are powerful enough to mitigate in-browser cryptomining. Our observations shed light on a little studied, yet important, aspect of abusive resources, and can help increase user awareness about the malicious resources and drive-by mining on web browsers.
2019-03-28
Schroeder, Jill M., Manz, David O., Amaya, Jodi P., McMakin, Andrea H., Bays, Ryan M..  2018.  Understanding Past, Current and Future Communication and Situational Awareness Technologies for First Responders. Proceedings of the Fifth Cybersecurity Symposium. :2:1-2:14.
This study builds a foundation for improving research for first responder communication and situational awareness technology in the future. In an online survey, we elicited the opinions of 250 U.S. first responders about effectiveness, security, and reliability of past, current, and future Internet of Things technology. The most desired features respondents identified were connectivity, reliability, interoperability, and affordability. The top barriers to technology adoption and use included restricted budgets/costs, interoperability, insufficient training resources, and insufficient interagency collaboration and communication. First responders in all job types indicated that technology has made first responder equipment more useful, and technology that supports situational awareness is particularly valued. As such, future Internet of Things capabilities, such as tapping into smart device data in residences and piggybacking onto alternative communication channels, could be valuable for future first responders. Potential areas for future investigation are suggested for technology development and research.
2019-07-01
Šišejković, Dominik, Leupers, Rainer, Ascheid, Gerd, Metzner, Simon.  2018.  A Unifying Logic Encryption Security Metric. Proceedings of the 18th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation. :179–186.
The globalization of the IC supply chain has brought forth the era of fabless companies. Due to security issues during design and fabrication processes, various security concerns have risen, ranging from IP piracy and reverse engineering to hardware Trojans. Logic encryption has emerged as a mitigation against these threats. However, no generic metrics for quantifying the security of logic encryption algorithms has been reported so far, making it impossible to formally compare different approaches. In this paper, we propose a unifying metric, capturing the key security aspects of logic encryption algorithms. The metric is evaluated on state-of-the-art algorithms and benchmarks.
2019-02-08
Sairam, Ashok Singh, Verma, Sagar Kumar.  2018.  Using Bounded Binary Particle Swarm Optimization to Analyze Network Attack Graphs. Proceedings of the 19th International Conference on Distributed Computing and Networking. :41:1-41:9.
Binary particle swarm optimization (BPSO) is a technique widely used to solve combinatorial problems. In this paper, we propose a variant of BPSO to find most likely attack paths in an attack graph. The aim is to find an attack path with the highest attack probability and least path length. In such combinatorial optimization problem, the set of feasible solutions is usually discrete and an exhaustive search may lead to unnecessary examination of those segments of the search space, which are assured to not include a solution. The paper introduces the concept of bounding the solution space of BPSO. The minimum and maximum value of each objective called bound of the solution is computed. The search space of BPSO is restricted within these solution bounds and hence we name our approach as bounded binary particle swarm optimization (BBPSO). By bounding the solution space, those particles of BPSO which are guaranteed to be infeasible are not considered for feasibility check. Experimental results show that the proposed approach provide a 50 percent performance improvement as compared to the conventional BPSO.
2019-10-15
Saleh, Z., Mashhour, A..  2018.  Using Keystroke Authentication Typing Errors Pattern as Non-Repudiation in Computing Forensics. 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT). :1–6.
Access to information and data is becoming an essential part of nearly every aspect of modern business operation. Unfortunately, accessing information systems comes with increased chances of intrusion and unauthorized access. Acquiring and maintaining evidence from a computer or networks in the current high-tech world is essential in any comprehensive forensic investigation. Software and hardware tools are used to easily manage the evidence and view all relevant files. In an effort to enhance computer access security, keystroke authentication, is one of the biometric solutions that were proposed as a solution for enhancing users' identification. This research proposes using user's keystroke errors to determine guilt during forensics investigations, where it was found that individuals keystroke patters are repeatable and variant from those of others, and that keystroke patterns are impossible to steal or imitate. So, in this paper, we investigate the effectiveness of relying on ``user's mistakes'' as another behavioral biometric keystroke dynamic.
2019-03-25
Liu, Renju, Srivastava, Mani.  2018.  VirtSense: Virtualize Sensing Through ARM TrustZone on Internet-of-Things. Proceedings of the 3rd Workshop on System Software for Trusted Execution. :2–7.
Internet-of-Things (IoTs) are becoming more and more popular in our life. IoT devices are generally designed for sensing or actuation purposes. However, the current sensing system on IoT devices lacks the understanding of sensing needs, which diminishes the sensing flexibility, isolation, and security when multiple sensing applications need to use sensor resources. In this work, we propose VirtSense, an ARM TrustZone based virtual sensing system, to provide each sensing application a virtual sensor instance, which further enables a safe, flexible and isolated sensing environment on the IoT devices. Our preliminary results show that VirtSense: 1) can provide virtual sensor instance for each sensing application so that the sensing needs of each application will be satisfied without affecting others; 2) is able to enforce access control policy even under an untrusted environment.
2019-11-25
Liang, Tyng-Yeu, Yeh, Li-Wei, Wu, Chi-Hong.  2018.  A Visual MapReduce Program Development Environment for Heterogeneous Computing on Clouds. Proceedings of the 2018 International Conference on Computing and Data Engineering. :83–87.
This paper is aimed at proposing a visual MapReduce program development environment called VMR for heterogeneous computing on Clouds. This development environment mainly has three advantages as follows. First, it allows users to drag and drop graphical blocks instead of text typing for editing programs. Therefore, users can save their effort and time spent on MapReduce programming especially when they analyze data on clouds through mobile devices. Second, it can automatically translate the blocks of users' MapReduce programs into three different versions including Java, C and CUDA of source codes, and select one of these three versions according to the processor architecture of allocated resources for execution. Consequently, users can transparently and effectively exploit heterogeneous resources in clouds for executing their MapReduce programs while they has no need to individually write programs for each of different processor architectures by themselves. Third, it can enable clouds to outsource the computation tasks of MapReduce programs to mobile devices in order for increasing job throughput or program performance.
2019-02-14
El-Assady, Mennatallah.  2018.  Visual Text Analytics: Techniques for Linguistic Information Visualization. Proceedings of the ACM Symposium on Document Engineering 2018. :2:1-2:2.
Visual Text Analytics has been an active area of interdisciplinary research (http://textvis.lnu.se/). This interactive tutorial is designed to give attendees an introduction to the area of information visualization, with a focus on linguistic visualization. After an introduction to the basic principles of information visualization and visual analytics, this tutorial will give an overview of the broad spectrum of linguistic and text visualization techniques, as well as their application areas [3]. This will be followed by a hands-on session that will allow participants to design their own visualizations using tools (e.g., Tableau), libraries (e.g., d3.js), or applying sketching techniques [4]. Some sample datasets will be provided by the instructor. Besides general techniques, special access will be provided to use the VisArgue framework [1] for the analysis of selected datasets.
2019-03-22
Lee, Kyungroul, Son, Byeong-Geun, Lee, Sun-Young, Yim, Kangbin.  2018.  Vulnerability Analysis of Secure USB: Based on the Fingerprint Authentication of Product B. Proceedings of the 2018 Conference on Research in Adaptive and Convergent Systems. :167-169.
In order to improve the security of data stored in the USB memory, a secure USB has appeared on the consumer market. The secure USB protects data stored into the device by user authentication, data encryption, and access control. However, in several products, there is a problem in that the data can be stolen due to authentication bypass or key exposure. To solve this problem, a method for enhancing user authentication has been studied, and product B, which typically provides user authentication with biometric authentication, has emerged. In this paper, we analyze the vulnerability of product B that provides a biometric authentication, and we verified the possibility of bypassing the authentication and the incident of potential stealing of the data. Consequently, we consider that it will be possible to develop a more secure USB product based on counteracting analyzed vulnerability as described in this paper.
2019-11-19
Wang, Bo, Wang, Xunting.  2018.  Vulnerability Assessment Method for Cyber Physical Power System Considering Node Heterogeneity. 2018 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia). :1109-1113.
In order to make up for the shortcomings of traditional evaluation methods neglecting node difference, a vulnerability assessment method considering node heterogeneity for cyber physical power system (CPPS) is proposed. Based on the entropy of the power flow and complex network theory, we establish heterogeneity evaluation index system for CPPS, which considers the survivability of island survivability and short-term operation of the communication network. For mustration, hierarchical CPPS model and distributed CPPS model are established respectively based on partitioning characteristic and different relationships of power grid and communication network. Simulation results show that distributed system is more robust than hierarchical system of different weighting factor whether under random attack or deliberate attack and a hierarchical system is more sensitive to the weighting factor. The proposed method has a better recognition effect on the equilibrium of the network structure and can assess the vulnerability of CPPS more accurately.
2019-04-05
Acar, Gunes, Huang, Danny Yuxing, Li, Frank, Narayanan, Arvind, Feamster, Nick.  2018.  Web-Based Attacks to Discover and Control Local IoT Devices. Proceedings of the 2018 Workshop on IoT Security and Privacy. :29-35.
In this paper, we present two web-based attacks against local IoT devices that any malicious web page or third-party script can perform, even when the devices are behind NATs. In our attack scenario, a victim visits the attacker's website, which contains a malicious script that communicates with IoT devices on the local network that have open HTTP servers. We show how the malicious script can circumvent the same-origin policy by exploiting error messages on the HTML5 MediaError interface or by carrying out DNS rebinding attacks. We demonstrate that the attacker can gather sensitive information from the devices (e.g., unique device identifiers and precise geolocation), track and profile the owners to serve ads, or control the devices by playing arbitrary videos and rebooting. We propose potential countermeasures to our attacks that users, browsers, DNS providers, and IoT vendors can implement.
2019-02-18
Wu, Siyan, Tong, Xiaojun, Wang, Wei, Xin, Guodong, Wang, Bailing, Zhou, Qi.  2018.  Website Defacements Detection Based on Support Vector Machine Classification Method. Proceedings of the 2018 International Conference on Computing and Data Engineering. :62–66.
Website defacements can inflict significant harm on the website owner through the loss of reputation, the loss of money, or the leakage of information. Due to the complexity and diversity of all kinds of web application systems, especially a lack of necessary security maintenance, website defacements increased year by year. In this paper, we focus on detecting whether the website has been defaced by extracting website features and website embedded trojan features. We use three kinds of classification learning algorithms which include Gradient Boosting Decision Tree (GBDT), Random Forest (RF) and Support Vector Machine (SVM) to do the classification experiments, and experimental results show that Support Vector Machine classifier performed better than two other classifiers. It can achieve an overall accuracy of 95%-96% in detecting website defacements.
2019-12-02
Simon, Laurent, Chisnall, David, Anderson, Ross.  2018.  What You Get is What You C: Controlling Side Effects in Mainstream C Compilers. 2018 IEEE European Symposium on Security and Privacy (EuroS P). :1–15.
Security engineers have been fighting with C compilers for years. A careful programmer would test for null pointer dereferencing or division by zero; but the compiler would fail to understand, and optimize the test away. Modern compilers now have dedicated options to mitigate this. But when a programmer tries to control side effects of code, such as to make a cryptographic algorithm execute in constant time, the problem remains. Programmers devise complex tricks to obscure their intentions, but compiler writers find ever smarter ways to optimize code. A compiler upgrade can suddenly and without warning open a timing channel in previously secure code. This arms race is pointless and has to stop. We argue that we must stop fighting the compiler, and instead make it our ally. As a starting point, we analyze the ways in which compiler optimization breaks implicit properties of crypto code; and add guarantees for two of these properties in Clang/LLVM. Our work explores what is actually involved in controlling side effects on modern CPUs with a standard toolchain. Similar techniques can and should be applied to other security properties; achieving intentions by compiler commands or annotations makes them explicit, so we can reason about them. It is already understood that explicitness is essential for cryptographic protocol security and for compiler performance; it is essential for language security too. We therefore argue that this should be only the first step in a sustained engineering effort.
2020-07-20
Ning, Jianting, Cao, Zhenfu, Dong, Xiaolei, Wei, Lifei.  2018.  White-Box Traceable CP-ABE for Cloud Storage Service: How to Catch People Leaking Their Access Credentials Effectively. IEEE Transactions on Dependable and Secure Computing. 15:883–897.
Ciphertext-policy attribute-based encryption (CP-ABE) has been proposed to enable fine-grained access control on encrypted data for cloud storage service. In the context of CP-ABE, since the decryption privilege is shared by multiple users who have the same attributes, it is difficult to identify the original key owner when given an exposed key. This leaves the malicious cloud users a chance to leak their access credentials to outsourced data in clouds for profits without the risk of being caught, which severely damages data security. To address this problem, we add the property of traceability to the conventional CP-ABE. To catch people leaking their access credentials to outsourced data in clouds for profits effectively, in this paper, we first propose two kinds of non-interactive commitments for traitor tracing. Then we present a fully secure traceable CP-ABE system for cloud storage service from the proposed commitment. Our proposed commitments for traitor tracing may be of independent interest, as they are both pairing-friendly and homomorphic. We also provide extensive experimental results to confirm the feasibility and efficiency of the proposed solution.
2019-01-21
Meng, Yan, Wang, Zichang, Zhang, Wei, Wu, Peilin, Zhu, Haojin, Liang, Xiaohui, Liu, Yao.  2018.  WiVo: Enhancing the Security of Voice Control System via Wireless Signal in IoT Environment. Proceedings of the Eighteenth ACM International Symposium on Mobile Ad Hoc Networking and Computing. :81–90.
With the prevalent of smart devices and home automations, voice command has become a popular User Interface (UI) channel in the IoT environment. Although Voice Control System (VCS) has the advantages of great convenience, it is extremely vulnerable to the spoofing attack (e.g., replay attack, hidden/inaudible command attack) due to its broadcast nature. In this study, we present WiVo, a device-free voice liveness detection system based on the prevalent wireless signals generated by IoT devices without any additional devices or sensors carried by the users. The basic motivation of WiVo is to distinguish the authentic voice command from a spoofed one via its corresponding mouth motions, which can be captured and recognized by wireless signals. To achieve this goal, WiVo builds a theoretical model to characterize the correlation between wireless signal dynamics and the user's voice syllables. WiVo extracts the unique features from both voice and wireless signals, and then calculates the consistency between these different types of signals in order to determine whether the voice command is generated by the authentic user of VCS or an adversary. To evaluate the effectiveness of WiVo, we build a testbed based on Samsung SmartThings framework and include WiVo as a new application, which is expected to significantly enhance the security of the existing VCS. We have evaluated WiVo with 6 participants and different voice commands. Experimental evaluation results demonstrate that WiVo achieves the overall 99% detection rate with 1% false accept rate and has a low latency.
2019-09-23
Kalokyri, Varvara, Borgida, Alexander, Marian, Amélie.  2018.  YourDigitalSelf: A Personal Digital Trace Integration Tool. Proceedings of the 27th ACM International Conference on Information and Knowledge Management. :1963–1966.
Personal information is typically fragmented across multiple, heterogeneous, distributed sources and saved as small, heterogeneous data objects, or traces. The DigitalSelf project at Rutgers University focuses on developing tools and techniques to manage (organize, search, summarize, make inferences on and personalize) such heterogeneous collections of personal digital traces. We propose to demonstrate YourDigitalSelf, a mobile phone-based personal information organization application developed as part of the DigitalSelf project. The demonstration will use a sample user data set to show how several disparate data traces can be integrated and combined to create personal narratives, or coherent episodes, of the user's activities. Conference attendees will be given the option to install YourDigitalSelf on their own devices to interact with their own data.
2019-02-14
Zhang, Feng, Zhai, Jidong, Shen, Xipeng, Mutlu, Onur, Chen, Wenguang.  2018.  Zwift: A Programming Framework for High Performance Text Analytics on Compressed Data. Proceedings of the 2018 International Conference on Supercomputing. :195-206.
Today's rapidly growing document volumes pose pressing challenges to modern document analytics frameworks, in both space usage and processing time. Recently, a promising method, called text analytics directly on compressed data (TADOC), was proposed for improving both the time and space efficiency of text analytics. The main idea of the technique is to enable direct document analytics on compressed data. This paper focuses on the programming challenges for developing efficient TADOC programs. It presents Zwift, the first programming framework for TADOC, which consists of a Domain Specific Language, a compiler and runtime, and a utility library. Experiments show that Zwift significantly improves programming productivity, while effectively unleashing the power of TADOC, producing code that reduces storage usage by 90.8% and execution time by 41.0% on six text analytics problems.
2019-03-06
Zong, Fang, Yong, Ouyang, Gang, Liu.  2018.  3D Modeling Method Based on Deep Belief Networks (DBNs) and Interactive Evolutionary Algorithm (IEA). Proceedings of the 2018 International Conference on Big Data and Computing. :124-128.

3D modeling usually refers to be the use of 3D software to build production through the virtual 3D space model with 3D data. At present, most 3D modeling software such as 3dmax, FLAC3D and Midas all need adjust models to get a satisfactory model or by coding a precise modeling. There are many matters such as complicated steps, strong profession, the high modeling cost. Aiming at this problem, the paper presents a new 3D modeling methods which is based on Deep Belief Networks (DBN) and Interactive Evolutionary Algorithm (IEA). Following this method, firstly, extract characteristic vectors from vertex, normal, surfaces of the imported model samples. Secondly, use the evolution strategy, to extract feature vector for stochastic evolution by artificial grading control the direction of evolution, and in the process to extract the characteristics of user preferences. Then, use evolution function matrix to establish the fitness approximation evaluation model, and simulate subjective evaluation. Lastly, the user can control the whole machine simulation evaluation process at any time, and get a satisfactory model. The experimental results show that the method in this paper is feasible.

2019-03-25
Le, Van-Khoa, Beauseroy, Pierre, Grall-Maes, Edith.  2018.  Abnormal Trajectory Detection for Security Infrastructure. Proceedings of the 2Nd International Conference on Digital Signal Processing. :1–5.

In this work, an approach for the automatic analysis of people trajectories is presented, using a multi-camera and card reader system. Data is first extracted from surveillance cameras and card readers to create trajectories which are sequences of paths and activities. A distance model is proposed to compare sequences and calculate similarities. The popular unsupervised model One-Class Support Vector Machine (One-Class SVM) is used to train a detector. The proposed method classifies trajectories as normal or abnormal and can be used in two modes: off-line and real-time. Experiments are based on data simulation corresponding to an attack scenario proposed by a security expert. Results show that the proposed method successfully detects the abnormal sequences in the scenario with very low false alarm rate.

2019-01-21
Alshehri, Asma, Benson, James, Patwa, Farhan, Sandhu, Ravi.  2018.  Access Control Model for Virtual Objects (Shadows) Communication for AWS Internet of Things. Proceedings of the Eighth ACM Conference on Data and Application Security and Privacy. :175–185.

The concept of Internet of Things (IoT) has received considerable attention and development in recent years. There have been significant studies on access control models for IoT in academia, while companies have already deployed several cloud-enabled IoT platforms. However, there is no consensus on a formal access control model for cloud-enabled IoT. The access-control oriented (ACO) architecture was recently proposed for cloud-enabled IoT, with virtual objects (VOs) and cloud services in the middle layers. Building upon ACO, operational and administrative access control models have been published for virtual object communication in cloud-enabled IoT illustrated by a use case of sensing speeding cars as a running example. In this paper, we study AWS IoT as a major commercial cloud-IoT platform and investigate its suitability for implementing the afore-mentioned academic models of ACO and VO communication control. While AWS IoT has a notion of digital shadows closely analogous to VOs, it lacks explicit capability for VO communication and thereby for VO communication control. Thus there is a significant mismatch between AWS IoT and these academic models. The principal contribution of this paper is to reconcile this mismatch by showing how to use the mechanisms of AWS IoT to effectively implement VO communication models. To this end, we develop an access control model for virtual objects (shadows) communication in AWS IoT called AWS-IoT-ACMVO. We develop a proof-of-concept implementation of the speeding cars use case in AWS IoT under guidance of this model, and provide selected performance measurements. We conclude with a discussion of possible alternate implementations of this use case in AWS IoT.

2019-06-24
Copty, Fady, Danos, Matan, Edelstein, Orit, Eisner, Cindy, Murik, Dov, Zeltser, Benjamin.  2018.  Accurate Malware Detection by Extreme Abstraction. Proceedings of the 34th Annual Computer Security Applications Conference. :101–111.

Modern malware applies a rich arsenal of evasion techniques to render dynamic analysis ineffective. In turn, dynamic analysis tools take great pains to hide themselves from malware; typically this entails trying to be as faithful as possible to the behavior of a real run. We present a novel approach to malware analysis that turns this idea on its head, using an extreme abstraction of the operating system that intentionally strays from real behavior. The key insight is that the presence of malicious behavior is sufficient evidence of malicious intent, even if the path taken is not one that could occur during a real run of the sample. By exploring multiple paths in a system that only approximates the behavior of a real system, we can discover behavior that would often be hard to elicit otherwise. We aggregate features from multiple paths and use a funnel-like configuration of machine learning classifiers to achieve high accuracy without incurring too much of a performance penalty. We describe our system, TAMALES (The Abstract Malware Analysis LEarning System), in detail and present machine learning results using a 330K sample set showing an FPR (False Positive Rate) of 0.10% with a TPR (True Positive Rate) of 99.11%, demonstrating that extreme abstraction can be extraordinarily effective in providing data that allows a classifier to accurately detect malware.

2019-02-08
Yu, Zuoxia, Au, Man Ho, Yang, Rupeng, Lai, Junzuo, Xu, Qiuliang.  2018.  Achieving Flexibility for ABE with Outsourcing via Proxy Re-Encryption. Proceedings of the 2018 on Asia Conference on Computer and Communications Security. :659-672.

Outsourcing the decryption of attribute-based encryption (ABE) ciphertext is a promising way to tackle the question of how users can perform decryption efficiently. However, existing solutions require the type of the target ciphertext to be determined at the setup of the outsourcing scheme. As such, making the target cryptosystems (or the clients) to be versatile becomes an issue that warrants investigations. In this paper, the problem we wish to tackle is to transform an ABE ciphertext to any client who is using the same, or possibly different, public-key encryption (PKE) system with the sender. The problem is of practical interest since it is hard to require all clients to use the same PKE, especially in the case of remote and cross-system data sharing. In addition, we also consider whether robust client-side decryption scheme can be adopted. This feature is not supported in the existing ABE with outsourcing. We introduce cross-system proxy re-encryptions (CS-PRE), a new re-encryption paradigm in which a semi-trusted proxy converts a ciphertext of a source cryptosystem (\$\textparagraphi\_0\$) into a ciphertext for a target cryptosystem (\$\textparagraphi\$). We formalize CS-PRE and present a construction that performs well in the following aspects. (1)Versatility: \$\textparagraphi\_0\$ can be any attribute-based encryption (ABE) within Attrapadung's pair encoding framework. \$\textparagraphi\$ can be any public-key encryption. Furthermore, the keys and public parameters can be generated independently. (2) Compatibility: CS-PRE does not modify the public parameters and keys of \$\textparagraphi\_0\$ and \$\textparagraphi\$. Besides, input for the conversion is an ordinary ciphertext of \$\textparagraphi\_0\$. (3) Efficiency: The computational cost for re-encryption and decryption of the re-encrypted ciphertext are roughly the same as a decryption in \$\textparagraphi\_0\$ and \$\textparagraphi\$ respectively. We prove that our construction is fully secure assuming \$\textparagraphi\_0\$ is secure in Attrapadung's framework and \$\textparagraphi\$ is IND-CPA secure. Furthermore, it remains secure when there are multiple target cryptosystems. As with other proxy re-encryption, CS-PRE enables flexible sharing of cloud data, as the owner can instruct the cloud server to re-encrypt his ciphertext to those for the intended recipient. In addition, it allows lightweight devices to enjoy access to remote data encrypted under powerful but possibly costly encryption, such as functional encryption, by utilizing the server's power in converting the ciphertext to a simpler encryption, such as RSA. Finally, instances of CS-PRE can be viewed as new proxy re-encryption schemes, such as a PRE supporting ABE for regular language to Hierarchical IBE or Doubly Spatial Encryption to lattice-based encryptions (e.g. NTRUCCA).

2019-05-01
Yagoub, Mohammed Amine, Laouid, Abdelkader, Kazar, Okba, Bounceur, Ahcène, Euler, Reinhardt, AlShaikh, Muath.  2018.  An Adaptive and Efficient Fully Homomorphic Encryption Technique. Proceedings of the 2Nd International Conference on Future Networks and Distributed Systems. :35:1–35:6.

The huge amount of generated data offers special advantages mainly in dynamic and scalable systems. In fact, the data generator entities need to share the generated data with each other which leads to the use of cloud services. A cloud server is considered as an untrusted entity that offers many advantages such as large storing space, computation speed... etc. Hence, there is a need to cope with how to protect the stored data in the cloud server by proposing adaptive solutions. The main objective is how to provide an encryption scheme allowing the user to maintains some functions such as addition, multiplication and to preserve the order on the encrypted cloud data. Many algorithms and techniques are designed to manipulate the stored encrypted cloud data. This paper presents an adaptive and efficient fully homomorphic encryption technique to protect the user's data stored in the cloud, where the cloud server executes simple operations.

2018-12-10
Lobato, A. G. P., Lopez, M. A., Sanz, I. J., Cárdenas, A. A., Duarte, O. C. M. B., Pujolle, G..  2018.  An Adaptive Real-Time Architecture for Zero-Day Threat Detection. 2018 IEEE International Conference on Communications (ICC). :1–6.

Attackers create new threats and constantly change their behavior to mislead security systems. In this paper, we propose an adaptive threat detection architecture that trains its detection models in real time. The major contributions of the proposed architecture are: i) gather data about zero-day attacks and attacker behavior using honeypots in the network; ii) process data in real time and achieve high processing throughput through detection schemes implemented with stream processing technology; iii) use of two real datasets to evaluate our detection schemes, the first from a major network operator in Brazil and the other created in our lab; iv) design and development of adaptive detection schemes including both online trained supervised classification schemes that update their parameters in real time and learn zero-day threats from the honeypots, and online trained unsupervised anomaly detection schemes that model legitimate user behavior and adapt to changes. The performance evaluation results show that proposed architecture maintains an excellent trade-off between threat detection and false positive rates and achieves high classification accuracy of more than 90%, even with legitimate behavior changes and zero-day threats.

2019-05-20
Zhang, Xiaoqiang, Wang, Xuesong, Wang, Qingming.  2018.  Additive Spread Spectrum Image Hiding Algorithm Based on Host Signal. Proceedings of the 2018 7th International Conference on Software and Computer Applications. :164-168.

Image hiding is the important tools to protect the ownership rights of digital multimedia contents. To reduce the interference effect of the host signal in the popular Spread Spectrum (SS) image hiding algorithm, this paper proposes an Improved Additive Spread Spectrum (IASS) image hiding algorithm. The proposed IASS image hiding algorithm maintains the simple decoder of the Additive Spread Spectrum (ASS) image hiding algorithm. This paper makes the comparative experiments with the ASS image hiding algorithm and Correlation-and-bit-Aware Spread Spectrum (CASS) image hiding algorithm. For the noise-free scenario, the proposed IASS image hiding algorithm could yield error-free decoding performance in theory. For the noise scenario, the experimental results show that the proposed IASS image hiding algorithm could significantly reduce the host effect in data hiding and improve the watermark decoding performance remarkably.