Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2018-05-02
Rakshit, Joydeep, Mohanram, Kartik.  2017.  ASSURE: Authentication Scheme for SecURE Energy Efficient Non-Volatile Memories. Proceedings of the 54th Annual Design Automation Conference 2017. :11:1–11:6.
Data tampering threatens data integrity in emerging non-volatile memories (NVMs). Whereas Merkle Tree (MT) memory authentication is effective in thwarting data tampering attacks, it drastically increases cell writes and memory accesses, adversely impacting NVM energy, lifetime, and system performance (instructions per cycle (IPC)). We propose ASSURE, a low overhead, high performance Authentication Scheme for SecURE energy efficient (ASSURE) NVMs. ASSURE synergistically integrates (i) smart message authentication codes (SMACs), which eliminate redundant cell writes by enabling MAC computation of only modified words on memory writes, with (ii) multi-root MTs (MMTs), which reduce MT reads/writes by constructing either high performance static MMTs (SMMTs) or low overhead dynamic MMTs (DMMTs) over frequently accessed memory regions. Our full-system simulations of the SPEC CPU2006 benchmarks on a triple-level cell (TLC) resistive RAM (RRAM) architecture show that on average, SMMT ASSURE (DMMT ASSURE) reduces NVM energy by 59% (55%), increases memory lifetime by 2.36x (2.11x), and improves IPC by 11% (10%), over state-of-the-art MT memory authentication.
Chothia, Tom, Ordean, Mihai, de Ruiter, Joeri, Thomas, Richard J..  2017.  An Attack Against Message Authentication in the ERTMS Train to Trackside Communication Protocols. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :743–756.
This paper presents the results of a cryptographic analysis of the protocols used by the European Rail Traffic Management System (ERTMS). A stack of three protocols secures the communication between trains and trackside equipment; encrypted radio communication is provided by the GSM-R protocol, on top of this the EuroRadio protocol provides authentication for a train control application-level protocol. We present an attack which exploits weaknesses in all three protocols: GSM-R has the same well known weaknesses as the GSM protocol, and we present a new collision attack against the EuroRadio protocol. Combined with design weaknesses in the application-level protocol, these vulnerabilities allow an attacker, who observes a MAC collision, to forge train control messages. We demonstrate this attack with a proof of concept using train control messages we have generated ourselves. Currently, ERTMS is only used to send small amounts of data for short sessions, therefore this attack does not present an immediate danger. However, if EuroRadio was to be used to transfer larger amounts of data trains would become vulnerable to this attack. Additionally, we calculate that, under reasonable assumptions, an attacker who could monitor all backend control centres in a country the size of the UK for 45 days would have a 1% chance of being able to take control of a train.
2018-06-07
Tundis, Andrea, Egert, Rolf, Mühlhäuser, Max.  2017.  Attack Scenario Modeling for Smart Grids Assessment Through Simulation. Proceedings of the 12th International Conference on Availability, Reliability and Security. :13:1–13:10.
Smart Grids (SGs) are Critical Infrastructures (CI), which are responsible for controlling and maintaining the distribution of electricity. To manage this task, modern SGs integrate an Information and Communication Infrastructure (ICT) beside the electrical power grid. Aside from the benefits derived from the increasing control and management capabilities offered by the ICT, unfortunately the introduction of this cyber layer provides an attractive attack surface for hackers. As a consequence, security becomes a fundamental prerequisite to be fulfilled. In this context, the adoption of Systems Engineering (SE) tools combined with Modeling and Simulation (M&S) techniques represent a promising solution to support the evaluation process of a SG during early design stages. In particular, the paper investigates on the identification, modeling and assessment of attacks in SG environments, by proposing a model for representing attack scenarios as a combination of attack types, attack schema and their temporal occurrence. Simulation techniques are exploited to enable the execution of such attack combinations in the SG domain. Specifically, a simulator, which allows to assess the SG behaviour to identify possible flaws and provide preventive actions before its realization, is developed on the basis of the proposed model and exemplified through a case study.
2018-03-05
Schnepf, N., Badonnel, R., Lahmadi, A., Merz, S..  2017.  Automated Verification of Security Chains in Software-Defined Networks with Synaptic. 2017 IEEE Conference on Network Softwarization (NetSoft). :1–9.
Software-defined networks provide new facilities for deploying security mechanisms dynamically. In particular, it is possible to build and adjust security chains to protect the infrastructures, by combining different security functions, such as firewalls, intrusion detection systems and services for preventing data leakage. It is important to ensure that these security chains, in view of their complexity and dynamics, are consistent and do not include security violations. We propose in this paper an automated strategy for supporting the verification of security chains in software-defined networks. It relies on an architecture integrating formal verification methods for checking both the control and data planes of these chains, before their deployment. We describe algorithms for translating specifications of security chains into formal models that can then be verified by SMT1 solving or model checking. Our solution is prototyped as a package, named Synaptic, built as an extension of the Frenetic family of SDN programming languages. The performances of our approach are evaluated through extensive experimentations based on the CVC4, veriT, and nuXmv checkers.
2018-02-02
Krawec, Walter O., Nelson, Michael G., Geiss, Eric P..  2017.  Automatic Generation of Optimal Quantum Key Distribution Protocols. Proceedings of the Genetic and Evolutionary Computation Conference. :1153–1160.
Quantum Key Distribution (QKD) allows two parties to establish a shared secret key secure against an all-powerful adversary. Typically, one designs new QKD protocols and then analyzes their maximal tolerated noise mathematically. If the noise in the quantum channel connecting the two parties is higher than this threshold value, they must abort. In this paper we design and evaluate a new real-coded Genetic Algorithm which takes as input statistics on a particular quantum channel (found using standard channel estimation procedures) and outputs a QKD protocol optimized for the specific given channel. We show how this method can be used to find QKD protocols for channels where standard protocols would fail.
2018-03-05
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.
Ehrlich, M., Wisniewski, L., Trsek, H., Mahrenholz, D., Jasperneite, J..  2017.  Automatic Mapping of Cyber Security Requirements to Support Network Slicing in Software-Defined Networks. 2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). :1–4.
The process of digitalisation has an advanced impact on social lives, state affairs, and the industrial automation domain. Ubiquitous networks and the increased requirements in terms of Quality of Service (QoS) create the demand for future-proof network management. Therefore, new technological approaches, such as Software-Defined Networks (SDN) or the 5G Network Slicing concept, are considered. However, the important topic of cyber security has mainly been ignored in the past. Recently, this topic has gained a lot of attention due to frequently reported security related incidents, such as industrial espionage, or production system manipulations. Hence, this work proposes a concept for adding cyber security requirements to future network management paradigms. For this purpose, various security related standards and guidelines are available. However, these approaches are mainly static, require a high amount of manual efforts by experts, and need to be performed in a steady manner. Therefore, the proposed solution contains a dynamic, machine-readable, automatic, continuous, and future-proof approach to model and describe cyber security QoS requirements for the next generation network management.
2018-06-11
Moskewicz, Matthew W., Jannesari, Ali, Keutzer, Kurt.  2017.  Boda: A Holistic Approach for Implementing Neural Network Computations. Proceedings of the Computing Frontiers Conference. :53–62.
Neural networks (NNs) are currently a very popular topic in machine learning for both research and practice. GPUs are the dominant computing platform for research efforts and are also gaining popularity as a deployment platform for applications such as autonomous vehicles. As a result, GPU vendors such as NVIDIA have spent enormous effort to write special-purpose NN libraries. On other hardware targets, especially mobile GPUs, such vendor libraries are not generally available. Thus, the development of portable, open, high-performance, energy-efficient GPU code for NN operations would enable broader deployment of NN-based algorithms. A root problem is that high efficiency GPU programming suffers from high complexity, low productivity, and low portability. To address this, this work presents a framework to enable productive, high-efficiency GPU programming for NN computations across hardware platforms and programming models. In particular, the framework provides specific support for metaprogramming and autotuning of operations over ND-Arrays. To show the correctness and value of our framework and approach, we implement a selection of NN operations, covering the core operations needed for deploying three common image-processing neural networks. We target three different hardware platforms: NVIDIA, AMD, and Qualcomm GPUs. On NVIDIA GPUs, we show both portability between OpenCL and CUDA as well competitive performance compared to the vendor library. On Qualcomm GPUs, we show that our framework enables productive development of target-specific optimizations, and achieves reasonable absolute performance. Finally, On AMD GPUs, we show initial results that indicate our framework can yield reasonable performance on a new platform with minimal effort.
2018-05-02
Korczynski, David, Yin, Heng.  2017.  Capturing Malware Propagations with Code Injections and Code-Reuse Attacks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :1691–1708.
Defending against malware involves analysing large amounts of suspicious samples. To deal with such quantities we rely heavily on automatic approaches to determine whether a sample is malicious or not. Unfortunately, complete and precise automatic analysis of malware is far from an easy task. This is because malware is often designed to contain several techniques and countermeasures specifically to hinder analysis. One of these techniques is for the malware to propagate through the operating system so as to execute in the context of benign processes. The malware does this by writing memory to a given process and then proceeds to have this memory execute. In some cases these propagations are trivial to capture because they rely on well-known techniques. However, in the cases where malware deploys novel code injection techniques, rely on code-reuse attacks and potentially deploy dynamically generated code, the problem of capturing a complete and precise view of the malware execution is non-trivial. In this paper we present a unified approach to tracing malware propagations inside the host in the context of code injections and code-reuse attacks. We also present, to the knowledge of the authors, the first approach to identifying dynamically generated code based on information-flow analysis. We implement our techniques in a system called Tartarus and match Tartarus with both synthetic applications and real-world malware. We compare Tartarus to previous works and show that our techniques substantially improve the precision for collecting malware execution traces, and that our approach can capture intrinsic characteristics of novel code injection techniques.
2018-02-28
Wilson, Rodney, Chi, Hongmei.  2017.  A Case Study for Mobile Device Forensics Tools. Proceedings of the SouthEast Conference. :154–157.
Smartphones have become a prominent part of our technology driven world. When it comes to uncovering, analyzing and submitting evidence in today's criminal investigations, mobile phones play a more critical role. Thus, there is a strong need for software tools that can help investigators in the digital forensics field effectively analyze smart phone data to solve crimes. This paper will accentuate how digital forensic tools assist investigators in getting data acquisition, particularly messages, from applications on iOS smartphones. In addition, we will lay out the framework how to build a tool for verifying data integrity for any digital forensics tool.
2018-06-07
Qiao, Yue, Srinivasan, Kannan, Arora, Anish.  2017.  Channel Spoofer: Defeating Channel Variability and Unpredictability. Proceedings of the 13th International Conference on Emerging Networking EXperiments and Technologies. :402–413.
A vast literature on secret sharing protocols now exists based on the folk theorem that the wireless channel between communicating parties Alice and Bob cannot be controlled or predicted by a third party in a fine-grain way. We find that the folk theorem unfortunately does not hold. In particular, we show how an adversary, using a customized full-duplex forwarder, can control the channel seen by Alice and Bob in fine granularity without leaving a trace, while predicting with high probability the secrets generated by any channel reciprocity based secret sharing protocol. An implementation of our proposed secret manipulator, called Channel Spoofer, on a software-defined radio platform empirically verifies Channel Spoofer's effectiveness in breaking several representative state-of-the-art secret sharing protocols. To the best of our knowledge, the proposed Channel Spoofer is the first practical attacker against all extant channel reciprocity based secret sharing protocols.
2018-06-11
Kumar, K. N., Nene, M. J..  2017.  Chip-Based symmetric and asymmetric key generation in hierarchical wireless sensors networks. 2017 International Conference on Inventive Systems and Control (ICISC). :1–6.
Realization of an application using Wireless Sensor Networks (WSNs) using Sensor Nodes (SNs) brings in profound advantages of ad-hoc and flexible network deployments. Implementation of these networks face immense challenges due to short wireless range; along with limited power, storage & computational capabilities of SNs. Also, due to the tiny physical attributes of the SNs in WSNs, they are prone to physical attacks. In the context of WSNs, the physical attacks may range from destroying, lifting, replacing and adding new SNs. The work in this paper addresses the threats induced due to physical attacks and, further proposes a methodology to mitigate it. The methodology incorporates the use of newly proposed secured and efficient symmetric and asymmetric key distribution technique based on the additional commodity hardware Trusted Platform Module (TPM). Further, the paper demonstrates the merits of the proposed methodology. With some additional economical cost for the hardware, the proposed technique can fulfill the security requirement of WSNs, like confidentiality, integrity, authenticity, resilience to attack, key connectivity and data freshness.
2018-05-02
Shamsi, Kaveh, Li, Meng, Meade, Travis, Zhao, Zheng, Pan, David Z., Jin, Yier.  2017.  Circuit Obfuscation and Oracle-guided Attacks: Who Can Prevail? Proceedings of the on Great Lakes Symposium on VLSI 2017. :357–362.
This paper provides a systematization of knowledge in the domain of integrated circuit protection through obfuscation with a focus on the recent Boolean satisfiability (SAT) attacks. The study systematically combines real-world IC reverse engineering reports, experimental results using the most recent oracle-guided attacks, and concepts in machine-learning and cryptography to draw a map of the state-of-the-art of IC obfuscation and future challenges and opportunities.
2018-06-11
Shan, Yuquan, Kesidis, George, Fleck, Daniel.  2017.  Cloud-Side Shuffling Defenses Against DDoS Attacks on Proxied Multiserver Systems. Proceedings of the 2017 on Cloud Computing Security Workshop. :1–10.
We consider a cloud based multiserver system, consisting of a set of replica application servers behind a set of proxy (indirection) servers which interact directly with clients over the Internet. We address cloud-side proactive and reactive defenses to combat DDoS attacks that may target this system. DDoS attacks are endemic with some notable attacks occurring just this past fall. Volumetric attacks may target proxies while "low volume" attacks may target replicas. After reviewing existing and proposed defenses, such as changing proxy IP addresses (a "moving target" technique to combat the reconnaissance phase of the botnet) and fission of overloaded servers, we focus on evaluation of defenses based on shuffling client-to-server assignments that can be both proactive and reactive to a DDoS attack. Our evaluations are based on a binomial distribution model that well agrees with simulations and preliminary experiments on a prototype that is also described.
2018-11-19
Serey, J., Ternero, R., Soto, I., Quezada, L..  2017.  A Competency Model to Help Selecting the Information Security Method for Platforms of Communication by Visible Light (VLC). 2017 First South American Colloquium on Visible Light Communications (SACVLC). :1–6.
It is challenging in Security information and Platforms of Communication by Visible Light (VLC), solutions are made to manage the right Security problems. Several solutions have been developed and evolved constantly to meet complex and ever-changing business needs in the world. In the business context, people who are responsible for a project or an organization undergo professional and emotional stress. This research project has developed a new model which can help decision makers evaluating these alternative methods in relation to articulating different types of Security problems, formulating Security criteria, and simulating expectations of adopting the chosen method for Platforms of Communication by Visible Light (VLC).
2018-03-05
Shelar, D., Sun, P., Amin, S., Zonouz, S..  2017.  Compromising Security of Economic Dispatch in Power System Operations. 2017 47th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). :531–542.
Power grid operations rely on the trustworthy operation of critical control center functionalities, including the so-called Economic Dispatch (ED) problem. The ED problem is a large-scale optimization problem that is periodically solved by the system operator to ensure the balance of supply and load while maintaining reliability constraints. In this paper, we propose a semantics-based attack generation and implementation approach to study the security of the ED problem.1 Firstly, we generate optimal attack vectors to transmission line ratings to induce maximum congestion in the critical lines, resulting in the violation of capacity limits. We formulate a bilevel optimization problem in which the attacker chooses manipulations of line capacity ratings to maximinimize the percentage line capacity violations under linear power flows. We reformulate the bilevel problem as a mixed integer linear program that can be solved efficiently. Secondly, we describe how the optimal attack vectors can be implemented in commercial energy management systems (EMSs). The attack explores the dynamic memory space of the EMS, and replaces the true line capacity ratings stored in data regions with the optimal attack vectors. In contrast to the well-known false data injection attacks to control systems that require compromising distributed sensors, our approach directly implements attacks to the control center server. Our experimental results on benchmark power systems and five widely utilized EMSs show the practical feasibility of our attack generation and implementation approach.
2018-08-23
Malavolta, Giulio, Moreno-Sanchez, Pedro, Kate, Aniket, Maffei, Matteo, Ravi, Srivatsan.  2017.  Concurrency and Privacy with Payment-Channel Networks. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :455–471.
Permissionless blockchains protocols such as Bitcoin are inherently limited in transaction throughput and latency. Current efforts to address this key issue focus on off-chain payment channels that can be combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without requiring to access the blockchain other than to register the initial and final capacity of each channel. While this approach paves the way for low latency and high throughput of payments, its deployment in practice raises several privacy concerns as well as technical challenges related to the inherently concurrent nature of payments that have not been sufficiently studied so far. In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition in the Universal Composability framework as well as practical and provably secure solutions. In particular, we present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable privacy guarantees for PCNs and is fully compatible with the Bitcoin scripting system. However, Fulgor is a blocking protocol and therefore prone to deadlocks of concurrent payments as in currently available PCNs. Instead, Rayo is the first protocol for PCNs that enforces non-blocking progress (i.e., at least one of the concurrent payments terminates). We show through a new impossibility result that non-blocking progress necessarily comes at the cost of weaker privacy. At the core of Fulgor and Rayo is Multi-Hop HTLC, a new smart contract, compatible with the Bitcoin scripting system, that provides conditional payments while reducing running time and communication overhead with respect to previous approaches. Our performance evaluation of Fulgor and Rayo shows that a payment with 10 intermediate users takes as few as 5 seconds, thereby demonstrating their feasibility to be deployed in practice.
2018-09-05
Zhang, H., Lou, F., Fu, Y., Tian, Z..  2017.  A Conditional Probability Computation Method for Vulnerability Exploitation Based on CVSS. 2017 IEEE Second International Conference on Data Science in Cyberspace (DSC). :238–241.
Computing the probability of vulnerability exploitation in Bayesian attack graphs (BAGs) is a key process for the network security assessment. The conditional probability of vulnerability exploitation could be obtained from the exploitability of the NIST's Common Vulnerability Scoring System (CVSS). However, the method which N. Poolsappasit et al. proposed for computing conditional probability could be used only in the CVSS metric version v2.0, and can't be used in other two versions. In this paper, we present two methods for computing the conditional probability based on CVSS's other two metric versions, version 1.0 and version 3.0, respectively. Based on the CVSS, the conditional probability computation of vulnerability exploitation is complete by combining the method of N. Poolsappasit et al.
2018-05-16
Schiavone, E., Ceccarelli, A., Bondavalli, A..  2017.  Continuous Biometric Verification for Non-Repudiation of Remote Services. Proceedings of the 12th International Conference on Availability, Reliability and Security. :4:1–4:10.
As our society massively relies on ICT, security services are becoming essential to protect users and entities involved. Amongst such services, non-repudiation provides evidences of actions, protects against their denial, and helps solving disputes between parties. For example, it prevents denial of past behaviors as having sent or received messages. Noteworthy, if the information flow is continuous, evidences should be produced for the entirety of the flow and not only at specific points. Further, non-repudiation should be guaranteed by mechanisms that do not reduce the usability of the system or application. To meet these challenges, in this paper, we propose two solutions for non-repudiation of remote services based on multi-biometric continuous authentication. We present an application scenario that discusses how users and service providers are protected with such solutions. We also discuss the technological readiness of biometrics for non-repudiation services: the outcome is that, under specific assumptions, it is actually ready.
2017-12-20
Rebaï, S. Bezzaoucha, Voos, H., Darouach, M..  2017.  A contribution to cyber-security of networked control systems: An event-based control approach. 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). :1–7.
In the present paper, a networked control system under both cyber and physical attacks Is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system.
2018-02-21
Li, C., Yang, C..  2017.  Cryptographic key management methods for mission-critical wireless networks. 2017 7th IEEE International Conference on Electronics Information and Emergency Communication (ICEIEC). :33–36.
When a large scale disaster strikes, it demands an efficient communication and coordination among first responders to save life and other community resources. Normally, the traditional communication infrastructures such as landline phone or cellular networks are damaged and dont provide adequate communication services to first responders for exchanging emergency related information. Wireless mesh networks is the promising alternatives in such type of situations. The security requirements for emergency response communications include privacy, data integrity, authentication, access control and availability. To build a secure communication system, usually the first attempt is to employ cryptographic keys. In critical-mission wireless mesh networks, a mesh router needs to maintain secure data communication with its neighboring mesh routers. The effective designs on fast pairwise key generation and rekeying for mesh routers are critical for emergency response and are essential to protect unicast traffic. In this paper, we present a security-enhanced session key generation and rekeying protocols EHPFS (enhanced 4-way handshake with PFS support). It eliminate the DoS attack problem of the 4-way handshake in 802.11s. EHPFS provides additional support for perfect forward secrecy (PFS). Even in case a Primary Master Key (PMK) is exposed, the session key PTK will not be compromised. The performance and security analysis show that EHPFS is efficient.
2018-06-20
Yang, Sen, Dong, Xin, Sun, Leilei, Zhou, Yichen, Farneth, Richard A., Xiong, Hui, Burd, Randall S., Marsic, Ivan.  2017.  A Data-driven Process Recommender Framework. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :2111–2120.
We present an approach for improving the performance of complex knowledge-based processes by providing data-driven step-by-step recommendations. Our framework uses the associations between similar historic process performances and contextual information to determine the prototypical way of enacting the process. We introduce a novel similarity metric for grouping traces into clusters that incorporates temporal information about activity performance and handles concurrent activities. Our data-driven recommender system selects the appropriate prototype performance of the process based on user-provided context attributes. Our approach for determining the prototypes discovers the commonly performed activities and their temporal relationships. We tested our system on data from three real-world medical processes and achieved recommendation accuracy up to an F1 score of 0.77 (compared to an F1 score of 0.37 using ZeroR) with 63.2% of recommended enactments being within the first five neighbors of the actual historic enactments in a set of 87 cases. Our framework works as an interactive visual analytic tool for process mining. This work shows the feasibility of data-driven decision support system for complex knowledge-based processes.
2018-05-16
Abdellatif, Lasbahani, Chhiba, Mostafa, Mjihil, Oussama.  2017.  Deals with Integrating of Security Specifications During Software Design Phase Using MDA Approach. Proceedings of the Second International Conference on Internet of Things, Data and Cloud Computing. :196:1–196:7.
There are many recent propositions treating Model Driven Architecture (MDA) approaches to perform and automate code generation from design models. To the best of our knowledge and research, most of these propositions have been only focused on functional aspect by allowing code generation without considering this the non-functional aspect at the same time so that to generate secure object-oriented software basing on MDA approach. In this context, we are adding further details to integrate the security policies required in the form of secure models. The systems specification models will be enhanced with security requirements at different abstraction levels through a set of transformation models. Improving functional models with security constraints allow us to incorporate the security needs and automating generating secure applications with their security infrastructure using MDA approach. After carrying out a modification on MDA processes and UML meta-model to cover a better representation of security policies of an organization by updating different existing software engineering process to take into account nonfunctional aspect along with their functional aspect. This work presents a new methodology based on MDA approach and existing security technologies for allowing the integration of the proposed security requirements, which are obtained from security experts, during the system design. Within this context, we have focused on the essential elements of security, such as data encryption, Message Integrity, and Access Control in order to express the importance of merging both the functional and non-functional aspects altogether. We have chosen these properties to practically illustrate how to generate secure applications including their security policies. Then the source code will be obtained automatically from Platform Specific Models (PSM) by applying a set of model transformations and using a code generator designed for this mission. In addition, we can inject also other security-related properties, such as Availability, Traceability, non-repudiation, and Scalability issues during the whole development process by following the same methodology. these properties will be treated in the future work.
2018-08-23
Haq, M. S., Anwar, Z., Ahsan, A., Afzal, H..  2017.  Design pattern for secure object oriented information systems development. 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). :456–460.
There are many object oriented design patterns and frameworks; to make the Information System robust, scalable and extensible. The objected oriented patterns are classified in the category of creational, structural, behavioral, security, concurrency, and user interface, relational, social and distributed. All the above classified design pattern doesn't work to provide a pathway and standards to make the Information system, to fulfill the requirement of confidentiality, Integrity and availability. This research work will explore the gap and suggest possible object oriented design pattern focusing the information security perspectives of the information system. At application level; this object oriented design pattern/framework shall try to ensure the Confidentiality, Integrity and Availability of the information systems intuitively. The main objective of this research work is to create a theoretical background of object oriented framework and design pattern which ensure confidentiality, integrity and availability of the system developed through the object oriented paradigm.
2018-06-11
Sun, Yuanyuan, Hua, Yu, Liu, Xue, Cao, Shunde, Zuo, Pengfei.  2017.  DLSH: A Distribution-aware LSH Scheme for Approximate Nearest Neighbor Query in Cloud Computing. Proceedings of the 2017 Symposium on Cloud Computing. :242–255.
Cloud computing needs to process and analyze massive high-dimensional data in a real-time manner. Approximate queries in cloud computing systems can provide timely queried results with acceptable accuracy, thus alleviating the consumption of a large amount of resources. Locality Sensitive Hashing (LSH) is able to maintain the data locality and support approximate queries. However, due to randomly choosing hash functions, LSH has to use too many functions to guarantee the query accuracy. The extra computation and storage overheads exacerbate the real performance of LSH. In order to reduce the overheads and deliver high performance, we propose a distribution-aware scheme, called DLSH, to offer cost-effective approximate nearest neighbor query service for cloud computing. The idea of DLSH is to leverage the principal components of the data distribution as the projection vectors of hash functions in LSH, further quantify the weight of each hash function and adjust the interval value in each hash table. We then refine the queried result set based on the hit frequency to significantly decrease the time overhead of distance computation. Extensive experiments in a large-scale cloud computing testbed demonstrate significant improvements in terms of multiple system performance metrics. We have released the source code of DLSH for public use.