Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2018-03-05
Wang, W., Hussein, N., Gupta, A., Wang, Y..  2017.  A Regression Model Based Approach for Identifying Security Requirements in Open Source Software Development. 2017 IEEE 25th International Requirements Engineering Conference Workshops (REW). :443–446.

There are several security requirements identification methods proposed by researchers in up-front requirements engineering (RE). However, in open source software (OSS) projects, developers use lightweight representation and refine requirements frequently by writing comments. They also tend to discuss security aspect in comments by providing code snippets, attachments, and external resource links. Since most security requirements identification methods in up-front RE are based on textual information retrieval techniques, these methods are not suitable for OSS projects or just-in-time RE. In our study, we propose a new model based on logistic regression to identify security requirements in OSS projects. We used five metrics to build security requirements identification models and tested the performance of these metrics by applying those models to three OSS projects. Our results show that four out of five metrics achieved high performance in intra-project testing.

2018-02-21
Ristov, P., Mišković, T., Mrvica, A., Markić, Z..  2017.  Reliability, availability and security of computer systems supported by RFID technology. 2017 40th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). :1459–1464.

The implementation of RFID technology in computer systems gives access to quality information on the location or object tracking in real time, thereby improving workflow and lead to safer, faster and better business decisions. This paper discusses the quantitative indicators of the quality of the computer system supported by RFID technology applied in monitoring facilities (pallets, packages and people) marked with RFID tag. Results of analysis of quantitative indicators of quality compute system supported by RFID technology are presented in tables.

2018-03-26
Mihindukulasooriya, Nandana, Rico, Mariano, Santana-Pérez, Idafen, Garc\'ıa-Castro, Raúl, Gómez-Pérez, Asunción.  2017.  Repairing Hidden Links in Linked Data: Enhancing the Quality of RDF Knowledge Graphs. Proceedings of the Knowledge Capture Conference. :6:1–6:8.

Knowledge Graphs (KG) are becoming core components of most artificial intelligence applications. Linked Data, as a method of publishing KGs, allows applications to traverse within, and even out of, the graph thanks to global dereferenceable identifiers denoting entities, in the form of IRIs. However, as we show in this work, after analyzing several popular datasets (namely DBpedia, LOD Cache, and Web Data Commons JSON-LD data) many entities are being represented using literal strings where IRIs should be used, diminishing the advantages of using Linked Data. To remedy this, we propose an approach for identifying such strings and replacing them with their corresponding entity IRIs. The proposed approach is based on identifying relations between entities based on both ontological axioms as well as data profiling information and converting strings to entity IRIs based on the types of entities linked by each relation. Our approach showed 98% recall and 76% precision in identifying such strings and 97% precision in converting them to their corresponding IRI in the considered KG. Further, we analyzed how the connectivity of the KG is increased when new relevant links are added to the entities as a result of our method. Our experiments on a subset of the Spanish DBpedia data show that it could add 25% more links to the KG and improve the overall connectivity by 17%.

2018-04-30
Korczynski, M., Tajalizadehkhoob, S., Noroozian, A., Wullink, M., Hesselman, C., v Eeten, M..  2017.  Reputation Metrics Design to Improve Intermediary Incentives for Security of TLDs. 2017 IEEE European Symposium on Security and Privacy (EuroS P). :579–594.

Over the years cybercriminals have misused the Domain Name System (DNS) - a critical component of the Internet - to gain profit. Despite this persisting trend, little empirical information about the security of Top-Level Domains (TLDs) and of the overall 'health' of the DNS ecosystem exists. In this paper, we present security metrics for this ecosystem and measure the operational values of such metrics using three representative phishing and malware datasets. We benchmark entire TLDs against the rest of the market. We explicitly distinguish these metrics from the idea of measuring security performance, because the measured values are driven by multiple factors, not just by the performance of the particular market player. We consider two types of security metrics: occurrence of abuse and persistence of abuse. In conjunction, they provide a good understanding of the overall health of a TLD. We demonstrate that attackers abuse a variety of free services with good reputation, affecting not only the reputation of those services, but of entire TLDs. We find that, when normalized by size, old TLDs like .com host more bad content than new generic TLDs. We propose a statistical regression model to analyze how the different properties of TLD intermediaries relate to abuse counts. We find that next to TLD size, abuse is positively associated with domain pricing (i.e. registries who provide free domain registrations witness more abuse). Last but not least, we observe a negative relation between the DNSSEC deployment rate and the count of phishing domains.

2018-05-30
Li, F., Chen, J., Shu, F., Zhang, J., Qing, S., Guo, W..  2017.  Research of Security Risk in Electric Power Information Network. 2017 6th International Conference on Computer Science and Network Technology (ICCSNT). :361–365.

The factors that threaten electric power information network are analyzed. Aiming at the weakness of being unable to provide numerical value of risk, this paper presents the evaluation index system, the evaluation model and method of network security based on multilevel fuzzy comprehensive judgment. The steps and method of security evaluation by the synthesis evaluation model are provided. The results show that this method is effective to evaluate the risk of electric power information network.

2018-04-02
Gao, Y., Luo, T., Li, J., Wang, C..  2017.  Research on K Anonymity Algorithm Based on Association Analysis of Data Utility. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC). :426–432.

More and more medical data are shared, which leads to disclosure of personal privacy information. Therefore, the construction of medical data privacy preserving publishing model is of great value: not only to make a non-correspondence between the released information and personal identity, but also to maintain the data utility after anonymity. However, there is an inherent contradiction between the anonymity and the data utility. In this paper, a Principal Component Analysis-Grey Relational Analysis (PCA-GRA) K anonymous algorithm is proposed to improve the data utility effectively under the premise of anonymity, in which the association between quasi-identifiers and the sensitive information is reckoned as a criterion to control the generalization hierarchy. Compared with the previous anonymity algorithms, results show that the proposed PCA-GRA K anonymous algorithm has achieved significant improvement in data utility from three aspects, namely information loss, feature maintenance and classification evaluation performance.

2017-12-12
Fang, X., Yang, G., Wu, Y..  2017.  Research on the Underlying Method of Elliptic Curve Cryptography. 2017 4th International Conference on Information Science and Control Engineering (ICISCE). :639–643.

Elliptic Curve Cryptography (ECC) is a promising public key cryptography, probably takes the place of RSA. Not only ECC uses less memory, key pair generation and signing are considerably faster, but also ECC's key size is less than that of RSA while it achieves the same level of security. However, the magic behind RSA and its friends can be easily explained, is also widely understood, the foundations of ECC are still a mystery to most of us. This paper's aims are to provide detailed mathematical foundations of ECC, especially, the subgroup and its generator (also called base point) formed by one elliptic curve are researched as highlights, because they are very important for practical ECC implementation. The related algorithms and their implementation details are demonstrated, which is useful for the computing devices with restricted resource, such as embedded systems, mobile devices and IoT devices.

2018-12-03
Yang, Ruilan, Yu, Xuejun.  2017.  Research on Way of Evaluating Cloud End User Behavior's Credibility Based on the Methodology of Multilevel Fuzzy Comprehensive Evaluation. Proceedings of the 6th International Conference on Software and Computer Applications. :165–170.

The development of cloud computing technology and the popularization of cloud services have a great impact on the industry. On the one hand, cloud technology enhances network's operation efficiency and reduces the cost. On the other hand, the cloud resource can be accessed by any network equipment. It increases the chances that the identity of user is misrepresented and then led to many security problems. Therefore, the actual needs of security can't be fully satisfied with controlling the malicious user access to the cloud resource by login authentication that relies solely on current user identity. User is the requester and provider of cloud resources. User behavior's credibility relates to the safety of cloud directly. So it's very important to evaluate whether user behaviors can be trusted or not on cloud. In this paper, the method is studied based on the multilevel fuzzy comprehensive evaluation. And in this evaluation study, indicators of user behavior credibility are carried on a thorough discussion.

2018-03-05
Jin, Hongyu, Papadimitratos, Panos.  2017.  Resilient Privacy Protection for Location-Based Services Through Decentralization. Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks. :253–258.

Location-based Services (LBSs) provide valuable features but can also reveal sensitive user information. Decentralized privacy protection removes the need for a so-called anonymizer, but relying on peers is a double-edged sword: adversaries could mislead with fictitious responses or even collude to compromise their peers' privacy. We address here exactly this problem: we strengthen the decentralized LBS privacy approach, securing peer-to-peer (P2P) interactions. Our scheme can provide precise timely P2P responses by passing proactively cached Point of Interest (POI) information. It reduces the exposure both to the honest-but-curious LBS servers and peer nodes. Our scheme allows P2P responses to be validated with very low fraction of queries affected even if a significant fraction of nodes are compromised. The exposure can be kept very low even if the LBS server or a large set of colluding curious nodes collude with curious identity management entities.

2018-05-30
Mohaisen, Aziz, Al-Ibrahim, Omar, Kamhoua, Charles, Kwiat, Kevin, Njilla, Laurent.  2017.  Rethinking Information Sharing for Threat Intelligence. Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies. :6:1–6:7.

In the past decade, the information security and threat landscape has grown significantly making it difficult for a single defender to defend against all attacks at the same time. This called for introducing information sharing, a paradigm in which threat indicators are shared in a community of trust to facilitate defenses. Standards for representation, exchange, and consumption of indicators are proposed in the literature, although various issues are undermined. In this paper, we take the position of rethinking information sharing for actionable intelligence, by highlighting various issues that deserve further exploration. We argue that information sharing can benefit from well-defined use models, threat models, well-understood risk by measurement and robust scoring, well-understood and preserved privacy and quality of indicators and robust mechanism to avoid free riding behavior of selfish agents. We call for using the differential nature of data and community structures for optimizing sharing designs and structures.

2018-05-01
Li, Z., Beugnon, S., Puech, W., Bors, A. G..  2017.  Rethinking the High Capacity 3D Steganography: Increasing Its Resistance to Steganalysis. 2017 IEEE International Conference on Image Processing (ICIP). :510–414.

3D steganography is used in order to embed or hide information into 3D objects without causing visible or machine detectable modifications. In this paper we rethink about a high capacity 3D steganography based on the Hamiltonian path quantization, and increase its resistance to steganalysis. We analyze the parameters that may influence the distortion of a 3D shape as well as the resistance of the steganography to 3D steganalysis. According to the experimental results, the proposed high capacity 3D steganographic method has an increased resistance to steganalysis.

2018-06-07
Mesbah, Abdelhak, Lanet, Jean-Louis, Mezghiche, Mohamed.  2017.  Reverse Engineering a Code Without the Code: Reverse Engineering of a Java Card Dump. Proceedings of the 1st Reversing and Offensive-oriented Trends Symposium. :1:1–1:8.

Retrieving assets from inside a secure element should be difficult. While the most attractive assets are the cryptographic keys stored in the Non Volatile Memory (NVM) area, the algorithms which are executed are also of interest. This means that the confidentiality of binary code embedded in the Read Only Memory (ROM) of that device should also be protected from extraction and reverse engineering. Thanks to a previous attack, we obtained a dump of the NVM, but not of the ROM. In this paper, we demonstrate that we can reverse engineer the algorithms without having access to the code by taking advantage of the object oriented features of the platform. We have only access to the data. We use a specifically designed graphic tool to reason about the data such that we are able to understand the principle of the algorithm. Then, we are able to bypass the protection mechanism in order to get access to the binary code.

2018-10-26
Bhoyar, D. G., Yadav, U..  2017.  Review of jamming attack using game theory. 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS). :1–4.

The paper presents the study of protecting wireless sensor network (WSNs) by using game theory for malicious node. By means of game theory the malicious attack nodes can be effectively modeled. In this research there is study on different game theoretic strategies for WSNs. Wireless sensor network are made upon the open shared medium which make easy to built attack. Jamming is the most serious security threats for information preservation. The key purpose of this paper is to present a general synopsis of jamming technique, a variety of types of jammers and its prevention technique by means of game theory. There is a network go through from numerous kind of external and internal attack. The jamming of attack that can be taking place because of the high communication inside the network execute by the nodes in the network. As soon as the weighty communications raise the power expenditure and network load also increases. In research work a game theoretic representation is define for the safe communication on the network.

2018-01-16
Zubaydi, H. D., Anbar, M., Wey, C. Y..  2017.  Review on Detection Techniques against DDoS Attacks on a Software-Defined Networking Controller. 2017 Palestinian International Conference on Information and Communication Technology (PICICT). :10–16.

The evolution of information and communication technologies has brought new challenges in managing the Internet. Software-Defined Networking (SDN) aims to provide easily configured and remotely controlled networks based on centralized control. Since SDN will be the next disruption in networking, SDN security has become a hot research topic because of its importance in communication systems. A centralized controller can become a focal point of attack, thus preventing attack in controller will be a priority. The whole network will be affected if attacker gain access to the controller. One of the attacks that affect SDN controller is DDoS attacks. This paper reviews different detection techniques that are available to prevent DDoS attacks, characteristics of these techniques and issues that may arise using these techniques.

2018-06-20
Deeksha, Kumar, A., Bansal, M..  2017.  A review on VANET security attacks and their countermeasure. 2017 4th International Conference on Signal Processing, Computing and Control (ISPCC). :580–585.

In the development of smart cities across the world VANET plays a vital role for optimized route between source and destination. The VANETs is based on infra-structure less network. It facilitates vehicles to give information about safety through vehicle to vehicle communication (V2V) or vehicle to infrastructure communication (V2I). In VANETs wireless communication between vehicles so attackers violate authenticity, confidentiality and privacy properties which further effect security. The VANET technology is encircled with security challenges these days. This paper presents overview on VANETs architecture, a related survey on VANET with major concern of the security issues. Further, prevention measures of those issues, and comparative analysis is done. From the survey, found out that encryption and authentication plays an important role in VANETS also some research direction defined for future work.

2018-04-02
Lin, W., Wang, K., Zhang, Z., Chen, H..  2017.  Revisiting Security Risks of Asymmetric Scalar Product Preserving Encryption and Its Variants. 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS). :1116–1125.

Cloud computing has emerged as a compelling vision for managing data and delivering query answering capability over the internet. This new way of computing also poses a real risk of disclosing confidential information to the cloud. Searchable encryption addresses this issue by allowing the cloud to compute the answer to a query based on the cipher texts of data and queries. Thanks to its inner product preservation property, the asymmetric scalar-product-preserving encryption (ASPE) has been adopted and enhanced in a growing number of works toperform a variety of queries and tasks in the cloud computingsetting. However, the security property of ASPE and its enhancedschemes has not been studied carefully. In this paper, we show acomplete disclosure of ASPE and several previously unknownsecurity risks of its enhanced schemes. Meanwhile, efficientalgorithms are proposed to learn the plaintext of data and queriesencrypted by these schemes with little or no knowledge beyondthe ciphertexts. We demonstrate these risks on real data sets.

2018-12-03
Khayyam, Y. E., Herrou, B..  2017.  Risk assessment of the supply chain: Approach based on analytic hierarchy process and group decision-making. 2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA). :135–141.

Faced with a turbulent economic, political and social environment, Companies need to build effective risk management systems in their supply chains. Risk management can only be effective when the risks identification and analysis are enough accurate. In this perspective, this paper proposes a risk assessment approach based on the analytic hierarchy process and group decision making. In this study, a new method is introduced that will reduce the impact of incoherent judgments on group decision-making, It is, the “reduced weight function” that decreases the weight associated to a member of the expert panel based on the consistency of its judgments.

2018-02-27
Ayar, M., Trevizan, R. D., Bretas, A. S., Latchman, H., Obuz, S..  2017.  A Robust Decentralized Control Framework for Enhancing Smart Grid Transient Stability. 2017 IEEE Power Energy Society General Meeting. :1–5.

In this paper, we present a decentralized nonlinear robust controller to enhance the transient stability margin of synchronous generators. Although, the trend in power system control is shifting towards centralized or distributed controller approaches, the remote data dependency of these schemes fuels cyber-physical security issues. Since the excessive delay or losing remote data affect severely the operation of those controllers, the designed controller emerges as an alternative for stabilization of Smart Grids in case of unavailability of remote data and in the presence of plant parametric uncertainties. The proposed controller actuates distributed storage systems such as flywheels in order to reduce stabilization time and it implements a novel input time delay compensation technique. Lyapunov stability analysis proves that all the tracking error signals are globally uniformly ultimately bounded. Furthermore, the simulation results demonstrate that the proposed controller outperforms traditional local power systems controllers such as Power System Stabilizers.

2018-05-30
Schuldt, Jacob C.N., Shinagawa, Kazumasa.  2017.  On the Robustness of RSA-OAEP Encryption and RSA-PSS Signatures Against (Malicious) Randomness Failures. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :241–252.

It has recently become apparent that both accidental and maliciously caused randomness failures pose a real and serious threat to the security of cryptographic primitives, and in response, researchers have begone the development of primitives that provide robustness against these. In this paper, however, we focus on standardized, widely available primitives. Specifically, we analyze the RSA-OAEP encryption scheme and RSA-PSS signature schemes, specified in PKCS \#1, using the related randomness security notion introduced by Paterson et al. (PKC 2014) and its extension to signature schemes. We show that, under the RSA and $\Phi$-hiding assumptions, RSA-OAEP encryption is related randomness secure for a large class of related randomness functions in the random oracle model, as long as the recipient is honest, and remains secure even when additionally considering malicious recipients, as long as the related randomness functions does not allow the malicious recipients to efficiently compute the randomness used for the honest recipient. We furthermore show that, under the RSA assumption, the RSA-PSS signature scheme is secure for any class of related randomness functions, although with a non-tight security reduction. However, under additional, albeit somewhat restrictive assumptions on the related randomness functions and the adversary, a tight reduction can be recovered. Our results provides some reassurance regarding the use of RSA-OAEP and RSA-PSS in environments where randomness failures might be a concern. Lastly, we note that, unlike RSA-OAEP and RSA-PSS, several other schemes, including RSA-KEM, part of ISO 18033-2, and DHIES, part of IEEE P1363a, are not secure under simple repeated randomness attacks.

2018-12-03
Michalopoulou, Panayiota Efthymia, Kalloniatis, Christos.  2017.  The Role of Gender Privacy in the Use of Cloud Computing Services. Proceedings of the 21st Pan-Hellenic Conference on Informatics. :13:1–13:6.

The present study's primary objective is to try to determine whether gender, combined with the educational background of the Internet users, have an effect on the way online privacy is perceived and practiced within the cloud services and specifically in social networking, e-commerce, and online banking. An online questionnaire was distributed through e-mail and the social media (Facebook, LinkedIn, and Google+). Our primary hypothesis is that an interrelationship may exist among a user's gender, educational background, and the way an online user perceives and acts regarding online privacy. An analysis of a representative sample of Greek Internet users revealed that there is an effect by gender on the online users' awareness regarding online privacy, as well as on the way they act upon it. Furthermore, we found that a correlation exists, as well regarding the Educational Background of the users and the issue of online privacy.

2018-01-10
Procter, Sam, Vasserman, Eugene Y., Hatcliff, John.  2017.  SAFE and Secure: Deeply Integrating Security in a New Hazard Analysis. Proceedings of the 12th International Conference on Availability, Reliability and Security. :66:1–66:10.

Safety-critical system engineering and traditional safety analyses have for decades been focused on problems caused by natural or accidental phenomena. Security analyses, on the other hand, focus on preventing intentional, malicious acts that reduce system availability, degrade user privacy, or enable unauthorized access. In the context of safety-critical systems, safety and security are intertwined, e.g., injecting malicious control commands may lead to system actuation that causes harm. Despite this intertwining, safety and security concerns have traditionally been designed and analyzed independently of one another, and examined in very different ways. In this work we examine a new hazard analysis technique—Systematic Analysis of Faults and Errors (SAFE)—and its deep integration of safety and security concerns. This is achieved by explicitly incorporating a semantic framework of error "effects" that unifies an adversary model long used in security contexts with a fault/error categorization that aligns with previous approaches to hazard analysis. This categorization enables analysts to separate the immediate, component-level effects of errors from their cause or precise deviation from specification. This paper details SAFE's integrated handling of safety and security through a) a methodology grounded in—and adaptable to—different approaches from the literature, b) explicit documentation of system assumptions which are implicit in other analyses, and c) increasing the tractability of analyzing modern, complex, component-based software-driven systems. We then discuss how SAFE's approach supports the long-term goals of of increased compositionality and formalization of safety/security analysis. 

2018-05-01
Tran, D. T., Waris, M. A., Gabbouj, M., Iosifidis, A..  2017.  Sample-Based Regularization for Support Vector Machine Classification. 2017 Seventh International Conference on Image Processing Theory, Tools and Applications (IPTA). :1–6.

In this paper, we propose a new regularization scheme for the well-known Support Vector Machine (SVM) classifier that operates on the training sample level. The proposed approach is motivated by the fact that Maximum Margin-based classification defines decision functions as a linear combination of the selected training data and, thus, the variations on training sample selection directly affect generalization performance. We show that the exploitation of the proposed regularization scheme is well motivated and intuitive. Experimental results show that the proposed regularization scheme outperforms standard SVM in human action recognition tasks as well as classical recognition problems.

2018-06-20
Dhende, S., Musale, S., Shirbahadurkar, S., Najan, A..  2017.  SAODV: Black hole and gray hole attack detection protocol in MANETs. 2017 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :2391–2394.

A MANET is a group of wireless mobile nodes which cooperate in forwarding packets over a wireless links. Due to the lack of an infrastructure and open nature of MANET, security has become an essential and challenging issue. The mobile nature and selfishness of malicious node is a critical issue in causing the security problem. The MANETs are more defenseless to the security attacks; some of them are black hole and gray hole attacks. One of its key challenges is to find black hole attack. In this paper, researchers propose a secure AODV protocol (SAODV) for detection and removal of black hole and gray hole attacks in MANTEs. The proposed method is simulated using NS-2 and it seems that the proposed methodology is more secure than the existing one.

2018-02-15
Wang, Junjue, Amos, Brandon, Das, Anupam, Pillai, Padmanabhan, Sadeh, Norman, Satyanarayanan, Mahadev.  2017.  A Scalable and Privacy-Aware IoT Service for Live Video Analytics. Proceedings of the 8th ACM on Multimedia Systems Conference. :38–49.

We present OpenFace, our new open-source face recognition system that approaches state-of-the-art accuracy. Integrating OpenFace with inter-frame tracking, we build RTFace, a mechanism for denaturing video streams that selectively blurs faces according to specified policies at full frame rates. This enables privacy management for live video analytics while providing a secure approach for handling retrospective policy exceptions. Finally, we present a scalable, privacy-aware architecture for large camera networks using RTFace.

2018-05-09
Lokananta, F., Hartono, D., Tang, C. M..  2017.  A Scalable and Reconfigurable Verification and Benchmark Environment for Network on Chip Architecture. 2017 4th International Conference on New Media Studies (CONMEDIA). :6–10.

To reduce the complex communication problem that arise as the number of on-chip component increases, the use of Network-on-Chip (NoC) as interconnection architectures have become more promising to solve complex on-chip communication problems. However, providing a suitable test base to measure and verify functionality of any NoC is a compulsory. Universal Verification Methodology (UVM) is introduced as a standardized and reusable methodology for verifying integrated circuit design. In this research, a scalable and reconfigurable verification and benchmark environment for NoC is proposed.