Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2018-01-23
Nicholas, Charles.  2017.  Document Engineering Issues in Malware Analysis. Proceedings of the 2017 ACM Symposium on Document Engineering. :3–3.
We present an overview of the field of malware analysis with emphasis on issues related to document engineering. We will introduce the field with a discussion of the types of malware, including executable binaries, malicious PDFs, polymorphic malware, ransomware, and exploit kits. We will conclude with our view of important research questions in the field. This is an updated version of last year's tutorial, with more information about web-based malware and malware targeting the Android market.
2018-06-11
Tacliad, Francisco, Nguyen, Thuy D., Gondree, Mark.  2017.  DoS Exploitation of Allen-Bradley's Legacy Protocol Through Fuzz Testing. Proceedings of the 3rd Annual Industrial Control System Security Workshop. :24–31.
EtherNet/IP is a TCP/IP-based industrial protocol commonly used in industrial control systems (ICS). TCP/IP connectivity to the outside world has enabled ICS operators to implement more agile practices, but it also has exposed these cyber-physical systems to cyber attacks. Using a custom Scapy-based fuzzer to test for implementation flaws in the EtherNet/IP software of commercial programmable logic controllers (PLC), we uncover a previously unreported denial-of-service (DoS) vulnerability in the Ethernet/IP implementation of the Rockwell Automation/Allen-Bradley MicroLogix 1100 PLC that, if exploited, can cause the PLC to fault. ICS-CERT recently announces this vulnerability in the security advisory ICSA-17-138-03. This paper describes this vulnerability, the development of an EtherNet/IP fuzzer, and an approach to remotely monitor for faults generated when fuzzing.
2018-05-02
Friebe, Sebastian, Florian, Martin.  2017.  DPS-Discuss: Demonstrating Decentralized, Pseudonymous, Sybil-resistant Communication. Proceedings of the SIGCOMM Posters and Demos. :74–75.
A current trend on the Internet is the increasing surveillance of its users. A few big service providers have divided most of the user-facing Internet between them, observing and recording the activities of their users to increase profits. Additionally, government agencies have been found to practice mass surveillance. With regard to this it becomes even more important to provide online services that protect the privacy of their users and avoid censorship by single, powerful entities. To reach these goals, a trusted third party should be avoided. A prototype service which fulfills these goals is DPS-Discuss, a decentralized, pseudonymous online discussion application. It uses the libraries BitNym and Peer-Tor-Peer for pseudonym management and anonymous communication.
Rein, Andre.  2017.  DRIVE: Dynamic Runtime Integrity Verification and Evaluation. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :728–742.
Classic security techniques use patterns (e.g., virus scanner) for detecting malicious software, compiler features (e.g., canaries, tainting) or hardware memory protection features (e.g., DEP) for protecting software. An alternative approach is the verification of software based on the comparison between the binary code loaded before runtime and the actual memory image during runtime. The expected memory image is predictable based on the ELF-file, the loading mechanism, and its allocated memory addresses. Using binary files as references for verifying the memory during execution allows for the definition of white-lists based on the actual software used. This enables a novel way of detecting sophisticated attacks to executed code, which is not considered by current approaches. This paper presents the background, design, implementation, and verification of a non-intrusive runtime memory verification concept, which is based on the comparison of binary executables and the actual memory image.
2018-06-11
Chole, Sharad, Fingerhut, Andy, Ma, Sha, Sivaraman, Anirudh, Vargaftik, Shay, Berger, Alon, Mendelson, Gal, Alizadeh, Mohammad, Chuang, Shang-Tse, Keslassy, Isaac et al..  2017.  dRMT: Disaggregated Programmable Switching. Proceedings of the Conference of the ACM Special Interest Group on Data Communication. :1–14.
We present dRMT (disaggregated Reconfigurable Match-Action Table), a new architecture for programmable switches. dRMT overcomes two important restrictions of RMT, the predominant pipeline-based architecture for programmable switches: (1) table memory is local to an RMT pipeline stage, implying that memory not used by one stage cannot be reclaimed by another, and (2) RMT is hardwired to always sequentially execute matches followed by actions as packets traverse pipeline stages. We show that these restrictions make it difficult to execute programs efficiently on RMT. dRMT resolves both issues by disaggregating the memory and compute resources of a programmable switch. Specifically, dRMT moves table memories out of pipeline stages and into a centralized pool that is accessible through a crossbar. In addition, dRMT replaces RMT's pipeline stages with a cluster of processors that can execute match and action operations in any order. We show how to schedule a P4 program on dRMT at compile time to guarantee deterministic throughput and latency. We also present a hardware design for dRMT and analyze its feasibility and chip area. Our results show that dRMT can run programs at line rate with fewer processors compared to RMT, and avoids performance cliffs when there are not enough processors to run a program at line rate. dRMT's hardware design incurs a modest increase in chip area relative to RMT, mainly due to the crossbar.
2018-05-02
Kirsch, Julian, Bierbaumer, Bruno, Kittel, Thomas, Eckert, Claudia.  2017.  Dynamic Loader Oriented Programming on Linux. Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium. :5:1–5:13.
Memory corruptions are still the most prominent venue to attack otherwise secure programs. In order to make exploitation of software bugs more difficult, defenders introduced a vast number of post corruption security mitigations, such as w⊕x memory, Stack Canaries, and Address Space Layout Randomization (ASLR), to only name a few. In the following, we describe the Wiedergänger1-Attack, a new attack vector that reliably allows to escalate unbounded array access vulnerabilities occurring in specifically allocated memory regions to full code execution on programs running on i386/x86\_64 Linux. Wiedergänger-attacks abuse determinism in Linux ASLR implementation combined with the fact that (even with protection mechanisms such as relro and glibc's pointer mangling enabled) there exist easy-to-hijack, writable (function) pointers in application memory. To discover such pointers, we use taint analysis and backwards slicing at the binary level and calculate an over-approximation of vulnerable instruction sequences. To show the relevance of Wiedergänger, we exploit one of the discovered instruction sequences to perform an attack on Debian 10 (Buster) by overwriting structures used by the dynamic loader (dl) that are present in any application with glibc and the dynamic loader as dependency. In order to show generality, we solely focus on data structures dispatched at program shutdown, as this is a point that arguably all applications eventually have to reach. This results in a reliable compromise that effectively bypasses all protection mechanisms deployed on x86\_64/i386 Linux to date. We believe Wiedergänger to be part of an under-researched type of control flow hijacking attacks targeting internal control structures of the dynamic loader for which we propose to use the terminology Loader Oriented Programming (LOP).
2018-03-19
Kabir, T., Adnan, M. A..  2017.  A Dynamic Searchable Encryption Scheme for Secure Cloud Server Operation Reserving Multi-Keyword Ranked Search. 2017 4th International Conference on Networking, Systems and Security (NSysS). :1–9.
Cloud computing is becoming more and more popular day by day due to its maintenance, multitenancy and performance. Data owners are motivated to outsource their data to the cloud servers for resource pooling and productivity where multiple users can work on the same data concurrently. These servers offer great convenience and reduced cost for the computation, storage and management of data. But concerns can persist for loss of control over certain sensitive information. The complexity of security is largely intensified when data is distributed over a greater number of devices and data is shared among unrelated users. So these sensitive data should be encrypted for solving these security issues that many consumers cannot afford to tackle. In this paper, we present a dynamic searchable encryption scheme whose update operation can be completed by cloud server while reserving the ability to support multi-keyword ranked search. We have designed a scheme where dynamic operations on data like insert, update and delete are performed by cloud server without decrypting the data. Thus this scheme not only ensures dynamic operations on data but also provides a secure technique by performing those tasks without decryption. The state-of-the-art methods let the data users retrieve the data, re-encrypt it under the new policy and then send it again to the cloud. But our proposed method saves this high computational overhead by reducing the burden of performing dynamic operation by the data owners. The secure and widely used TF × IDF model is used along with kNN algorithm for construction of the index and generation of the query. We have used a tree-based index structure, so our proposed scheme can achieve a sub-linear search time. We have conducted experiments on Amazon EC2 cloud server with three datasets by updating a file, appending a file and deleting a file from the document collection and compared our result with the state-of-the-art method. Results show th- t our scheme has an average running time of 42ms which is 75% less than the existing method.
2018-08-23
Zave, Pamela, Ferreira, Ronaldo A., Zou, Xuan Kelvin, Morimoto, Masaharu, Rexford, Jennifer.  2017.  Dynamic Service Chaining with Dysco. Proceedings of the Conference of the ACM Special Interest Group on Data Communication. :57–70.
Middleboxes are crucial for improving network security and performance, but only if the right traffic goes through the right middleboxes at the right time. Existing traffic-steering techniques rely on a central controller to install fine-grained forwarding rules in network elements—at the expense of a large number of rules, a central point of failure, challenges in ensuring all packets of a session traverse the same middleboxes, and difficulties with middleboxes that modify the "five tuple." We argue that a session-level protocol is a fundamentally better approach to traffic steering, while naturally supporting host mobility and multihoming in an integrated fashion. In addition, a session-level protocol can enable new capabilities like dynamic service chaining, where the sequence of middleboxes can change during the life of a session, e.g., to remove a load-balancer that is no longer needed, replace a middlebox undergoing maintenance, or add a packet scrubber when traffic looks suspicious. Our Dysco protocol steers the packets of a TCP session through a service chain, and can dynamically reconfigure the chain for an ongoing session. Dysco requires no changes to end-host and middlebox applications, host TCP stacks, or IP routing. Dysco's distributed reconfiguration protocol handles the removal of proxies that terminate TCP connections, middleboxes that change the size of a byte stream, and concurrent requests to reconfigure different parts of a chain. Through formal verification using Spin and experiments with our Linux-based prototype, we show that Dysco is provably correct, highly scalable, and able to reconfigure service chains across a range of middleboxes.
2018-06-07
Li, Lian, Lu, Yi, Xue, Jingling.  2017.  Dynamic Symbolic Execution for Polymorphism. Proceedings of the 26th International Conference on Compiler Construction. :120–130.
Symbolic execution is an important program analysis technique that provides auxiliary execution semantics to execute programs with symbolic rather than concrete values. There has been much recent interest in symbolic execution for automatic test case generation and security vulnerability detection, resulting in various tools being deployed in academia and industry. Nevertheless, (subtype or dynamic) polymorphism of object-oriented programs has been neglected: existing symbolic execution techniques can explore different targets of conditional branches but not different targets of method invocations. We address the problem of how this polymorphism can be expressed in a symbolic execution framework. We propose the notion of symbolic types, which make object types symbolic. With symbolic types,[ various targets of a method invocation can be explored systematically by mutating the type of the receiver object of the method during automatic test case generation. To the best of our knowledge, this is the first attempt to address polymorphism in symbolic execution. Mutation of method invocation targets is critical for effectively testing object-oriented programs, especially libraries. Our experimental results show that symbolic types are significantly more effective than existing symbolic execution techniques in achieving test coverage and finding bugs and security vulnerabilities in OpenJDK.
2018-05-02
Mathis, Björn.  2017.  Dynamic Tainting for Automatic Test Case Generation. Proceedings of the 26th ACM SIGSOFT International Symposium on Software Testing and Analysis. :436–439.
Dynamic tainting is an important part of modern software engineering research. State-of-the-art tools for debugging, bug detection and program analysis make use of this technique. Nonetheless, the research area based on dynamic tainting still has open questions, among others the automatic generation of program inputs. My proposed work concentrates on the use of dynamic tainting for test case generation. The goal is the generation of complex and valid test inputs from scratch. Therefore, I use byte level taint information enhanced with additional static and dynamic program analysis. This information is used in an evolutionary algorithm to create new offsprings and mutations. Concretely, instead of crossing and mutating the whole input randomly, taint information can be used to define which parts of the input have to be mutated. Furthermore, the taint information may also be used to define evolutionary operators. Eventually, the evolutionary algorithm is able to generate valid inputs for a program. Such inputs can be used together with the taint information for further program analysis, e.g. the generation of input grammars.
2018-06-07
Zantedeschi, Valentina, Nicolae, Maria-Irina, Rawat, Ambrish.  2017.  Efficient Defenses Against Adversarial Attacks. Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security. :39–49.
Following the recent adoption of deep neural networks (DNN) accross a wide range of applications, adversarial attacks against these models have proven to be an indisputable threat. Adversarial samples are crafted with a deliberate intention of undermining a system. In the case of DNNs, the lack of better understanding of their working has prevented the development of efficient defenses. In this paper, we propose a new defense method based on practical observations which is easy to integrate into models and performs better than state-of-the-art defenses. Our proposed solution is meant to reinforce the structure of a DNN, making its prediction more stable and less likely to be fooled by adversarial samples. We conduct an extensive experimental study proving the efficiency of our method against multiple attacks, comparing it to numerous defenses, both in white-box and black-box setups. Additionally, the implementation of our method brings almost no overhead to the training procedure, while maintaining the prediction performance of the original model on clean samples.
2017-12-20
Wampler, J. A., Hsieh, C., Toth, A..  2017.  Efficient distribution of fragmented sensor data for obfuscation. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :695–700.
The inherent nature of unattended sensors makes these devices most vulnerable to detection, exploitation, and denial in contested environments. Physical access is often cited as the easiest way to compromise any device or network. A new mechanism for mitigating these types of attacks developed under the Assistant Secretary of Defense for Research and Engineering, ASD(R&E) project, “Smoke Screen in Cyberspace”, was previously demonstrated in a live, over-the-air experiment. Smoke Screen encrypts, slices up, and disburses redundant fragments of files throughout the network. This paper describes enhancements to the disbursement of the file fragments routing improving the efficiency and time to completion of fragment distribution by defining the exact route, fragments should take to the destination. This is the first step in defining a custom protocol for the discovery of participating nodes and the efficient distribution of fragments in a mobile network. Future work will focus on the movement of fragments to avoid traffic analysis and avoid the collection of the entire fragment set that would enable an adversary to reconstruct the original piece of data.
Hirotomo, M., Nishio, Y., Kamizono, M., Fukuta, Y., Mohri, M., Shiraishi, Y..  2017.  Efficient Method for Analyzing Malicious Websites by Using Multi-Environment Analysis System. 2017 12th Asia Joint Conference on Information Security (AsiaJCIS). :48–54.
The malicious websites used by drive-by download attacks change their behavior for web client environments. To analyze the behavior of malicious websites, the single-environment analysis cannot obtain sufficient information. Hence, it is difficult to analyze the whole aspect of malicious websites. Also, the code obfuscation and cloaking are used in malicious websites to avoid to be analyzed their behavior. In this paper, we propose an analyzing method that combines decoding of the obfuscation code with dynamic analysis using multi-environment analysis system in order to analyze the behavior of the malicious websites in detail. Furthermore, we present two approaches to improve the multi-environment analysis. The first one is automation of traffic log analysis to reduce the cost of analyzing huge traffic logs between the environments and malicious websites. The second one is multimodal analysis for finding the URL of malicious websites.
2018-08-23
Ning, F., Wen, Y., Shi, G., Meng, D..  2017.  Efficient tamper-evident logging of distributed systems via concurrent authenticated tree. 2017 IEEE 36th International Performance Computing and Communications Conference (IPCCC). :1–9.
Secure logging as an indispensable part of any secure system in practice is well-understood by both academia and industry. However, providing security for audit logs on an untrusted machine in a large distributed system is still a challenging task. The emergence and wide availability of log management tools prompted plenty of work in the security community that allows clients or auditors to verify integrity of the log data. Most recent solutions to this problem focus on the space-efficiency or public verifiability of forward security. Unfortunately, existing secure audit logging schemes have significant performance limitations that make them impractical for realtime large-scale distributed applications: Existing cryptographic hashing is computationally expensive for logging in task intensive or resource-constrained systems especially to prove individual log events, while Merkle-tree approach has fundamental limitations when face with highly concurrent, large-scale log streams due to its serially appending feature. The verification step of Merkle-tree based approach requiring a logarithmic number of hash computations is becoming a bottleneck to improve the overall performance. There is a huge gap between the flux of log streams collected and the computational efficiency of integrity verification in the large-scale distributed systems. In this work, we develop a novel scheme, performance of which favorably compares with the existing solutions. The performance guarantees that we achieve stem from a novel data structure called concurrent authenticated tree, which allows log events concurrently appending and removes the need to wait for append operations to complete sequentially. We implement a prototype using chameleon hashing based on discrete log and Merkle history tree. A comprehensive experimental evaluation of the proposed and existing approaches is used to validate the analytical models and verify our claims. The results demonstrate that our proposed scheme verifying in a concurrent way is significantly more efficient than the previous tree-based approach.
2022-12-01
Bardia, Vivek, Kumar, CRS.  2017.  End Users Can Mitigate Zero Day Attacks Faster. 2017 IEEE 7th International Advance Computing Conference (IACC). :935—938.
The past decade has shown us the power of cyber space and we getting dependent on the same. The exponential evolution in the domain has attracted attackers and defenders of technology equally. This inevitable domain has led to the increase in average human awareness and knowledge too. As we see the attack sophistication grow the protectors have always been a step ahead mitigating the attacks. A study of the various Threat Detection, Protection and Mitigation Systems revealed to us a common similarity wherein users have been totally ignored or the systems rely heavily on the user inputs for its correct functioning. Compiling the above we designed a study wherein user inputs were taken in addition to independent Detection and Prevention systems to identify and mitigate the risks. This approach led us to a conclusion that involvement of users exponentially enhances machine learning and segments the data sets faster for a more reliable output.
2018-09-05
Doynikova, E., Kotenko, I..  2017.  Enhancement of probabilistic attack graphs for accurate cyber security monitoring. 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing, Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). :1–6.
Timely and adequate response on the computer security incidents depends on the accurate monitoring of the security situation. The paper investigates the task of refinement of the attack models in the form of attack graphs. It considers some challenges of attack graph generation and possible solutions, including: inaccuracies in specifying the pre- and postconditions of attack actions, processing of cycles in graphs to apply the Bayesian methods for attack graph analysis, mapping of incidents on attack graph nodes, and automatic countermeasure selection for the nodes under the risk. The software prototype that implements suggested solutions is briefly specified. The influence of the modifications on the security monitoring is shown on a case study, and the results of experiments are described.
2017-12-20
Dutta, R. G., Guo, Xiaolong, Zhang, Teng, Kwiat, K., Kamhoua, C., Njilla, L., Jin, Y..  2017.  Estimation of safe sensor measurements of autonomous system under attack. 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC). :1–6.
The introduction of automation in cyber-physical systems (CPS) has raised major safety and security concerns. One attack vector is the sensing unit whose measurements can be manipulated by an adversary through attacks such as denial of service and delay injection. To secure an autonomous CPS from such attacks, we use a challenge response authentication (CRA) technique for detection of attack in active sensors data and estimate safe measurements using the recursive least square algorithm. For demonstrating effectiveness of our proposed approach, a car-follower model is considered where the follower vehicle's radar sensor measurements are manipulated in an attempt to cause a collision.
2018-05-02
Dang, Hung, Huang, Yue, Chang, Ee-Chien.  2017.  Evading Classifiers by Morphing in the Dark. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :119–133.
Learning-based systems have been shown to be vulnerable to evasion through adversarial data manipulation. These attacks have been studied under assumptions that the adversary has certain knowledge of either the target model internals, its training dataset or at least classification scores it assigns to input samples. In this paper, we investigate a much more constrained and realistic attack scenario wherein the target classifier is minimally exposed to the adversary, revealing only its final classification decision (e.g., reject or accept an input sample). Moreover, the adversary can only manipulate malicious samples using a blackbox morpher. That is, the adversary has to evade the targeted classifier by morphing malicious samples "in the dark". We present a scoring mechanism that can assign a real-value score which reflects evasion progress to each sample based on the limited information available. Leveraging on such scoring mechanism, we propose an evasion method – EvadeHC? and evaluate it against two PDF malware detectors, namely PDFRate and Hidost. The experimental evaluation demonstrates that the proposed evasion attacks are effective, attaining 100% evasion rate on the evaluation dataset. Interestingly, EvadeHC outperforms the known classifier evasion techniques that operate based on classification scores output by the classifiers. Although our evaluations are conducted on PDF malware classifiers, the proposed approaches are domain agnostic and are of wider application to other learning-based systems.
2018-05-01
Eberz, Simon, Rasmussen, Kasper B., Lenders, Vincent, Martinovic, Ivan.  2017.  Evaluating Behavioral Biometrics for Continuous Authentication: Challenges and Metrics. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :386–399.
In recent years, behavioral biometrics have become a popular approach to support continuous authentication systems. Most generally, a continuous authentication system can make two types of errors: false rejects and false accepts. Based on this, the most commonly reported metrics to evaluate systems are the False Reject Rate (FRR) and False Accept Rate (FAR). However, most papers only report the mean of these measures with little attention paid to their distribution. This is problematic as systematic errors allow attackers to perpetually escape detection while random errors are less severe. Using 16 biometric datasets we show that these systematic errors are very common in the wild. We show that some biometrics (such as eye movements) are particularly prone to systematic errors, while others (such as touchscreen inputs) show more even error distributions. Our results also show that the inclusion of some distinctive features lowers average error rates but significantly increases the prevalence of systematic errors. As such, blind optimization of the mean EER (through feature engineering or selection) can sometimes lead to lower security. Following this result we propose the Gini Coefficient (GC) as an additional metric to accurately capture different error distributions. We demonstrate the usefulness of this measure both to compare different systems and to guide researchers during feature selection. In addition to the selection of features and classifiers, some non- functional machine learning methodologies also affect error rates. The most notable examples of this are the selection of training data and the attacker model used to develop the negative class. 13 out of the 25 papers we analyzed either include imposter data in the negative class or randomly sample training data from the entire dataset, with a further 6 not giving any information on the methodology used. Using real-world data we show that both of these decisions lead to significant underestimation of error rates by 63% and 81%, respectively. This is an alarming result, as it suggests that researchers are either unaware of the magnitude of these effects or might even be purposefully attempting to over-optimize their EER without actually improving the system.
2018-09-05
Hossain, M. A., Merrill, H. M., Bodson, M..  2017.  Evaluation of metrics of susceptibility to cascading blackouts. 2017 IEEE Power and Energy Conference at Illinois (PECI). :1–5.
In this paper, we evaluate the usefulness of metrics that assess susceptibility to cascading blackouts. The metrics are computed using a matrix of Line Outage Distribution Factors (LODF, or DFAX matrix). The metrics are compared for several base cases with different load levels of the Western Interconnection (WI). A case corresponding to the September 8, 2011 pre-blackout state is used to compute these metrics and relate them to the origin of the cascading blackout. The correlation between the proposed metrics is determined to check redundancy. The analysis is also used to find vulnerable and critical hot spots in the power system.
2018-04-04
Wei, Li, Tang, Yuxin, Cao, Yuching, Wang, Zhaohui, Gerla, Mario.  2017.  Exploring Simulation of Software-Defined Underwater Wireless Networks. Proceedings of the International Conference on Underwater Networks & Systems. :21:1–21:5.
Multi-modal communication methods have been proposed for underwater wireless networks (UWNs) to tackle the challenging physical characteristics of underwater wireless channels. These include the use of acoustic and optic technology for range-dependent transmissions. Software-defined networking (SDN) is an appealing choice for managing these networks with multi-modal communication capabilities, allowing for increased adaptability in the UWN design. In this work, we develop a simulation platform for software-defined underwater wireless networks (SDUWNs). Similarto OpenNet, this platform integrates Mininet with ns-3 via TapBridge modules. The multi-modal communication is implemented by equipping each ns-3 node with multiple net devices. Multiple channel modules connecting corresponding net devices are configured to reflect the channel characteristics. The proposed simulation platform is validated in a case study for oceanographic data collection.
Lan, T., Wang, W., Huang, G. M..  2017.  False data injection attack in smart grid topology control: Vulnerability and countermeasure. 2017 IEEE Power Energy Society General Meeting. :1–5.
Cyber security is a crucial factor for modern power system as many applications are heavily relied on the result of state estimation. Therefore, it is necessary to assess and enhance cyber security for new applications in power system. As an emerging technology, smart grid topology control has been investigated in stability and reliability perspectives while the associated cyber security issue is not studied before. In successful false data injection attack (FDIA) against AC state estimation, attacker could alter online stability check result by decreasing real power flow measurement on the switching target line to undermine physical system stability in topology control. The physical impact of FDIA on system control operation and stability are illustrated. The vulnerability is discussed on perfect FDIA and imperfect FDIA against residue based bad data detection and corresponding countermeasure is proposed to secure critical substations in the system. The vulnerability and countermeasure are demonstrated on IEEE 24 bus reliability test system (RTS).
2018-06-11
Atighetchi, Michael, Yaman, Fusun, Last, David, Paltzer, Captain Nicholas, Caiazzo, Meghan, Raio, Stephen.  2017.  A Flexible Approach Towards Security Validation. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :7–13.
Validating security properties of complex distributed systems is a challenging problem by itself, let alone when the work needs to be performed under tight budget and time constraints on prototype systems with components at various maturity levels. This paper described a tailored approach to security evaluations involving a strategic combination of model-based quantification, emulation, and logical argumentation. By customizing the evaluation to fit existing budget and timelines, validators can achieve the most appropriate validation process, trading off fidelity with coverage across a number of different defense components and different maturity levels. We successfully applied this process to the validation of an overlay proxy network, analyzing the impact of five different defense attributes (together with combinations thereof) on access path establishment and anonymity.
2018-09-28
Prabhakar, Pavithra, García Soto, Miriam.  2017.  Formal Synthesis of Stabilizing Controllers for Switched Systems. Proceedings of the 20th International Conference on Hybrid Systems: Computation and Control. :111–120.
In this paper, we describe an abstraction-based method for synthesizing a state-based switching control for stabilizing a family of dynamical systems. Given a set of dynamical systems and a set of polyhedral switching surfaces, the algorithm synthesizes a strategy that assigns to every surface the linear dynamics to switch to at the surface. Our algorithm constructs a finite game graph that consists of the switching surfaces as the existential nodes and the choices of the dynamics as the universal nodes. In addition, the edges capture quantitative information about the evolution of the distance of the state from the equilibrium point along the executions. A switching strategy for the family of dynamical systems is extracted by finding a strategy on the game graph which results in plays having a bounded weight. Such a strategy is obtained by reducing the problem to the strategy synthesis for an energy game, which is a well-studied problem in the literature. We have implemented our algorithm for polyhedral inclusion dynamics and linear dynamics. We illustrate our algorithm on examples from these two classes of systems.
2018-05-02
Pass, Rafael, Shi, Elaine.  2017.  FruitChains: A Fair Blockchain. Proceedings of the ACM Symposium on Principles of Distributed Computing. :315–324.
Nakamoto's famous blockchain protocol enables achieving consensus in a so-called permissionless setting—anyone can join (or leave) the protocol execution, and the protocol instructions do not depend on the identities of the players. His ingenious protocol prevents "sybil attacks" (where an adversary spawns any number of new players) by relying on computational puzzles (a.k.a. "moderately hard functions") introduced by Dwork and Naor (Crypto'92). Recent work by Garay et al (EuroCrypt'15) and Pass et al (manuscript, 2016) demonstrate that this protocol provably achieves consistency and liveness assuming a) honest players control a majority of the computational power in the network, b) the puzzle-hardness is appropriately set as a function of the maximum network delay and the total computational power of the network, and c) the computational puzzle is modeled as a random oracle. Assuming honest participation, however, is a strong assumption, especially in a setting where honest players are expected to perform a lot of work (to solve the computational puzzles). In Nakamoto's Bitcoin application of the blockchain protocol, players are incentivized to solve these puzzles by receiving rewards for every "block" (of transactions) they contribute to the blockchain. An elegant work by Eyal and Sirer (FinancialCrypt'14), strengthening and formalizing an earlier attack discussed on the Bitcoin forum, demonstrates that a coalition controlling even a minority fraction of the computational power in the network can gain (close to) 2 times its "fair share" of the rewards (and transaction fees) by deviating from the protocol instructions. In contrast, in a fair protocol, one would expect that players controlling a φ fraction of the computational resources to reap a φ fraction of the rewards. We present a new blockchain protocol—the FruitChain protocol—which satisfies the same consistency and liveness properties as Nakamoto's protocol (assuming an honest majority of the computing power), and additionally is δ-approximately fair: with overwhelming probability, any honest set of players controlling a φ fraction of computational power is guaranteed to get at least a fraction (1-δ)φ of the blocks (and thus rewards) in any Ω(κ/δ) length segment of the chain (where κ is the security parameter). Consequently, if this blockchain protocol is used as the ledger underlying a cryptocurrency system, where rewards and transaction fees are evenly distributed among the miners of blocks in a length κ segment of the chain, no coalition controlling less than a majority of the computing power can gain more than a factor (1+3δ) by deviating from the protocol (i.e., honest participation is an n/2-coalition-safe 3δ-Nash equilibrium). Finally, the FruitChain protocol enables decreasing the variance of mining rewards and as such significantly lessens (or even obliterates) the need for mining pools.