Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2018-11-19
Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G..  2017.  Coherent Online Video Style Transfer. 2017 IEEE International Conference on Computer Vision (ICCV). :1114–1123.

Training a feed-forward network for the fast neural style transfer of images has proven successful, but the naive extension of processing videos frame by frame is prone to producing flickering results. We propose the first end-to-end network for online video style transfer, which generates temporally coherent stylized video sequences in near realtime. Two key ideas include an efficient network by incorporating short-term coherence, and propagating short-term coherence to long-term, which ensures consistency over a longer period of time. Our network can incorporate different image stylization networks and clearly outperforms the per-frame baseline both qualitatively and quantitatively. Moreover, it can achieve visually comparable coherence to optimization-based video style transfer, but is three orders of magnitude faster.

2018-02-02
Kim, H., Ben-Othman, J., Mokdad, L., Cho, S., Bellavista, P..  2017.  On collision-free reinforced barriers for multi domain IoT with heterogeneous UAVs. 2017 IEEE 8th Annual Ubiquitous Computing, Electronics and Mobile Communication Conference (UEMCON). :466–471.

Thanks to advancement of vehicle technologies, Unmanned Aerial Vehicle (UAV) now widely spread over practical services and applications affecting daily life of people positively. Especially, multiple heterogeneous UAVs with different capabilities should be considered since UAVs can play an important role in Internet of Things (IoT) environment in which the heterogeneity and the multi domain of UAVs are indispensable. Also, a concept of barrier-coverage has been proved as a promising one applicable to surveillance and security. In this paper, we present collision-free reinforced barriers by heterogeneous UAVs to support multi domain. Then, we define a problem which is to minimize maximum movement of UAVs on condition that a property of collision-free among UAVs is assured while they travel from current positions to specific locations so as to form reinforced barriers within multi domain. Because the defined problem depends on how to locate UAVs on barriers, we develop a novel approach that provides a collision-free movement as well as a creation of virtual lines in multi domain. Furthermore, we address future research topics which should be handled carefully for the barrier-coverage by heterogeneous UAVs.

2018-05-24
Sallam, A., Bertino, E..  2017.  Detection of Temporal Insider Threats to Relational Databases. 2017 IEEE 3rd International Conference on Collaboration and Internet Computing (CIC). :406–415.

The mitigation of insider threats against databases is a challenging problem as insiders often have legitimate access privileges to sensitive data. Therefore, conventional security mechanisms, such as authentication and access control, may be insufficient for the protection of databases against insider threats and need to be complemented with techniques that support real-time detection of access anomalies. The existing real-time anomaly detection techniques consider anomalies in references to the database entities and the amounts of accessed data. However, they are unable to track the access frequencies. According to recent security reports, an increase in the access frequency by an insider is an indicator of a potential data misuse and may be the result of malicious intents for stealing or corrupting the data. In this paper, we propose techniques for tracking users' access frequencies and detecting anomalous related activities in real-time. We present detailed algorithms for constructing accurate profiles that describe the access patterns of the database users and for matching subsequent accesses by these users to the profiles. Our methods report and log mismatches as anomalies that may need further investigation. We evaluated our techniques on the OLTP-Benchmark. The results of the evaluation indicate that our techniques are very effective in the detection of anomalies.

2018-08-23
Xu, D., Xiao, L., Sun, L., Lei, M..  2017.  Game theoretic study on blockchain based secure edge networks. 2017 IEEE/CIC International Conference on Communications in China (ICCC). :1–5.

Blockchain has been applied to study data privacy and network security recently. In this paper, we propose a punishment scheme based on the action record on the blockchain to suppress the attack motivation of the edge servers and the mobile devices in the edge network. The interactions between a mobile device and an edge server are formulated as a blockchain security game, in which the mobile device sends a request to the server to obtain real-time service or launches attacks against the server for illegal security gains, and the server chooses to perform the request from the device or attack it. The Nash equilibria (NEs) of the game are derived and the conditions that each NE exists are provided to disclose how the punishment scheme impacts the adversary behaviors of the mobile device and the edge server.

2018-06-20
Chakraborty, S., Stokes, J. W., Xiao, L., Zhou, D., Marinescu, M., Thomas, A..  2017.  Hierarchical learning for automated malware classification. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :23–28.

Despite widespread use of commercial anti-virus products, the number of malicious files detected on home and corporate computers continues to increase at a significant rate. Recently, anti-virus companies have started investing in machine learning solutions to augment signatures manually designed by analysts. A malicious file's determination is often represented as a hierarchical structure consisting of a type (e.g. Worm, Backdoor), a platform (e.g. Win32, Win64), a family (e.g. Rbot, Rugrat) and a family variant (e.g. A, B). While there has been substantial research in automated malware classification, the aforementioned hierarchical structure, which can provide additional information to the classification models, has been ignored. In this paper, we propose the novel idea and study the performance of employing hierarchical learning algorithms for automated classification of malicious files. To the best of our knowledge, this is the first research effort which incorporates the hierarchical structure of the malware label in its automated classification and in the security domain, in general. It is important to note that our method does not require any additional effort by analysts because they typically assign these hierarchical labels today. Our empirical results on a real world, industrial-scale malware dataset of 3.6 million files demonstrate that incorporation of the label hierarchy achieves a significant reduction of 33.1% in the binary error rate as compared to a non-hierarchical classifier which is traditionally used in such problems.

2017-12-27
Ye, Z., Yin, H., Ye, Y..  2017.  Information security analysis of deterministic encryption and chaotic encryption in spatial domain and frequency domain. 2017 14th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE). :1–6.

Information security is crucial to data storage and transmission, which is necessary to protect information under various hostile environments. Cryptography serves as a major element to ensure confidentiality in both communication and information technology, where the encryption and decryption schemes are implemented to scramble the pure plaintext and descramble the secret ciphertext using security keys. There are two dominating types of encryption schemes: deterministic encryption and chaotic encryption. Encryption and decryption can be conducted in either spatial domain or frequency domain. To ensure secure transmission of digital information, comparisons on merits and drawbacks of two practical encryption schemes are conducted, where case studies on the true color digital image encryption are presented. Both deterministic encryption in spatial domain and chaotic encryption in frequency domain are analyzed in context, as well as the information integrity after decryption.

Gençoğlu, M. T..  2017.  Mathematical cryptanalysis of \#x201C;personalized information encryption using ECG signals with chaotic functions \#x201D;. 2017 International Conference on Computer Science and Engineering (UBMK). :878–881.

The chaotic system and cryptography have some common features. Due to the close relationship between chaotic system and cryptosystem, researchers try to combine the chaotic system with cryptosystem. In this study, security analysis of an encryption algorithm which aims to encrypt the data with ECG signals and chaotic functions was performed using the Logistic map in text encryption and Henon map in image encryption. In the proposed algorithm, text and image data can be encrypted at the same time. In addition, ECG signals are used to determine the initial conditions and control parameters of the chaotic functions used in the algorithm to personalize of the encryption algorithm. In this cryptanalysis study, the inadequacy of the mentioned process and the weaknesses of the proposed method have been determined. Encryption algorithm has not sufficient capacity to provide necessary security level of key space and secret key can be obtained with only one plaintext/ciphertext pair with chosen-plaintext attack.

2018-06-11
Abdulqadder, I. H., Zou, D., Aziz, I. T., Yuan, B..  2017.  Modeling software defined security using multi-level security mechanism for SDN environment. 2017 IEEE 17th International Conference on Communication Technology (ICCT). :1342–1346.

Software Defined Networking (SDN) support several administrators for quicker access of resources due to its manageability, cost-effectiveness and adaptability. Even though SDN is beneficial it also exists with security based challenges due to many vulnerable threats. Participation of such threats increases their impact and risk level. In this paper a multi-level security mechanism is proposed over SDN architecture design. In each level the flow packet is analyzed using different metric and finally it reaches a secure controller for processing. Benign flow packets are differentiated from non-benign flow by means of the packet features. Initially routers verify user, secondly policies are verified by using dual-fuzzy logic design and thirdly controllers are authenticated using signature based authentication before assigning flow packets. This work aims to enhance entire security of developed SDN environment. SDN architecture is implemented in OMNeT++ simulation tool that supports OpenFlow switches and controllers. Finally experimental results show better performances in following performance metrics as throughput, time consumption and jitter.

2018-02-21
Grgić, K., Kovačevic, Z., Čik, V. K..  2017.  Performance analysis of symmetric block cryptosystems on Android platform. 2017 International Conference on Smart Systems and Technologies (SST). :155–159.

The symmetric block ciphers, which represent a core element for building cryptographic communications systems and protocols, are used in providing message confidentiality, authentication and integrity. Various limitations in hardware and software resources, especially in terminal devices used in mobile communications, affect the selection of appropriate cryptosystem and its parameters. In this paper, an implementation of three symmetric ciphers (DES, 3DES, AES) used in different operating modes are analyzed on Android platform. The cryptosystems' performance is analyzed in different scenarios using several variable parameters: cipher, key size, plaintext size and number of threads. Also, the influence of parallelization supported by multi-core CPUs on cryptosystem performance is analyzed. Finally, some conclusions about the parameter selection for optimal efficiency are given.

2018-05-24
Maraj, A., Rogova, E., Jakupi, G., Grajqevci, X..  2017.  Testing Techniques and Analysis of SQL Injection Attacks. 2017 2nd International Conference on Knowledge Engineering and Applications (ICKEA). :55–59.

It is a well-known fact that nowadays access to sensitive information is being performed through the use of a three-tier-architecture. Web applications have become a handy interface between users and data. As database-driven web applications are being used more and more every day, web applications are being seen as a good target for attackers with the aim of accessing sensitive data. If an organization fails to deploy effective data protection systems, they might be open to various attacks. Governmental organizations, in particular, should think beyond traditional security policies in order to achieve proper data protection. It is, therefore, imperative to perform security testing and make sure that there are no holes in the system, before an attack happens. One of the most commonly used web application attacks is by insertion of an SQL query from the client side of the application. This attack is called SQL Injection. Since an SQL Injection vulnerability could possibly affect any website or web application that makes use of an SQL-based database, the vulnerability is one of the oldest, most prevalent and most dangerous of web application vulnerabilities. To overcome the SQL injection problems, there is a need to use different security systems. In this paper, we will use 3 different scenarios for testing security systems. Using Penetration testing technique, we will try to find out which is the best solution for protecting sensitive data within the government network of Kosovo.

2018-06-20
Fehlmann, Thomas, Kranich, Eberhard.  2017.  Autonomous Real-time Software & Systems Testing. Proceedings of the 27th International Workshop on Software Measurement and 12th International Conference on Software Process and Product Measurement. :54–63.

For the Internet of Things (IoT), for safety in automotive, or for data protection, to be legally compliant requires testing the impact of any actions before allowing them to occur. However, system boundaries change at runtime. When adding a new, previously unknown device to an IoT orchestra, or when an autonomous car meets another, or with truck platooning, the original base system expands and needs being tested before it can do decisions with the potential of affecting harm to humans. This paper explains the theory and outlines the implementation approach a framework for autonomous real-time testing of a software-based system while in operation, with an example from IoT.

2018-05-24
Kul, Gokhan, Upadhyaya, Shambhu, Hughes, Andrew.  2017.  Complexity of Insider Attacks to Databases. Proceedings of the 2017 International Workshop on Managing Insider Security Threats. :25–32.

Insider attacks are one of the most dangerous threats to an organization. Unfortunately, they are very difficult to foresee, detect, and defend against due to the trust and responsibilities placed on the employees. In this paper, we first define the notion of user intent, and construct a model for the most common threat scenario used in the literature that poses a very high risk for sensitive data stored in the organization's database. We show that the complexity of identifying pseudo-intents of a user is coNP-Complete in this domain, and launching a harvester insider attack within the boundaries of the defined threat model takes linear time while a targeted threat model is an NP-Complete problem. We also discuss about the general defense mechanisms against the modeled threats, and show that countering against the harvester insider attack model takes quadratic time while countering against the targeted insider attack model can take linear to quadratic time depending on the strategy chosen. Finally, we analyze the adversarial behavior, and show that launching an attack with minimum risk is also an NP-Complete problem.

2018-06-20
Sethi, Kamalakanta, Chaudhary, Shankar Kumar, Tripathy, Bata Krishan, Bera, Padmalochan.  2017.  A Novel Malware Analysis for Malware Detection and Classification Using Machine Learning Algorithms. Proceedings of the 10th International Conference on Security of Information and Networks. :107–113.

Nowadays, Malware has become a serious threat to the digitization of the world due to the emergence of various new and complex malware every day. Due to this, the traditional signature-based methods for detection of malware effectively becomes an obsolete method. The efficiency of the machine learning model in context to the detection of malware files has been proved by different researches and studies. In this paper, a framework has been developed to detect and classify different files (e.g exe, pdf, php, etc.) as benign and malicious using two level classifier namely, Macro (for detection of malware) and Micro (for classification of malware files as a Trojan, Spyware, Adware, etc.). Cuckoo Sandbox is used for generating static and dynamic analysis report by executing files in the virtual environment. In addition, a novel model is developed for extracting features based on static, behavioral and network analysis using analysis report generated by the Cuckoo Sandbox. Weka Framework is used to develop machine learning models by using training datasets. The experimental results using proposed framework shows high detection rate with an accuracy of 100% using J48 Decision tree model, 99% using SMO (Sequential Minimal Optimization) and 97% using Random Forest tree. It also shows effective classification rate with accuracy 100% using J48 Decision tree, 91% using SMO and 66% using Random Forest tree. These results are used for detecting and classifying unknown files as benign or malicious.

2018-01-16
Connell, Warren, Menascé, Daniel A., Albanese, Massimiliano.  2017.  Performance Modeling of Moving Target Defenses. Proceedings of the 2017 Workshop on Moving Target Defense. :53–63.

In recent years, Moving Target Defense (MTD) has emerged as a potential game changer in the security landscape, due to its potential to create asymmetric uncertainty that favors the defender. Many different MTD techniques have then been proposed, each addressing an often very specific set of attack vectors. Despite the huge progress made in this area, there are still some critical gaps with respect to the analysis and quantification of the cost and benefits of deploying MTD techniques. In fact, common metrics to assess the performance of these techniques are still lacking and most of them tend to assess their performance in different and often incompatible ways. This paper addresses these gaps by proposing a quantitative analytic model for assessing the resource availability and performance of MTDs, and a method for the determination of the highest possible reconfiguration rate, and thus smallest probability of attacker's success, that meets performance and stability constraints. Finally, we present an experimental validation of the proposed approach.

2018-05-30
Joy, Joshua, Gerla, Mario.  2017.  Privacy Risks in Vehicle Grids and Autonomous Cars. Proceedings of the 2Nd ACM International Workshop on Smart, Autonomous, and Connected Vehicular Systems and Services. :19–23.

Traditionally, the vehicle has been the extension of the manual ambulatory system, docile to the drivers' commands. Recent advances in communications, controls and embedded systems have changed this model, paving the way to the Intelligent Vehicle Grid. The car is now a formidable sensor platform, absorbing information from the environment, from other cars (and from the driver) and feeding it to other cars and infrastructure to assist in safe navigation, pollution control and traffic management. The next step in this evolution is just around the corner: the Internet of Autonomous Vehicles. Like other important instantiations of the Internet of Things (e.g., the smart building, etc), the Internet of Vehicles will not only upload data to the Internet with V2I. It will also use V2V communications, storage, intelligence, and learning capabilities to anticipate the customers' intentions and learn from other peers. V2I and V2V are essential to the autonomous vehicle, but carry the risk of attacks. This paper will address the privacy attacks to which vehicles are exposed when they upload private data to Internet Servers. It will also outline efficient methods to preserve privacy.

2018-02-06
Robinson, Joseph P., Shao, Ming, Zhao, Handong, Wu, Yue, Gillis, Timothy, Fu, Yun.  2017.  Recognizing Families In the Wild (RFIW): Data Challenge Workshop in Conjunction with ACM MM 2017. Proceedings of the 2017 Workshop on Recognizing Families In the Wild. :5–12.

Recognizing Families In the Wild (RFIW) is a large-scale, multi-track automatic kinship recognition evaluation, supporting both kinship verification and family classification on scales much larger than ever before. It was organized as a Data Challenge Workshop hosted in conjunction with ACM Multimedia 2017. This was achieved with the largest image collection that supports kin-based vision tasks. In the end, we use this manuscript to summarize evaluation protocols, progress made and some technical background and performance ratings of the algorithms used, and a discussion on promising directions for both research and engineers to be taken next in this line of work.

2017-12-04
Donno, M. De, Dragoni, N., Giaretta, A., Spognardi, A..  2017.  Analysis of DDoS-capable IoT malwares. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :807–816.

The Internet of Things (IoT) revolution promises to make our lives easier by providing cheap and always connected smart embedded devices, which can interact on the Internet and create added values for human needs. But all that glitters is not gold. Indeed, the other side of the coin is that, from a security perspective, this IoT revolution represents a potential disaster. This plethora of IoT devices that flooded the market were very badly protected, thus an easy prey for several families of malwares that can enslave and incorporate them in very large botnets. This, eventually, brought back to the top Distributed Denial of Service (DDoS) attacks, making them more powerful and easier to achieve than ever. This paper aims at provide an up-to-date picture of DDoS attacks in the specific subject of the IoT, studying how these attacks work and considering the most common families in the IoT context, in terms of their nature and evolution through the years. It also explores the additional offensive capabilities that this arsenal of IoT malwares has available, to mine the security of Internet users and systems. We think that this up-to-date picture will be a valuable reference to the scientific community in order to take a first crucial step to tackle this urgent security issue.

2018-12-03
Molka-Danielsen, J., Engelseth, P., Olešnaníková, V., Šarafín, P., Žalman, R..  2017.  Big Data Analytics for Air Quality Monitoring at a Logistics Shipping Base via Autonomous Wireless Sensor Network Technologies. 2017 5th International Conference on Enterprise Systems (ES). :38–45.
The indoor air quality in industrial workplace buildings, e.g. air temperature, humidity and levels of carbon dioxide (CO2), play a critical role in the perceived levels of workers' comfort and in reported medical health. CO2 can act as an oxygen displacer, and in confined spaces humans can have, for example, reactions of dizziness, increased heart rate and blood pressure, headaches, and in more serious cases loss of consciousness. Specialized organizations can be brought in to monitor the work environment for limited periods. However, new low cost wireless sensor network (WSN) technologies offer potential for more continuous and autonomous assessment of industrial workplace air quality. Central to effective decision making is the data analytics approach and visualization of what is potentially, big data (BD) in monitoring the air quality in industrial workplaces. This paper presents a case study that monitors air quality that is collected with WSN technologies. We discuss the potential BD problems. The case trials are from two workshops that are part of a large on-shore logistics base a regional shipping industry in Norway. This small case study demonstrates a monitoring and visualization approach for facilitating BD in decision making for health and safety in the shipping industry. We also identify other potential applications of WSN technologies and visualization of BD in the workplace environments; for example, for monitoring of other substances for worker safety in high risk industries and for quality of goods in supply chain management.
2017-12-28
Vizarreta, P., Heegaard, P., Helvik, B., Kellerer, W., Machuca, C. M..  2017.  Characterization of failure dynamics in SDN controllers. 2017 9th International Workshop on Resilient Networks Design and Modeling (RNDM). :1–7.

With Software Defined Networking (SDN) the control plane logic of forwarding devices, switches and routers, is extracted and moved to an entity called SDN controller, which acts as a broker between the network applications and physical network infrastructure. Failures of the SDN controller inhibit the network ability to respond to new application requests and react to events coming from the physical network. Despite of the huge impact that a controller has on the network performance as a whole, a comprehensive study on its failure dynamics is still missing in the state of the art literature. The goal of this paper is to analyse, model and evaluate the impact that different controller failure modes have on its availability. A model in the formalism of Stochastic Activity Networks (SAN) is proposed and applied to a case study of a hypothetical controller based on commercial controller implementations. In case study we show how the proposed model can be used to estimate the controller steady state availability, quantify the impact of different failure modes on controller outages, as well as the effects of software ageing, and impact of software reliability growth on the transient behaviour.

2017-12-20
Lacerda, A., Rodrigues, J., Macedo, J., Albuquerque, E..  2017.  Deployment and analysis of honeypots sensors as a paradigm to improve security on systems. 2017 Internet Technologies and Applications (ITA). :64–68.
This article is about study of honeypots. In this work, we use some honeypot sensors deployment and analysis to identify, currently, what are the main attacks and security breaches explored by attackers to compromise systems. For example, a common server or service exposed to the Internet can receive a million of hits per day, but sometimes would not be easy to identify the difference between legitimate access and an attacker trying to scan, and then, interrupt the service. Finally, the objective of this research is to investigate the efficiency of the honeypots sensors to identify possible safety gaps and new ways of attacks. This research aims to propose some guidelines to avoid or minimize the damage caused by these attacks in real systems.
2018-06-07
Nashaat, M., Ali, K., Miller, J..  2017.  Detecting Security Vulnerabilities in Object-Oriented PHP Programs. 2017 IEEE 17th International Working Conference on Source Code Analysis and Manipulation (SCAM). :159–164.

PHP is one of the most popular web development tools in use today. A major concern though is the improper and insecure uses of the language by application developers, motivating the development of various static analyses that detect security vulnerabilities in PHP programs. However, many of these approaches do not handle recent, important PHP features such as object orientation, which greatly limits the use of such approaches in practice. In this paper, we present OOPIXY, a security analysis tool that extends the PHP security analyzer PIXY to support reasoning about object-oriented features in PHP applications. Our empirical evaluation shows that OOPIXY detects 88% of security vulnerabilities found in micro benchmarks. When used on real-world PHP applications, OOPIXY detects security vulnerabilities that could not be detected using state-of-the-art tools, retaining a high level of precision. We have contacted the maintainers of those applications, and two applications' development teams verified the correctness of our findings. They are currently working on fixing the bugs that lead to those vulnerabilities.

2017-12-28
Vu, Q. H., Ruta, D., Cen, L..  2017.  An ensemble model with hierarchical decomposition and aggregation for highly scalable and robust classification. 2017 Federated Conference on Computer Science and Information Systems (FedCSIS). :149–152.

This paper introduces an ensemble model that solves the binary classification problem by incorporating the basic Logistic Regression with the two recent advanced paradigms: extreme gradient boosted decision trees (xgboost) and deep learning. To obtain the best result when integrating sub-models, we introduce a solution to split and select sets of features for the sub-model training. In addition to the ensemble model, we propose a flexible robust and highly scalable new scheme for building a composite classifier that tries to simultaneously implement multiple layers of model decomposition and outputs aggregation to maximally reduce both bias and variance (spread) components of classification errors. We demonstrate the power of our ensemble model to solve the problem of predicting the outcome of Hearthstone, a turn-based computer game, based on game state information. Excellent predictive performance of our model has been acknowledged by the second place scored in the final ranking among 188 competing teams.

2017-12-20
Adhatarao, S. S., Arumaithurai, M., Fu, X..  2017.  FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. 2017 29th International Teletraffic Congress (ITC 29). 2:42–47.
Internet of Things (IoT) is a growing topic of interest along with 5G. Billions of IoT devices are expected to connect to the Internet in the near future. These devices differ from the traditional devices operated in the Internet. We observe that Information Centric Networking (ICN), is a more suitable architecture for the IoT compared to the prevailing IP basednetwork. However, we observe that recent works that propose to use ICN for IoT, either do not cover the need to integrate Sensor Networks with the Internet to realize IoT or do so inefficiently. Fog computing is a promising technology that has many benefits to offer especially for IoT. In this work, we discover a need to integrate various heterogeneous Sensor Networks with the Internet to realize IoT and propose FOGG: A Fog Computing Based Gateway to Integrate Sensor Networks to Internet. FOGG uses a dedicated device to function as an IoT gateway. FOGG provides the needed integration along with additional services like name/protocol translation, security and controller functionalities.
Alheeti, K. M. A., McDonald-Maier, K..  2017.  An intelligent security system for autonomous cars based on infrared sensors. 2017 23rd International Conference on Automation and Computing (ICAC). :1–5.
Safety and non-safety applications in the external communication systems of self-driving vehicles require authentication of control data, cooperative awareness messages and notification messages. Traditional security systems can prevent attackers from hacking or breaking important system functionality in autonomous vehicles. This paper presents a novel security system designed to protect vehicular ad hoc networks in self-driving and semi-autonomous vehicles that is based on Integrated Circuit Metric technology (ICMetrics). ICMetrics has the ability to secure communication systems in autonomous vehicles using features of the autonomous vehicle system itself. This security system is based on unique extracted features from vehicles behaviour and its sensors. Specifically, features have been extracted from bias values of infrared sensors which are used alongside semantically extracted information from a trace file of a simulated vehicular ad hoc network. The practical experimental implementation and evaluation of this system demonstrates the efficiency in identifying of abnormal/malicious behaviour typical for an attack.
2018-03-26
Aslan, Ö, Samet, R..  2017.  Mitigating Cyber Security Attacks by Being Aware of Vulnerabilities and Bugs. 2017 International Conference on Cyberworlds (CW). :222–225.

Because the Internet makes human lives easier, many devices are connected to the Internet daily. The private data of individuals and large companies, including health-related data, user bank accounts, and military and manufacturing data, are increasingly accessible via the Internet. Because almost all data is now accessible through the Internet, protecting these valuable assets has become a major concern. The goal of cyber security is to protect such assets from unauthorized use. Attackers use automated tools and manual techniques to penetrate systems by exploiting existing vulnerabilities and software bugs. To provide good enough security; attack methodologies, vulnerability concepts and defence strategies should be thoroughly investigated. The main purpose of this study is to show that the patches released for existing vulnerabilities at the operating system (OS) level and in software programs does not completely prevent cyber-attack. Instead, producing specific patches for each company and fixing software bugs by being aware of the software running on each specific system can provide a better result. This study also demonstrates that firewalls, antivirus software, Windows Defender and other prevention techniques are not sufficient to prevent attacks. Instead, this study examines different aspects of penetration testing to determine vulnerable applications and hosts using the Nmap and Metasploit frameworks. For a test case, a virtualized system is used that includes different versions of Windows and Linux OS.