Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-04-28
Yang, Hongna, Zhang, Yiwei.  2022.  On an extremal problem of regular graphs related to fractional repetition codes. 2022 IEEE International Symposium on Information Theory (ISIT). :1566–1571.
Fractional repetition (FR) codes are a special family of regenerating codes with the repair-by-transfer property. The constructions of FR codes are naturally related to combinatorial designs, graphs, and hypergraphs. Given the file size of an FR code, it is desirable to determine the minimum number of storage nodes needed. The problem is related to an extremal graph theory problem, which asks for the minimum number of vertices of an α-regular graph such that any subgraph with k vertices has at most δ edges. In this paper, we present a class of regular graphs for this problem to give the bounds for the minimum number of storage nodes for the FR codes.
ISSN: 2157-8117
2022-12-09
Zhai, Lijing, Vamvoudakis, Kyriakos G., Hugues, Jérôme.  2022.  A Graph-Theoretic Security Index Based on Undetectability for Cyber-Physical Systems. 2022 American Control Conference (ACC). :1479—1484.
In this paper, we investigate the conditions for the existence of dynamically undetectable attacks and perfectly undetectable attacks. Then we provide a quantitative measure on the security for discrete-time linear time-invariant (LTI) systems under both actuator and sensor attacks based on undetectability. Finally, the computation of proposed security index is reduced to a min-cut problem for the structured systems by graph theory. Numerical examples are provided to illustrate the theoretical results.
Usman Rana, M., Elahi, O., Mushtaq, M., Ali Shah, M..  2022.  Identity based cryptography for ad hoc networks. Competitive Advantage in the Digital Economy (CADE 2022). 2022:93—98.
With the rapid growth of wireless communication, sensor technology, and mobile computing, the ad hoc network has gained increasing attention from governments, corporations, and scientific research organisations. Ad hoc and sensor network security has become crucial. Malicious node identification, network resilience and survival, and trust models are among the security challenges discussed. The security of ad hoc networks is a key problem. In this paper, we'll look at a few security procedures and approaches that can be useful in keeping this network secure. We've compiled a list of all the ad networks' descriptions with explanations. Before presenting our conclusions from the examination of the literature, we went through various papers on the issue. The taxonomy diagram for the Ad-hoc Decentralized Network is the next item on the agenda. Security is one of the most significant challenges with an ad hoc network. In most cases, cyber-attackers will be able to connect to a wireless ad hoc network and, as a result, to the device if they reach within signal range. So, we moved on to a discussion of VANET, UAVs security issues discovered in the field. The outcomes of various ad hoc network methods were then summarised in the form tables. Furthermore, the Diffie Hellman Key Exchange is used to investigate strategies for improving ad-hoc network security and privacy in the next section, and a comparison of RSA with Diffie Hellman is also illustrated. This paper can be used as a guide and reference to provide readers with a broad knowledge of wireless ad hoc networks and how to deal with their security issues.
2023-03-17
Gao, Chulan, Shahriar, Hossain, Lo, Dan, Shi, Yong, Qian, Kai.  2022.  Improving the Prediction Accuracy with Feature Selection for Ransomware Detection. 2022 IEEE 46th Annual Computers, Software, and Applications Conference (COMPSAC). :424–425.
This paper presents the machine learning algorithm to detect whether an executable binary is benign or ransomware. The ransomware cybercriminals have targeted our infrastructure, businesses, and everywhere which has directly affected our national security and daily life. Tackling the ransomware threats more effectively is a big challenge. We applied a machine-learning model to classify and identify the security level for a given suspected malware for ransomware detection and prevention. We use the feature selection data preprocessing to improve the prediction accuracy of the model.
ISSN: 0730-3157
2023-08-25
Delport, Petrus M.J, van Niekerk, Johan, Reid, Rayne.  2022.  Introduction to Information Security: From Formal Curriculum to Organisational Awareness. 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). :463–469.
Many organisations responded to the recent global pandemic by moving operations online. This has led to increased exposure to information security-related risks. There is thus an increased need to ensure organisational information security awareness programs are up to date and relevant to the needs of the intended target audience. The advent of online educational providers has similarly placed increased pressure on the formal educational sector to ensure course content is updated to remain relevant. Such processes of academic reflection and review should consider formal curriculum standards and guidelines in order to ensure wide relevance. This paper presents a case study of the review of an Introduction to Information Security course. This review is informed by the Information Security and Assurance knowledge area of the ACM/IEEE Computer Science 2013 curriculum standard. The paper presents lessons learned during this review process to serve as a guide for future reviews of this nature. The authors assert that these lessons learned can also be of value during the review of organisational information security awareness programs.
ISSN: 2768-0657
2023-03-31
Kahla, Mostafa, Chen, Si, Just, Hoang Anh, Jia, Ruoxi.  2022.  Label-Only Model Inversion Attacks via Boundary Repulsion. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). :15025–15033.
Recent studies show that the state-of-the-art deep neural networks are vulnerable to model inversion attacks, in which access to a model is abused to reconstruct private training data of any given target class. Existing attacks rely on having access to either the complete target model (whitebox) or the model's soft-labels (blackbox). However, no prior work has been done in the harder but more practical scenario, in which the attacker only has access to the model's predicted label, without a confidence measure. In this paper, we introduce an algorithm, Boundary-Repelling Model Inversion (BREP-MI), to invert private training data using only the target model's predicted labels. The key idea of our algorithm is to evaluate the model's predicted labels over a sphere and then estimate the direction to reach the target class's centroid. Using the example of face recognition, we show that the images reconstructed by BREP-MI successfully reproduce the semantics of the private training data for various datasets and target model architectures. We compare BREP-MI with the state-of-the-art white-box and blackbox model inversion attacks, and the results show that despite assuming less knowledge about the target model, BREP-MI outperforms the blackbox attack and achieves comparable results to the whitebox attack. Our code is available online.11https://github.com/m-kahla/Label-Only-Model-Inversion-Attacks-via-Boundary-Repulsion
2023-01-20
Yu, Yue, Yao, Jiming, Wang, Wei, Qiu, Lanxin, Xu, Yangzhou.  2022.  A Lightweight Identity-Based Secondary Authentication Method in Smart Grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:2190—2195.
5G network slicing plays a key role in the smart grid business. The existing authentication schemes for 5G slicing in smart grids require high computing costs, so they are time-consuming and do not fully consider the security of authentication. Aiming at the application scenario of 5G smart grid, this paper proposes an identity-based lightweight secondary authentication scheme. Compared with other well-known methods, in the protocol interaction of this paper, both the user Ui and the grid server can authenticate each other's identities, thereby preventing illegal users from pretending to be identities. The grid user Ui and the grid server can complete the authentication process without resorting to complex bilinear mapping calculations, so the computational overhead is small. The grid user and grid server can complete the authentication process without transmitting the original identification. Therefore, this scheme has the feature of anonymous authentication. In this solution, the authentication process does not require infrastructure such as PKI, so the deployment is simple. Experimental results show that the protocol is feasible in practical applications
2023-01-05
Chen, Ye, Lai, Yingxu, Zhang, Zhaoyi, Li, Hanmei, Wang, Yuhang.  2022.  Malicious attack detection based on traffic-flow information fusion. 2022 IFIP Networking Conference (IFIP Networking). :1–9.
While vehicle-to-everything communication technology enables information sharing and cooperative control for vehicles, it also poses a significant threat to the vehicles' driving security owing to cyber-attacks. In particular, Sybil malicious attacks hidden in the vehicle broadcast information flow are challenging to detect, thereby becoming an urgent issue requiring attention. Several researchers have considered this problem and proposed different detection schemes. However, the detection performance of existing schemes based on plausibility checks and neighboring observers is affected by the traffic and attacker densities. In this study, we propose a malicious attack detection scheme based on traffic-flow information fusion, which enables the detection of Sybil attacks without neighboring observer nodes. Our solution is based on the basic safety message, which is broadcast by vehicles periodically. It first constructs the basic features of traffic flow to reflect the traffic state, subsequently fuses it with the road detector information to add the road fusion features, and then classifies them using machine learning algorithms to identify malicious attacks. The experimental results demonstrate that our scheme achieves the detection of Sybil attacks with an accuracy greater than 90 % at different traffic and attacker densities. Our solutions provide security for achieving a usable vehicle communication network.
Saha, Sujan Kumar, Mbongue, Joel Mandebi, Bobda, Christophe.  2022.  Metrics for Assessing Security of System-on-Chip. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :113—116.
Due to the increasing complexity of modern hetero-geneous System-on-Chips (SoC) and the growing vulnerabilities, security risk assessment and quantification is required to measure the trustworthiness of a SoC. This paper describes a systematic approach to model the security risk of a system for malicious hardware attacks. The proposed method uses graph analysis to assess the impact of an attack and the Common Vulnerability Scoring System (CVSS) is used to quantify the security level of the system. To demonstrate the applicability of the proposed metric, we consider two open source SoC benchmarks with different architectures. The overall risk is calculated using the proposed metric by computing the exploitability and impact of attack on critical components of a SoC.
2023-04-14
Barakat, Ghena, Al-Duwairi, Basheer, Jarrah, Moath, Jaradat, Manar.  2022.  Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
Ma, Xiao, Wang, Yixin, Zhu, Tingting.  2022.  A New Framework for Proving Coding Theorems for Linear Codes. 2022 IEEE International Symposium on Information Theory (ISIT). :2768–2773.

A new framework is presented in this paper for proving coding theorems for linear codes, where the systematic bits and the corresponding parity-check bits play different roles. Precisely, the noisy systematic bits are used to limit the list size of typical codewords, while the noisy parity-check bits are used to select from the list the maximum likelihood codeword. This new framework for linear codes allows that the systematic bits and the parity-check bits are transmitted in different ways and over different channels. In particular, this new framework unifies the source coding theorems and the channel coding theorems. With this framework, we prove that the Bernoulli generator matrix codes (BGMCs) are capacity-achieving over binary-input output symmetric (BIOS) channels and also entropy-achieving for Bernoulli sources.

ISSN: 2157-8117

2023-02-03
Praveen, Sivakami, Dcouth, Alysha, Mahesh, A S.  2022.  NoSQL Injection Detection Using Supervised Text Classification. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–5.
For a long time, SQL injection has been considered one of the most serious security threats. NoSQL databases are becoming increasingly popular as big data and cloud computing technologies progress. NoSQL injection attacks are designed to take advantage of applications that employ NoSQL databases. NoSQL injections can be particularly harmful because they allow unrestricted code execution. In this paper we use supervised learning and natural language processing to construct a model to detect NoSQL injections. Our model is designed to work with MongoDB, CouchDB, CassandraDB, and Couchbase queries. Our model has achieved an F1 score of 0.95 as established by 10-fold cross validation.
2022-12-09
Gualandi, Gabriele, Maggio, Martina, Vittorio Papadopoulos, Alessandro.  2022.  Optimization-based attack against control systems with CUSUM-based anomaly detection. 2022 30th Mediterranean Conference on Control and Automation (MED). :896—901.
Security attacks on sensor data can deceive a control system and force the physical plant to reach an unwanted and potentially dangerous state. Therefore, attack detection mechanisms are employed in cyber-physical control systems to detect ongoing attacks, the most prominent one being a threshold-based anomaly detection method called CUSUM. Literature defines the maximum impact of stealth attacks as the maximum deviation in the plant’s state that an undetectable attack can introduce, and formulates it as an optimization problem. This paper proposes an optimization-based attack with different saturation models, and it investigates how the attack duration significantly affects the impact of the attack on the state of the plant. We show that more dangerous attacks can be discovered when allowing saturation of the control system actuators. The proposed approach is compared with the geometric attack, showing how longer attack durations can lead to a greater impact of the attack while keeping the attack stealthy.
2023-02-17
Li, Ying, Chen, Lan, Wang, Jian, Gong, Guanfei.  2022.  Partial Reconfiguration for Run-time Memory Faults and Hardware Trojan Attacks Detection. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :173–176.
Embedded memory are important components in system-on-chip, which may be crippled by aging and wear faults or Hardware Trojan attacks to compromise run-time security. The current built-in self-test and pre-silicon verification lack efficiency and flexibility to solve this problem. To this end, we address such vulnerabilities by proposing a run-time memory security detecting framework in this paper. The solution builds mainly upon a centralized security detection controller for partially reconfigurable inspection content, and a static memory wrapper to handle access conflicts and buffering testing cells. We show that a field programmable gate array prototype of the proposed framework can pursue 16 memory faults and 3 types Hardware Trojans detection with one reconfigurable partition, whereas saves 12.7% area and 2.9% power overhead compared to a static implementation. This architecture has more scalable capability with little impact on the memory accessing throughput of the original chip system in run-time detection.
2023-01-20
Joshi, Sanskruti, Li, Ruixiao, Bhattacharjee, Shameek, Das, Sajal K., Yamana, Hayato.  2022.  Privacy-Preserving Data Falsification Detection in Smart Grids using Elliptic Curve Cryptography and Homomorphic Encryption. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :229—234.
In an advanced metering infrastructure (AMI), the electric utility collects power consumption data from smart meters to improve energy optimization and provides detailed information on power consumption to electric utility customers. However, AMI is vulnerable to data falsification attacks, which organized adversaries can launch. Such attacks can be detected by analyzing customers' fine-grained power consumption data; however, analyzing customers' private data violates the customers' privacy. Although homomorphic encryption-based schemes have been proposed to tackle the problem, the disadvantage is a long execution time. This paper proposes a new privacy-preserving data falsification detection scheme to shorten the execution time. We adopt elliptic curve cryptography (ECC) based on homomorphic encryption (HE) without revealing customer power consumption data. HE is a form of encryption that permits users to perform computations on the encrypted data without decryption. Through ECC, we can achieve light computation. Our experimental evaluation showed that our proposed scheme successfully achieved 18 times faster than the CKKS scheme, a common HE scheme.
2022-12-20
Xie, Nanjiang, Gong, Zheng, Tang, Yufeng, Wang, Lei, Wen, Yamin.  2022.  Protecting White-Box Block Ciphers with Galois/Counter Mode. 2022 IEEE Conference on Dependable and Secure Computing (DSC). :1–7.
All along, white-box cryptography researchers focus on the design and implementation of certain primitives but less to the practice of the cipher working modes. For example, the Galois/Counter Mode (GCM) requires block ciphers to perform only the encrypting operations, which inevitably facing code-lifting attacks under the white-box security model. In this paper, a code-lifting resisted GCM (which is named WBGCM) is proposed to mitigate this security drawbacks in the white-box context. The basic idea is to combining external encodings with exclusive-or operations in GCM, and therefore two different schemes are designed with external encodings (WBGCM-EE) and maskings (WBGCM-Maksing), respectively. Furthermore, WBGCM is instantiated with Chow et al.'s white-box AES, and the experiments show that the processing speeds of WBGCM-EE and WBGCM-Masking achieves about 5 MBytes/Second with a marginal storage overhead.
2023-06-22
Lei, Gang, Wu, Junyi, Gu, Keyang, Ji, Lejun, Cao, Yuanlong, Shao, Xun.  2022.  An QUIC Traffic Anomaly Detection Model Based on Empirical Mode Decomposition. 2022 IEEE 23rd International Conference on High Performance Switching and Routing (HPSR). :76–80.
With the advent of the 5G era, high-speed and secure network access services have become a common pursuit. The QUIC (Quick UDP Internet Connection) protocol proposed by Google has been studied by many scholars due to its high speed, robustness, and low latency. However, the research on the security of the QUIC protocol by domestic and foreign scholars is insufficient. Therefore, based on the self-similarity of QUIC network traffic, combined with traffic characteristics and signal processing methods, a QUIC-based network traffic anomaly detection model is proposed in this paper. The model decomposes and reconstructs the collected QUIC network traffic data through the Empirical Mode Decomposition (EMD) method. In order to judge the occurrence of abnormality, this paper also intercepts overlapping traffic segments through sliding windows to calculate Hurst parameters and analyzes the obtained parameters to check abnormal traffic. The simulation results show that in the network environment based on the QUIC protocol, the Hurst parameter after being attacked fluctuates violently and exceeds the normal range. It also shows that the anomaly detection of QUIC network traffic can use the EMD method.
ISSN: 2325-5609
2023-03-17
Vehabovic, Aldin, Ghani, Nasir, Bou-Harb, Elias, Crichigno, Jorge, Yayimli, Aysegül.  2022.  Ransomware Detection and Classification Strategies. 2022 IEEE International Black Sea Conference on Communications and Networking (BlackSeaCom). :316–324.
Ransomware uses encryption methods to make data inaccessible to legitimate users. To date a wide range of ransomware families have been developed and deployed, causing immense damage to governments, corporations, and private users. As these cyberthreats multiply, researchers have proposed a range of ransom ware detection and classification schemes. Most of these methods use advanced machine learning techniques to process and analyze real-world ransomware binaries and action sequences. Hence this paper presents a survey of this critical space and classifies existing solutions into several categories, i.e., including network-based, host-based, forensic characterization, and authorship attribution. Key facilities and tools for ransomware analysis are also presented along with open challenges.
2023-09-01
Liu, Zhiqin, Zhu, Nan, Wang, Kun.  2022.  Recaptured Image Forensics Based on Generalized Central Difference Convolution Network. 2022 IEEE 2nd International Conference on Software Engineering and Artificial Intelligence (SEAI). :59—63.
With large advancements in image display technology, recapturing high-quality images from high-fidelity LCD screens becomes much easier. Such recaptured images can be used to hide image tampering traces and fool some intelligent identification systems. In order to prevent such a security loophole, we propose a recaptured image detection approach based on generalized central difference convolution (GCDC) network. Specifically, by using GCDC instead of vanilla convolution, more detailed features can be extracted from both intensity and gradient information from an image. Meanwhile, we concatenate the feature maps from multiple GCDC modules to fuse low-, mid-, and high-level features for higher performance. Extensive experiments on three public recaptured image databases demonstrate the superior of our proposed method when compared with the state-of-the-art approaches.
2023-02-17
Georgieva-Trifonova, Tsvetanka.  2022.  Research on Filtering Feature Selection Methods for E-Mail Spam Detection by Applying K-NN Classifier. 2022 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). :1–4.
In the present paper, the application of filtering methods to select features when detecting email spam using the K-NN classifier is examined. The experiments include computation of the accuracy and F-measure of the e-mail texts classification with different methods for feature selection, different number of selected features and two ways to find the distance between dataset examples when executing K-NN classifier - Euclidean distance and cosine similarity. The obtained results are summarized and analyzed.
2022-12-23
Montano, Isabel Herrera, de La Torre Díez, Isabel, Aranda, Jose Javier García, Diaz, Juan Ramos, Cardín, Sergio Molina, López, Juan José Guerrero.  2022.  Secure File Systems for the Development of a Data Leak Protection (DLP) Tool Against Internal Threats. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–7.
Data leakage by employees is a matter of concern for companies and organizations today. Previous studies have shown that existing Data Leakage Protection (DLP) systems on the market, the more secure they are, the more intrusive and tedious they are to work with. This paper proposes and assesses the implementation of four technologies that enable the development of secure file systems for insider threat-focused, low-intrusive and user-transparent DLP tools. Two of these technologies are configurable features of the Windows operating system (Minifilters and Server Message Block), the other two are virtual file systems (VFS) Dokan and WinFsp, which mirror the real file system (RFS) allowing it to incorporate security techniques. In the assessment of the technologies, it was found that the implementation of VFS was very efficient and simple. WinFsp and Dokan presented a performance of 51% and 20% respectively, with respect to the performance of the operations in the RFS. This result may seem relatively low, but it should be taken into account that the calculation includes read and write encryption and decryption operations as appropriate for each prototype. Server Message Block (SMB) presented a low performance (3%) so it is not considered viable for a solution like this, while Minifilters present the best performance but require high programming knowledge for its evolution. The prototype presented in this paper and its strategy provides an acceptable level of comfort for the user, and a high level of security.
ISSN: 2166-0727
2023-01-13
Purdy, Ruben, Duvalsaint, Danielle, Blanton, R. D. Shawn.  2022.  Security Metrics for Logic Circuits. 2022 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :53—56.
Any type of engineered design requires metrics for trading off both desirable and undesirable properties. For integrated circuits, typical properties include circuit size, performance, power, etc., where for example, performance is a desirable property and power consumption is not. Security metrics, on the other hand, are extremely difficult to develop because there are active adversaries that intend to compromise the protected circuitry. This implies metric values may not be static quantities, but instead are measures that degrade depending on attack effectiveness. In order to deal with this dynamic aspect of a security metric, a general attack model is proposed that enables the effectiveness of various security approaches to be directly compared in the context of an attack. Here, we describe, define and demonstrate that the metrics presented are both meaningful and measurable.
Onoja, Daniel, Hitchens, Michael, Shankaran, Rajan.  2022.  Security Policy to Manage Responses to DDoS Attacks on 5G IoT Enabled Devices. 2022 13th International Conference on Information and Communication Systems (ICICS). :30–35.
In recent years, the need for seamless connectivity has increased across various network platforms with demands coming from industries, home, mobile, transportation and office networks. The 5th generation (5G) network is being deployed to meet such demand of high-speed seamless network device connections. The seamless connectivity 5G provides could be a security threat allowing attacks such as distributed denial of service (DDoS) because attackers might have easy access into the network infrastructure and higher bandwidth to enhance the effects of the attack. The aim of this research is to provide a security solution for 5G technology to DDoS attacks by managing the response to threats posed by DDoS. Deploying a security policy language which is reactive and event-oriented fits into a flexible, efficient, and lightweight security approach. A policy in our language consists of an event whose occurrence triggers a policy rule where one or more actions are taken.
2023-01-20
Yao, Jiming, Wu, Peng, Chen, Duanyun, Wang, Wei, Fang, Youxu.  2022.  A security scheme for network slicing selection based on Pohlig-Hellman algorithm in smart grid. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:906—910.
5G has significantly facilitated the development of attractive applications such as autonomous driving and telemedicine due to its lower latency, higher data rates, and enormous connectivity. However, there are still some security and privacy issues in 5G, such as network slicing privacy and flexibility and efficiency of network slicing selection. In the smart grid scenario, this paper proposes a 5G slice selection security scheme based on the Pohlig-Hellman algorithm, which realizes the protection of slice selection privacy data between User i(Ui) and Access and Mobility Management function (AMF), so that the data will not be exposed to third-party attackers. Compared with other schemes, the scheme proposed in this paper is simple in deployment, low in computational overhead, and simple in process, and does not require the help of PKI system. The security analysis also verifies that the scheme can accurately protect the slice selection privacy data between Ui and AMF.