Biblio
Filters: Keyword is Metrics [Clear All Filters]
Security Analysis of Cordova Applications in Google Play. Proceedings of the 12th International Conference on Availability, Reliability and Security. :46:1–46:7.
.
2017. Mobile Cross-Platform Tools (CPTs) provide an alternative to native application development that allows mobile app developers to drastically reduce the development time and cost when targeting multiple platforms. They allow sharing a significant part of the application codebase between the implementations for the targeted platforms (e.g. Android, iOS, Windows Phone). Although CPTs provide significant benefits for developers, there can introduce several disadvantages. The CPT software layers and translation steps can impact the security of the produced applications. One of the most well-known and often-used CPTs is Cordova, formerly known as PhoneGap. Cordova has, over the years, taken several steps to reduce the attack surface and introduced several mechanisms that allow developers to increase the security of Cordova applications. This paper gives a statistical overview of the adoption of Cordova security best practices and mechanisms in Cordova applications downloaded from the Google Play Store. For the analysis, over a thousand Cordova application were downloaded. The research shows that the poor adoption of these mechanisms leads to a significant number of insecure Cordova applications.
Security beamforming algorithms in multibeam satellite systems. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :1272–1277.
.
2017. This paper investigates the physical layer security in a multibeam satellite communication system, where each legitimate user is surrounded by one eavesdropper. First of all, an optimization problem is formulated to maximize the sum of achievable secrecy rate, while satisfying the on-board satellite transmit power constraint. Then, two transmit beamforming(BF) schemes, namely, the zero-forcing (ZF) and the signal-to-leakage-and-noise ratio (SLNR) BF algorithms are proposed to obtain the BF weight vectors as well as power allocation coefficients. Finally, simulation results are provided to verify the validity of the two proposed methods and demonstrate that the SLNR BF algorithm outperforms the ZF BF algorithm.
Security in software-defined wireless sensor networks: Threats, challenges and potential solutions. 2017 IEEE 15th International Conference on Industrial Informatics (INDIN). :168–173.
.
2017. A Software-Defined Wireless Sensor Network (SD-WSN) is a recently developed model which is expected to play a large role not only in the development of the Internet of Things (IoT) paradigm but also as a platform for other applications such as smart water management. This model makes use of a Software-Defined Networking (SDN) approach to manage a Wireless Sensor Network (WSN) in order to solve most of the inherent issues surrounding WSNs. One of the most important aspects of any network, is security. This is an area that has received little attention within the development of SDWSNs, as most research addresses security concerns within SDN and WSNs independently. There is a need for research into the security of SDWSN. Some concepts from both SDN and WSN security can be adjusted to suit the SDWSN model while others cannot. Further research is needed into consolidating SDN and WSN security measures to consider security in SDWSN. Threats, challenges and potential solutions to securing SDWSN are presented by considering both the WSN and SDN paradigms.
Security of Okamoto Identification Scheme: A Defense Against Ephemeral Key Leakage and Setup. Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. :43–50.
.
2017. We consider the situation, where an adversary may learn the ephemeral values used by the prover within an identification protocol, aiming to get the secret keys of the user, or just to impersonate the prover subsequently. Unfortunately, most classical cryptographic identification protocols are exposed to such attacks, which might be quite realistic in case of software implementations. According to a recent proposal from SECIT-2017, we regard a scheme to be secure, if a malicious verifier, allowed to set the prover's ephemerals in the query stage, cannot impersonate the prover later on. We focus on the Okamoto Identification Scheme (IS), and show how to make it immune to the threats described above. Via reduction to the GDH Problem, we provide security guarantees in case of insufficient control over the unit executing Okamoto identification protocol (the standard Okamoto protocol is insecure in this situation).
Security sandbox model for modern web environment. 2017 International Conference on Nascent Technologies in Engineering (ICNTE). :1–6.
.
2017. We require a very good technical knowledge to create automated tests to exploit the browser vulnerabilities. It is usually a combination of technical abilities and set of specific tools. Security concerns is of prime importance when it comes to web browsers. Attacks during surfing, executing any downloaded file and while transmission are very frequent these days and hence all browsers need to be hardened to ensure security. Sandbox is one of the feature where we can prevent malicious applications to run directly on hardware. It is an environment where new or non-trusted applications are executed. Many leading web browsers are trying their level best to implement sandbox. In this paper, we have mentioned the basic necessity of sandbox, current implementations in different web browsers and also present a self-proposed approach.
Security-reliability tradeoff for cooperative multi-relay and jammer selection in Nakagami-m fading channels. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :181–186.
.
2017. In this paper, we analyze the security-reliability tradeoff (SRT) performance of the multi-relay cooperative networks over Nakagami-m fading channels. By considering the reliability of the first phase from the source to relay, a cooperative jamming (CJ) assisted secure transmission scheme is investigated to improve the security performance of the considered system. Specifically, we derive the approximate closed-form expression of the outage probability (OP) and exact closed-form expression of the intercepted probability (IP) for the CJ scheme to evaluate the SRT performance of the system. Finally, the simulation results verify the validity of our theoretical derivations and the advantage of the CJ scheme compared to the traditional scheme with no cooperative jammer.
Semi-Relaxation Supervised Hashing for Cross-Modal Retrieval. Proceedings of the 2017 ACM on Multimedia Conference. :1762–1770.
.
2017. Recently, some cross-modal hashing methods have been devised for cross-modal search task. Essentially, given a similarity matrix, most of these methods tackle a discrete optimization problem by separating it into two stages, i.e., first relaxing the binary constraints and finding a solution of the relaxed optimization problem, then quantizing the solution to obtain the binary codes. This scheme will generate large quantization error. Some discrete optimization methods have been proposed to tackle this; however, the generation of the binary codes is independent of the features in the original space, which makes it not robust to noise. To consider these problems, in this paper, we propose a novel supervised cross-modal hashing method—Semi-Relaxation Supervised Hashing (SRSH). It can learn the hash functions and the binary codes simultaneously. At the same time, to tackle the optimization problem, it relaxes a part of binary constraints, instead of all of them, by introducing an intermediate representation variable. By doing this, the quantization error can be reduced and the optimization problem can also be easily solved by an iterative algorithm proposed in this paper. Extensive experimental results on three benchmark datasets demonstrate that SRSH can obtain competitive results and outperform state-of-the-art unsupervised and supervised cross-modal hashing methods.
Sensitive and Scalable Online Evaluation with Theoretical Guarantees. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :77–86.
.
2017. Multileaved comparison methods generalize interleaved comparison methods to provide a scalable approach for comparing ranking systems based on regular user interactions. Such methods enable the increasingly rapid research and development of search engines. However, existing multileaved comparison methods that provide reliable outcomes do so by degrading the user experience during evaluation. Conversely, current multileaved comparison methods that maintain the user experience cannot guarantee correctness. Our contribution is two-fold. First, we propose a theoretical framework for systematically comparing multileaved comparison methods using the notions of considerateness, which concerns maintaining the user experience, and fidelity, which concerns reliable correct outcomes. Second, we introduce a novel multileaved comparison method, Pairwise Preference Multileaving (PPM), that performs comparisons based on document-pair preferences, and prove that it is considerate and has fidelity. We show empirically that, compared to previous multileaved comparison methods, PPM is more sensitive to user preferences and scalable with the number of rankers being compared.
Sensor data validation and abnormal behavior detection in the Internet of Things. 2017 16th RoEduNet Conference: Networking in Education and Research (RoEduNet). :1–5.
.
2017. Internet of Things (IoT) and its various application domains are radically changing the lives of people, providing smart services which will ultimately constitute integral components of the living environment. The services of IoT operate based on the data flows collected from the different sensors and actuators. In this respect, the correctness and security of the sensor data transported over the IoT system is a crucial factor in ensuring the correct functioning of the IoT services. In this work, we present a method that can detect abnormal sensor events based on “apriori” knowledge of the behavior of the monitored process. The main advantage of the proposed methodology is that it builds on well-established theoretical works, while delivering a practical technique with low computational requirements. As a result, the developed technique can be hosted on various components of an IoT system. The developed approach is evaluated through real-world use-cases.
Signal Distribution Optimization for Cabin Visible Light Communications by Using Weighted Search Bat Algorithm. 2017 3rd IEEE International Conference on Computer and Communications (ICCC). :1025–1030.
.
2017. With increasing demand for travelling, high-quality network service is important to people in vehicle cabins. Visible light communication (VLC) system is more appropriate than wireless local area network considering the security, communication speed, and narrow shape of the cabin. However, VLC exhibits technical limitations, such as uneven distribution of optical signals. In this regard, we propose a novel weight search bat algorithm (WSBA) to calculate a set of optimal power adjustment factors to reduce fluctuation in signal distributions. Simulation results show that the fairness of signal distribution in the cabin optimized by WSBA is better than that of the non-optimized signal distribution. Moreover, the coverage rate of WSBA is higher than that of genetic algorithm and particle swarm optimization.
SlowFuzz: Automated Domain-Independent Detection of Algorithmic Complexity Vulnerabilities. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :2155–2168.
.
2017. Algorithmic complexity vulnerabilities occur when the worst-case time/space complexity of an application is significantly higher than the respective average case for particular user-controlled inputs. When such conditions are met, an attacker can launch Denial-of-Service attacks against a vulnerable application by providing inputs that trigger the worst-case behavior. Such attacks have been known to have serious effects on production systems, take down entire websites, or lead to bypasses of Web Application Firewalls. Unfortunately, existing detection mechanisms for algorithmic complexity vulnerabilities are domain-specific and often require significant manual effort. In this paper, we design, implement, and evaluate SlowFuzz, a domain-independent framework for automatically finding algorithmic complexity vulnerabilities. SlowFuzz automatically finds inputs that trigger worst-case algorithmic behavior in the tested binary. SlowFuzz uses resource-usage-guided evolutionary search techniques to automatically find inputs that maximize computational resource utilization for a given application. We demonstrate that SlowFuzz successfully generates inputs that match the theoretical worst-case performance for several well-known algorithms. SlowFuzz was also able to generate a large number of inputs that trigger different algorithmic complexity vulnerabilities in real-world applications, including various zip parsers used in antivirus software, regular expression libraries used in Web Application Firewalls, as well as hash table implementations used in Web applications. In particular, SlowFuzz generated inputs that achieve 300-times slowdown in the decompression routine of the bzip utility, discovered regular expressions that exhibit matching times exponential in the input size, and also managed to automatically produce inputs that trigger a high number of collisions in PHP's default hashtable implementation.
Spectrum-based Deep Neural Networks for Fraud Detection. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. :2419–2422.
.
2017. In this paper, we focus on fraud detection on a signed graph with only a small set of labeled training data. We propose a novel framework that combines deep neural networks and spectral graph analysis. In particular, we use the node projection (called as spectral coordinate) in the low dimensional spectral space of the graph's adjacency matrix as the input of deep neural networks. Spectral coordinates in the spectral space capture the most useful topology information of the network. Due to the small dimension of spectral coordinates (compared with the dimension of the adjacency matrix derived from a graph), training deep neural networks becomes feasible. We develop and evaluate two neural networks, deep autoencoder and convolutional neural network, in our fraud detection framework. Experimental results on a real signed graph show that our spectrum based deep neural networks are effective in fraud detection.
Spinner: Semi-Automatic Detection of Pinning Without Hostname Verification. Proceedings of the 33rd Annual Computer Security Applications Conference. :176–188.
.
2017. Certificate verification is a crucial stage in the establishment of a TLS connection. A common security flaw in TLS implementations is the lack of certificate hostname verification but, in general, this is easy to detect. In security-sensitive applications, the usage of certificate pinning is on the rise. This paper shows that certificate pinning can (and often does) hide the lack of proper hostname verification, enabling MITM attacks. Dynamic (black-box) detection of this vulnerability would typically require the tester to own a high security certificate from the same issuer (and often same intermediate CA) as the one used by the app. We present Spinner, a new tool for black-box testing for this vulnerability at scale that does not require purchasing any certificates. By redirecting traffic to websites which use the relevant certificates and then analysing the (encrypted) network traffic we are able to determine whether the hostname check is correctly done, even in the presence of certificate pinning. We use Spinner to analyse 400 security-sensitive Android and iPhone apps. We found that 9 apps had this flaw, including two of the largest banks in the world: Bank of America and HSBC. We also found that TunnelBear, one of the most popular VPN apps was also vulnerable. These apps have a joint user base of tens of millions of users.
STACCO: Differentially Analyzing Side-Channel Traces for Detecting SSL/TLS Vulnerabilities in Secure Enclaves. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :859–874.
.
2017. Intel Software Guard Extension (SGX) offers software applications a shielded execution environment, dubbed enclave, to protect their confidentiality and integrity from malicious operating systems. As processors with this extended feature become commercially available, many new software applications are developed to enrich to the SGX-enabled ecosystem. One important primitive for these applications is a secure communication channel between the enclave and a remote trusted party. The SSL/TLS protocol, which is the de facto standard for protecting transport-layer network communications, has been broadly regarded a natural choice for such purposes. However, in this paper, we show that the marriage between SGX and SSL may not be smooth sailing. Particularly, we consider a category of side-channel attacks against SSL/TLS implementations in secure enclaves, which we call the control-flow inference attacks. In these attacks, the malicious operating system kernel may perform a powerful man-in-the-kernel attack to collect execution traces of the enclave programs at the page level, the cacheline level, or the branch level, while positioning itself in the middle of the two communicating parties. At the center of our work is a differential analysis framework, dubbed Stacco, to dynamically analyze the SSL/TLS implementations and detect vulnerabilities-discernible execution traces-that can be exploited as decryption oracles. Surprisingly, in spite of the prevailing constant-time programming paradigm adopted by many cryptographic libraries, we found exploitable vulnerabilities in the latest versions of all the SSL/TLS libraries we have examined. To validate the detected vulnerabilities, we developed a man-in-the-kernel adversary to demonstrate Bleichenbacher attacks against the latest OpenSSL library running in the SGX enclave (with the help of Graphene) and completely broke the PreMasterSecret encrypted by a 4096-bit RSA public key with only 57286 queries. We also conducted CBC padding oracle attacks against the latest GnuTLS running in Graphene-SGX and an open-source SGX implementation of mbedTLS (i.e., mbedTLS-SGX) that runs directly inside the enclave, and showed that it only needs 48388 and 25717 queries, respectively, to break one block of AES ciphertext. Empirical evaluation suggests these man-in-the-kernel attacks can be completed within 1 or 2 hours. Our results reveal the insufficient understanding of side-channel security in SGX settings, and our study will provoke discussions on the secure implementation and adoption of SSL/TLS in secure enclaves.
Study of secure boot with a FPGA-based IoT device. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1053–1056.
.
2017. Internet of Things (loT) is network connected “Things” such as vehicles, buildings, embedded systems, sensors, as well as people. IoT enables these objects to collect and exchange data of interest to complete various tasks including patient health monitoring, environmental monitoring, system condition prognostics and prediction, smart grid, smart buildings, smart cities, and do on. Due to the large scale of and the limited host processor computation power in an IoT system, effective security provisioning is shifting from software-based security implementation to hardware-based security implementation in terms of efficiency and effectiveness. Moreover, FPGA can take over the work of infrastructure components to preserve and protect critical components and minimize the negative impacts on these components. In this paper, we employ Xilinx Zynq-7000 Series System-on-Chip (SoC) ZC706 prototype board to design an IoT device. To defend against threats to FPGA design, we have studied Zynq-ZC706 to (1) encrypt FPGA bitstream to protect the IoT device from bitstream decoding; (2) encrypt system boot image to enhance system security; and (3) ensure the FPGA operates correctly as intended via authentication to avoid spoofing and Trojan Horse attacks.
A Study of Security Vulnerabilities on Docker Hub. Proceedings of the Seventh ACM on Conference on Data and Application Security and Privacy. :269–280.
.
2017. Docker containers have recently become a popular approach to provision multiple applications over shared physical hosts in a more lightweight fashion than traditional virtual machines. This popularity has led to the creation of the Docker Hub registry, which distributes a large number of official and community images. In this paper, we study the state of security vulnerabilities in Docker Hub images. We create a scalable Docker image vulnerability analysis (DIVA) framework that automatically discovers, downloads, and analyzes both official and community images on Docker Hub. Using our framework, we have studied 356,218 images and made the following findings: (1) both official and community images contain more than 180 vulnerabilities on average when considering all versions; (2) many images have not been updated for hundreds of days; and (3) vulnerabilities commonly propagate from parent images to child images. These findings demonstrate a strong need for more automated and systematic methods of applying security updates to Docker images and our current Docker image analysis framework provides a good foundation for such automatic security update. This article is summarized in: the morning paper an interesting/influential/important paper from the world of CS every weekday morning, as selected by Adrian Colyer
STYX: A Trusted and Accelerated Hierarchical SSL Key Management and Distribution System for Cloud Based CDN Application. Proceedings of the 2017 Symposium on Cloud Computing. :201–213.
.
2017. Protecting the customer's SSL private key is the paramount issue to persuade the website owners to migrate their contents onto the cloud infrastructure, besides the advantages of cloud infrastructure in terms of flexibility, efficiency, scalability and elasticity. The emerging Keyless SSL solution retains on-premise custody of customers' SSL private keys on their own servers. However, it suffers from significant performance degradation and limited scalability, caused by the long distance connection to Key Server for each new coming end-user request. The performance improvements using persistent session and key caching onto cloud will degrade the key invulnerability and discourage the website owners because of the cloud's security bugs. In this paper, the challenges of secured key protection and distribution are addressed in philosophy of "Storing the trusted DATA on untrusted platform and transmitting through untrusted channel". To this end, a three-phase hierarchical key management scheme, called STYX1 is proposed to provide the secured key protection together with hardware assisted service acceleration for cloud-based content delivery network (CCDN) applications. The STYX is implemented based on Intel Software Guard Extensions (SGX), Intel QuickAssist Technology (QAT) and SIGMA (SIGn-and-MAc) protocol. STYX can provide the tight key security guarantee by SGX based key distribution with a light overhead, and it can further significantly enhance the system performance with QAT based acceleration. The comprehensive evaluations show that the STYX not only guarantees the absolute security but also outperforms the direct HTTPS server deployed CDN without QAT by up to 5x throughput with significant latency reduction at the same time.
Tamper Resistance Evaluation of PUF Implementation Against Machine Learning Attack. Proceedings of the 2017 International Conference on Biometrics Engineering and Application. :1–6.
.
2017. Recently, the semiconductor counterfeiting has become a serious problem. To counter this problem, Physical Unclonable Function (PUF) has been attracted attention. However, the risk of machine learning attacks for PUF is pointed out. To verify the safety of PUF, the evaluation (tamper resistance) against machine learning attacks in the difference of PUF implementations is very important. However, the tamper resistance evaluation in the difference of PUF implementation has barely been reported. Therefore, this study evaluates the tamper resistance of PUF in the difference of field programmable gate array (FPGA) implementations against machine learning attacks. Experiments using an FPGA clarified the arbiter PUF of the lookup table implementation has the tamper resistance against machine learning attacks.
Target Generation for Internet-wide IPv6 Scanning. Proceedings of the 2017 Internet Measurement Conference. :242–253.
.
2017. Fast IPv4 scanning has enabled researchers to answer a wealth of new security and measurement questions. However, while increased network speeds and computational power have enabled comprehensive scans of the IPv4 address space, a brute-force approach does not scale to IPv6. Systems are limited to scanning a small fraction of the IPv6 address space and require an algorithmic approach to determine a small set of candidate addresses to probe. In this paper, we first explore the considerations that guide designing such algorithms. We introduce a new approach that identifies dense address space regions from a set of known "seed" addresses and generates a set of candidates to scan. We compare our algorithm 6Gen against Entropy/IP—the current state of the art—finding that we can recover between 1–8 times as many addresses for the five candidate datasets considered in the prior work. However, during our analysis, we uncover widespread IP aliasing in IPv6 networks. We discuss its effect on target generation and explore preliminary approaches for detecting aliased regions.
TLS Connection Validation by Web Browsers: Why do Web Browsers Still Not Agree? 2017 IEEE 41st Annual Computer Software and Applications Conference (COMPSAC). 1:665–674.
.
2017. The TLS protocol is the primary technology used for securing web transactions. It is based on X.509 certificates that are used for binding the identity of web servers' owners to their public keys. Web browsers perform the validation of X.509 certificates on behalf of Web users. Our previous research in 2009 showed that the validation process of Web browsers is inconsistent and flawed. We showed how this situation might have a negative impact on Web users. From 2009 until now, many new X.509 related standards have been created or updated. In this paper, we performed an increased set of experiments over our 2009 study in order to highlight the improvements and/or regressions in Web browsers' behaviours.
Towards an Efficient File Synchronization between Digital Safes. 2017 IEEE 31st International Conference on Advanced Information Networking and Applications (AINA). :136–143.
.
2017. One of the main concerns of Cloud storage solutions is to offer the availability to the end user. Thus, addressing the mobility needs and device's variety has emerged as a major challenge. At first, data should be synchronized automatically and continuously when the user moves from one equipment to another. Secondly, the Cloud service should offer to the owner the possibility to share data with specific users. The paper's goal is to develop a secure framework that ensures file synchronization with high quality and minimal resource consumption. As a first step towards this goal, we propose the SyncDS protocol with its associated architecture. The synchronization protocol efficiency raises through the choice of the used networking protocol as well as the strategy of changes detection between two versions of file systems located in different devices. Our experiment results show that adopting the Hierarchical Hash Tree to detect the changes between two file systems and adopting the WebSocket protocol for the data exchanges improve the efficiency of the synchronization protocol.
Towards Formal Security Analysis of Industrial Control Systems. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :114–126.
.
2017. We discuss the use of formal modeling to discover potential attacks on Cyber-Physical systems, in particular Industrial Control Systems. We propose a general approach to achieve that goal considering physical-layer interactions, time and state discretization of the physical process and logic, and the use of suitable attacker profiles. We then apply the approach to model a real-world water treatment testbed using ASLan++ and analyze the resulting transition system using CL-AtSe, identifying four attack classes. To show that the attacks identified by our formal assessment represent valid attacks, we compare them against practical attacks on the same system found independently by six teams from industry and academia. We find that 7 out of the 8 practical attacks were also identified by our formal assessment. We discuss limitations resulting from our chosen level of abstraction, and a number of modeling shortcuts to reduce the runtime of the analysis.
Towards New Metrics for High-Performance Computing Resilience. Proceedings of the 2017 Workshop on Fault-Tolerance for HPC at Extreme Scale. :23–30.
.
2017. Ensuring the reliability of applications is becoming an increasingly important challenge as high-performance computing (HPC) systems experience an ever-growing number of faults, errors and failures. While the HPC community has made substantial progress in developing various resilience solutions, it continues to rely on platform-based metrics to quantify application resiliency improvements. The resilience of an HPC application is concerned with the reliability of the application outcome as well as the fault handling efficiency. To understand the scope of impact, effective coverage and performance efficiency of existing and emerging resilience solutions, there is a need for new metrics. In this paper, we develop new ways to quantify resilience that consider both the reliability and the performance characteristics of the solutions from the perspective of HPC applications. As HPC systems continue to evolve in terms of scale and complexity, it is expected that applications will experience various types of faults, errors and failures, which will require applications to apply multiple resilience solutions across the system stack. The proposed metrics are intended to be useful for understanding the combined impact of these solutions on an application's ability to produce correct results and to evaluate their overall impact on an application's performance in the presence of various modes of faults.
Towards Realistic Threat Modeling: Attack Commodification, Irrelevant Vulnerabilities, and Unrealistic Assumptions. Proceedings of the 2017 Workshop on Automated Decision Making for Active Cyber Defense. :23–26.
.
2017. Current threat models typically consider all possible ways an attacker can penetrate a system and assign probabilities to each path according to some metric (e.g. time-to-compromise). In this paper we discuss how this view hinders the realness of both technical (e.g. attack graphs) and strategic (e.g. game theory) approaches of current threat modeling, and propose to steer away by looking more carefully at attack characteristics and attacker environment. We use a toy threat model for ICS attacks to show how a realistic view of attack instances can emerge from a simple analysis of attack phases and attacker limitations.
Unphotogenic Light: High-Speed Projection Method to Prevent Secret Photography by Small Cameras. ACM SIGGRAPH 2017 Posters. :65:1–65:2.
.
2017. We present a new method to protect projected content from secret photography using high-speed projection. Protection techniques for digital copies have been discussed over many years from the viewpoint of data protection. However, content displayed by general display techniques is not only visible to the human eye but also can be captured by cameras. Therefore, projected content is, at times, secretly taken by malicious small cameras even when protection techniques for digital copies are adopted. In this study, we aim to realize a protectable projection method that allows people to observe content with their eyes but not record content with camera devices.