Biblio
Cloud computing platforms are becoming increasingly prevalent and readily available nowadays, providing us alternative and economic services for resource-constrained clients to perform large-scale computation. In this work, we address the problem of secure outsourcing of large-scale nonnegative matrix factorization (NMF) to a cloud in a way that the client can verify the correctness of results with small overhead. The input matrix protection is achieved by a lightweight, permutation-based encryption mechanism. By exploiting the iterative nature of NMF computation, we propose a single-round verification strategy, which can be proved to be effective. Both theoretical and experimental results are given to demonstrate the superior performance of our scheme.
Funded under the European Union's Horizon 2020 research and innovation programme, SAFEcrypto will provide a new generation of practical, robust and physically secure post-quantum cryptographic solutions that ensure long-term security for future ICT systems, services and applications. The project will focus on the remarkably versatile field of Lattice-based cryptography as the source of computational hardness, and will deliver optimised public key security primitives for digital signatures and authentication, as well identity based encryption (IBE) and attribute based encryption (ABE). This will involve algorithmic and design optimisations, and implementations of lattice-based cryptographic schemes addressing cost, energy consumption, performance and physical robustness. As the National Institute of Standards and Technology (NIST) prepares for the transition to a post-quantum cryptographic suite B, urging organisations that build systems and infrastructures that require long-term security to consider this transition in architectural designs; the SAFEcrypto project will provide Proof-of-concept demonstrators of schemes for three practical real-world case studies with long-term security requirements, in the application areas of satellite communications, network security and cloud. The goal is to affirm Lattice-based cryptography as an effective replacement for traditional number-theoretic public-key cryptography, by demonstrating that it can address the needs of resource-constrained embedded applications, such as mobile and battery-operated devices, and of real-time high performance applications for cloud and network management infrastructures.
Content-based routing (CBR) is a powerful model that supports scalable asynchronous communication among large sets of geographically distributed nodes. Yet, preserving privacy represents a major limitation for the wide adoption of CBR, notably when the routers are located in public clouds. Indeed, a CBR router must see the content of the messages sent by data producers, as well as the filters (or subscriptions) registered by data consumers. This represents a major deterrent for companies for which data is a key asset, as for instance in the case of financial markets or to conduct sensitive business-to-business transactions. While there exists some techniques for privacy-preserving computation, they are either prohibitively slow or too limited to be usable in real systems. In this paper, we follow a different strategy by taking advantage of trusted hardware extensions that have just been introduced in off-the-shelf processors and provide a trusted execution environment. We exploit Intel's new software guard extensions (SGX) to implement a CBR engine in a secure enclave. Thanks to the hardware-based trusted execution environment (TEE), the compute-intensive CBR operations can operate on decrypted data shielded by the enclave and leverage efficient matching algorithms. Extensive experimental evaluation shows that SGX adds only limited overhead to insecure plaintext matching outside secure enclaves while providing much better performance and more powerful filtering capabilities than alternative software-only solutions. To the best of our knowledge, this work is the first to demonstrate the practical benefits of SGX for privacy-preserving CBR.
Machine learning is widely used in security-sensitive settings like spam and malware detection, although it has been shown that malicious data can be carefully modified at test time to evade detection. To overcome this limitation, adversary-aware learning algorithms have been developed, exploiting robust optimization and game-theoretical models to incorporate knowledge of potential adversarial data manipulations into the learning algorithm. Despite these techniques have been shown to be effective in some adversarial learning tasks, their adoption in practice is hindered by different factors, including the difficulty of meeting specific theoretical requirements, the complexity of implementation, and scalability issues, in terms of computational time and space required during training. In this work, we aim to develop secure kernel machines against evasion attacks that are not computationally more demanding than their non-secure counterparts. In particular, leveraging recent work on robustness and regularization, we show that the security of a linear classifier can be drastically improved by selecting a proper regularizer, depending on the kind of evasion attack, as well as unbalancing the cost of classification errors. We then discuss the security of nonlinear kernel machines, and show that a proper choice of the kernel function is crucial. We also show that unbalancing the cost of classification errors and varying some kernel parameters can further improve classifier security, yielding decision functions that better enclose the legitimate data. Our results on spam and PDF malware detection corroborate our analysis.
We present a technique for performing secure location verification of position claims by measuring the time-difference of arrival (TDoA) between a fixed receiver node and a mobile one. The mobile node moves randomly in order to substantially increase the difficulty for an attacker to make false messages appear genuine. We explore the performance and requirements of such a system in the context of verifying aircraft position claims made over the Automatic Dependent Surveillance - Broadcast (ADS-B) system through the use of simulation and find that it correctly detects false claims with a peak accuracy of over 97\textbackslash% for the most complex attack modelled; requiring only 75m of deviation between the reported position and the actual position in order for a false claim to be detected. We then report on our design for a mobile receiver and our construction of a prototype using low-cost COTS equipment. We discuss some additional benefits of incorporating a mobile node, examine the difficulties to be overcome and explore the applicability of the approach in other location verification use-cases.
Future transportation systems highly rely on the integrity of spatial information provided by their means of transportation such as vehicles and planes. In critical applications (e.g. collision avoidance), tampering with this data can result in life-threatening situations. It is therefore essential for the safety of these systems to securely verify this information. While there is a considerable body of work on the secure verification of locations, movement of nodes has only received little attention in the literature. This paper proposes a new method to securely verify spatial movement of a mobile sender in all dimensions, i.e., position, speed, and direction. Our scheme uses Doppler shift measurements from different locations to verify a prover's motion. We provide formal proof for the security of the scheme and demonstrate its applicability to air traffic communications. Our results indicate that it is possible to reliably verify the motion of aircraft in currently operational systems with an equal error rate of zero.
We present a unified framework for studying secure multiparty computation (MPC) with arbitrarily restricted interaction patterns such as a chain, a star, a directed tree, or a directed graph. Our study generalizes both standard MPC and recent models for MPC with specific restricted interaction patterns, such as those studied by Halevi et al. (Crypto 2011), Goldwasser et al. (Eurocrypt 2014), and Beimel et al. (Crypto 2014). Since restricted interaction patterns cannot always yield full security for MPC, we start by formalizing the notion of "best possible security" for any interaction pattern. We then obtain the following main results: Completeness theorem. We prove that the star interaction pattern is complete for the problem of MPC with general interaction patterns. Positive results. We present both information-theoretic and computationally secure protocols for computing arbitrary functions with general interaction patterns. We also present more efficient protocols for computing symmetric functions, both in the computational and in the information-theoretic setting. Our computationally secure protocols for general functions necessarily rely on indistinguishability obfuscation while the ones for computing symmetric functions make simple use of multilinear maps. Negative results. We show that, in many cases, the complexity of our information-theoretic protocols is essentially the best that can be achieved. All of our protocols rely on a correlated randomness setup, which is necessary in our setting (for computing general functions). In the computational case, we also present a generic procedure to make any correlated randomness setup reusable, in the common random string model. Although most of our information-theoretic protocols have exponential complexity, they may be practical for functions on small domains (e.g., f0; 1g20), where they are concretely faster than their computational counterparts.
Wireless Sensor Network (WSN) consists of a numerous of small devices called sensor which has a limitation in resources such as low energy, memory, and computation. Sensors deployed in a harsh environment and vulnerable to various security issues and due to the resource restriction in a sensor, key management and provide robust security in this type of networks is a challenge. keys may be used in two ways in cryptography is symmetric or asymmetric, asymmetric is required more communication, memory, and computing when compared with symmetric, so it is not appropriate for WSN. In this paper, key management scheme based on symmetric keys has been proposed where each node uses pseudo-random generator (PRNG)to generate key that is shared with base station based on pre-distributed initial key and CBC - RC5 to reached to confidently, integrity and authentication.
Cameras have become nearly ubiquitous with the rise of smartphones and laptops. New wearable devices, such as Google Glass, focus directly on using live video data to enable augmented reality and contextually enabled services. However, granting applications full access to video data exposes more information than is necessary for their functionality, introducing privacy risks. We propose a privilege-separation architecture for visual recognizer applications that encourages modularization and least privilege–-separating the recognizer logic, sandboxing it to restrict filesystem and network access, and restricting what it can extract from the raw video data. We designed and implemented a prototype that separates the recognizer and application modules and evaluated our architecture on a set of 17 computer-vision applications. Our experiments show that our prototype incurs low overhead for each of these applications, reduces some of the privacy risks associated with these applications, and in some cases can actually increase the performance due to increased parallelism and concurrency.
'Software as a service - SaaS' is a well known model used in cloud infrastructure, outsourcing and pervasive computing. With the SaaS model, application service providers (ASP) facilitates various functionalities of software to application developers as well as to consumers over a public channel like Internet. In order to manage large volumes of users data, 'Database as a service - DaaS' model is a practical requirement for ASPs. The DaaS model allows implementation of need-based (e.g., role-based) privileges of database access to its users. However, the use of DaaS model raises security concerns (e.g. confidentiality and integrity of data) of data while storing users data in untrusted public storage server. In this paper, we review one DaaS tool, CryptDB [1], developed in recent times, and we observe some limitations in it and then present an improved solution for securing data in untrusted database provider. The proposed solution mitigates the limitations of CryptDB while keeping the efficiency of the service model used between ASP and DB intact.
Radio Frequency Identification (RFID) systems are widely used today because of their low price, usability and being wireless. As RFID systems use wireless communication, they may encounter challenging security problems. Several lightweight encryption algorithms have been proposed so far to solve these problems. The RBS block cipher is one of these algorithms. In designing RBS, conventional block cipher elements such as S-box and P-box are not used. RBS is based on inserting redundant bits between altered plaintext bits using an encryption key Kenc. In this paper, considering not having a proper diffusion as the main defect of RBS, we propose a chosen ciphertext attack against this algorithm. The data complexity of this attack equals to N pairs of text and its time complexity equals to N decryptions, where N is the size of the encryption key Kenc.
A digital microfluidic biochip (DMFB) is an emerging technology that enables miniaturized analysis systems for point-of-care clinical diagnostics, DNA sequencing, and environmental monitoring. A DMFB reduces the rate of sample and reagent consumption, and automates the analysis of assays. In this paper, we provide the first assessment of the security vulnerabilities of DMFBs. We identify result-manipulation attacks on a DMFB that maliciously alter the assay outcomes. Two practical result-manipulation attacks are shown on a DMFB platform performing enzymatic glucose assay on serum. In the first attack, the attacker adjusts the concentration of the glucose sample and thereby modifies the final result. In the second attack, the attacker tampers with the calibration curve of the assay operation. We then identify denial-of-service attacks, where the attacker can disrupt the assay operation by tampering either with the droplet-routing algorithm or with the actuation sequence. We demonstrate these attacks using a digital microfluidic synthesis simulator. The results show that the attacks are easy to implement and hard to detect. Therefore, this work highlights the need for effective protections against malicious modifications in DMFBs.
With the discovery of the Stuxnet malware in June 2010, Industrial Control System (ICS) security has gained global attention and scrutiny. Due to the unique industrial control operating environment, standard information technology host-based defenses such as operating system upgrades are not always feasible. Therefore, ICS security strategies must rely upon layered network infrastructure and enclave boundary defenses. As ICS threats evolve, so too must ICS security practices and strategies. ICS security innovation rely upon understanding the effectiveness of established defenses and countermeasures. In an effort to evaluate the security effectiveness of ICS layered perimeter defenses, a Red Team security assessment was conducted on an ICS test network. This experiment offers insight to the effectiveness of ICS perimeter defenses by demonstrating the reduction of attack vectors, decreased adversarial network access, and perimeter network defenses are an effective ICS security strategy.
Cybernetic closed loop regulators are used to model socio-technical systems in adversarial contexts. Cybernetic principles regarding these idealized control loops are applied to show how the incompleteness of system models enables system exploitation. We consider abstractions as a case study of model incompleteness, and we characterize the ways that attackers and defenders interact in such a formalism. We end by arguing that the science of security is most like a military science, whose foundations are analytical and generative rather than normative.
Video surveillance, closed-circuit TV and IP-camera systems became virtually omnipresent and indispensable for many organizations, businesses, and users. Their main purpose is to provide physical security, increase safety, and prevent crime. They also became increasingly complex, comprising many communication means, embedded hardware and non-trivial firmware. However, most research to date focused mainly on the privacy aspects of such systems, and did not fully address their issues related to cyber-security in general, and visual layer (i.e., imagery semantics) attacks in particular. In this paper, we conduct a systematic review of existing and novel threats in video surveillance, closed-circuit TV and IP-camera systems based on publicly available data. The insights can then be used to better understand and identify the security and the privacy risks associated with the development, deployment and use of these systems. We study existing and novel threats, along with their existing or possible countermeasures, and summarize this knowledge into a comprehensive table that can be used in a practical way as a security checklist when assessing cyber-security level of existing or new CCTV designs and deployments. We also provide a set of recommendations and mitigations that can help improve the security and privacy levels provided by the hardware, the firmware, the network communications and the operation of video surveillance systems. We hope the findings in this paper will provide a valuable knowledge of the threat landscape that such systems are exposed to, as well as promote further research and widen the scope of this field beyond its current boundaries.
Technology coined as the vehicular ad hoc network (VANET) is harmonizing with Intelligent Transportation System (ITS) and Intelligent Traffic System (ITF). An application scenario of VANET is the military communication where vehicles move as a convoy on roadways, requiring secure and reliable communication. However, utilization of radio frequency (RF) communication in VANET limits its usage in military applications, due to the scarce frequency band and its vulnerability to security attacks. Visible Light Communication (VLC) has been recently introduced as a more secure alternative, limiting the reception of neighboring nodes with its directional transmission. However, secure vehicular VLC that ensures confidential data transfer among the participating vehicles, is an open problem. In this paper, we propose a secure military light communication protocol (SecVLC) for enabling efficient and secure data sharing. We use the directionality property of VLC to ensure that only target vehicles participate in the communication. Vehicles use full-duplex communication where infra-red (IR) is utilized to share a secret key and VLC is used to receive encrypted data. We experimentally demonstrate the suitability of SecVLC in outdoor scenarios at varying inter-vehicular distances with key metrics of interest, including the security, data packet delivery ratio and delay.
Processes to automate the selection of appropriate algorithms for various matrix computations are described. In particular, processes to check for, and certify, various matrix properties of black-box matrices are presented. These include sparsity patterns and structural properties that allow "superfast" algorithms to be used in place of black-box algorithms. Matrix properties that hold generically, and allow the use of matrix preconditioning to be reduced or eliminated, can also be checked for and certified –- notably including in the small-field case, where this presently has the greatest impact on the efficiency of the computation.
Smart Spaces are composed of heterogeneous sensors and devices that collect and share information. This information may contain personal information of the users. Thus, securing the data and preserving the privacy are of paramount importance. In this paper, we propose techniques for information security and privacy protection for Smart Spaces based on the Smart-M3 platform. We propose a) a security framework, and b) a context-aware role-based access control scheme. We model our access control scheme using ontological techniques and Web Ontology Language (OWL), and implement it via CLIPS rules. To evaluate the efficiency of our access control scheme, we measure the time it takes to check the access rights of the access requests. The results demonstrate that the highest response time is approximately 0.2 seconds in a set of 100000 triples. We conclude that the proposed access control scheme produces low overhead and is therefore, an efficient approach for Smart Spaces.
Providing recommendations on social systems has been in the spotlight of both academics and industry for some time already. Social network giants like Facebook, LinkedIn, Myspace, etc., are eager to find the silver bullet of recommendation. These applications permit clients to shape a few certain social networks through their day-by-day social cooperative communications. In the meantime, today's online experience depends progressively on social association. One of the main concerns in social network is establishing a successful business plan to make more profit from the social network. Doing a business on every platform needs a good business plan with some important solutions such as advertise the products or services of other companies which would be a kind of marketing for those external businesses. In this study a philosophy of a system speaking to of a comprehensive structure of advertisement recommender system for social networks will be presented. The framework uses a semantic logic to provide the recommended products and this capability can differentiate the recommender part of the framework from classical recommender methods. Briefly, the framework proposed in this study has been designed in a form that can generate advertisement recommendations in a simplified and effective way for social network users.
Physical layer security can ensure secure communication over noisy channels in the presence of an eavesdropper with unlimited computational power. We adopt an information theoretic variant of semantic-security (SS) (a cryptographic gold standard), as our secrecy metric and study the open problem of the type II wiretap channel (WTC II) with a noisy main channel is, whose secrecy-capacity is unknown even under looser metrics than SS. Herein the secrecy-capacity is derived and shown to be equal to its SS capacity. In this setting, the legitimate users communicate via a discrete-memory less (DM) channel in the presence of an eavesdropper that has perfect access to a subset of its choosing of the transmitted symbols, constrained to a fixed fraction of the block length. The secrecy criterion is achieved simultaneously for all possible eavesdropper subset choices. On top of that, SS requires negligible mutual information between the message and the eavesdropper's observations even when maximized over all message distributions. A key tool for the achievability proof is a novel and stronger version of Wyner's soft covering lemma. Specifically, the lemma shows that a random codebook achieves the soft-covering phenomenon with high probability. The probability of failure is doubly-exponentially small in the block length. Since the combined number of messages and subsets grows only exponentially with the block length, SS for the WTC II is established by using the union bound and invoking the stronger soft-covering lemma. The direct proof shows that rates up to the weak-secrecy capacity of the classic WTC with a DM erasure channel (EC) to the eavesdropper are achievable. The converse follows by establishing the capacity of this DM wiretap EC as an upper bound for the WTC II. From a broader perspective, the stronger soft-covering lemma constitutes a tool for showing the existence of codebooks that satisfy exponentially many constraints, a beneficial ability for many other applications in information theoretic security.
Physical layer security can ensure secure communication over noisy channels in the presence of an eavesdropper with unlimited computational power. We adopt an information theoretic variant of semantic-security (SS) (a cryptographic gold standard), as our secrecy metric and study the open problem of the type II wiretap channel (WTC II) with a noisy main channel is, whose secrecy-capacity is unknown even under looser metrics than SS. Herein the secrecy-capacity is derived and shown to be equal to its SS capacity. In this setting, the legitimate users communicate via a discrete-memory less (DM) channel in the presence of an eavesdropper that has perfect access to a subset of its choosing of the transmitted symbols, constrained to a fixed fraction of the block length. The secrecy criterion is achieved simultaneously for all possible eavesdropper subset choices. On top of that, SS requires negligible mutual information between the message and the eavesdropper's observations even when maximized over all message distributions. A key tool for the achievability proof is a novel and stronger version of Wyner's soft covering lemma. Specifically, the lemma shows that a random codebook achieves the soft-covering phenomenon with high probability. The probability of failure is doubly-exponentially small in the block length. Since the combined number of messages and subsets grows only exponentially with the block length, SS for the WTC II is established by using the union bound and invoking the stronger soft-covering lemma. The direct proof shows that rates up to the weak-secrecy capacity of the classic WTC with a DM erasure channel (EC) to the eavesdropper are achievable. The converse follows by establishing the capacity of this DM wiretap EC as an upper bound for the WTC II. From a broader perspective, the stronger soft-covering lemma constitutes a tool for showing the existence of codebooks that satisfy exponentially many constraints, a beneficial ability for many other applications in information theoretic security.
The usage of Information and Communication Technologies (ICTs) pervades everyday's life. If it is true that ICT contributed to improve the quality of our life, it is also true that new forms of (cyber)crime have emerged in this setting. The diversity and amount of information forensic investigators need to cope with, when tackling a cyber-crime case, call for tools and techniques where knowledge is the main actor. Current approaches leave to the investigator the chore of integrating the diverse sources of evidence relevant for a case thus hindering the automatic generation of reusable knowledge. This paper describes an architecture that lifts the classical phases of a digital forensic investigation to a knowledge-driven setting. We discuss how the usage of languages and technologies originating from the Semantic Web proposal can complement digital forensics tools so that knowledge becomes a first-class citizen. Our architecture enables to perform in an integrated way complex forensic investigations and, as a by-product, build a knowledge base that can be consulted to gain insights from previous cases. Our proposal has been inspired by real-world scenarios emerging in the context of an Italian research project about cyber security.
Finding differences between programs with similar functionality is an important security problem as such differences can be used for fingerprinting or creating evasion attacks against security software like Web Application Firewalls (WAFs) which are designed to detect malicious inputs to web applications. In this paper, we present SFADIFF, a black-box differential testing framework based on Symbolic Finite Automata (SFA) learning. SFADIFF can automatically find differences between a set of programs with comparable functionality. Unlike existing differential testing techniques, instead of searching for each difference individually, SFADIFF infers SFA models of the target programs using black-box queries and systematically enumerates the differences between the inferred SFA models. All differences between the inferred models are checked against the corresponding programs. Any difference between the models, that does not result in a difference between the corresponding programs, is used as a counterexample for further refinement of the inferred models. SFADIFF's model-based approach, unlike existing differential testing tools, also support fully automated root cause analysis in a domain-independent manner. We evaluate SFADIFF in three different settings for finding discrepancies between: (i) three TCP implementations, (ii) four WAFs, and (iii) HTML/JavaScript parsing implementations in WAFs and web browsers. Our results demonstrate that SFADIFF is able to identify and enumerate the differences systematically and efficiently in all these settings. We show that SFADIFF is able to find differences not only between different WAFs but also between different versions of the same WAF. SFADIFF is also able to discover three previously-unknown differences between the HTML/JavaScript parsers of two popular WAFs (PHPIDS 0.7 and Expose 2.4.0) and the corresponding parsers of Google Chrome, Firefox, Safari, and Internet Explorer. We confirm that all these differences can be used to evade the WAFs and launch successful cross-site scripting attacks.
Encrypting Internet communications has been the subject of renewed focus in recent years. In order to add end-to-end encryption to legacy applications without losing the convenience of full-text search, ShadowCrypt and Mimesis Aegis use a new cryptographic technique called "efficiently deployable efficiently searchable encryption" (EDESE) that allows a standard full-text search system to perform searches on encrypted data. Compared to other recent techniques for searching on encrypted data, EDESE schemes leak a great deal of statistical information about the encrypted messages and the keywords they contain. Until now, the practical impact of this leakage has been difficult to quantify. In this paper, we show that the adversary's task of matching plaintext keywords to the opaque cryptographic identifiers used in EDESE can be reduced to the well-known combinatorial optimization problem of weighted graph matching (WGM). Using real email and chat data, we show how off-the-shelf WGM solvers can be used to accurately and efficiently recover hundreds of the most common plaintext keywords from a set of EDESE-encrypted messages. We show how to recover the tags from Bloom filters so that the WGM solver can be used with the set of encrypted messages that utilizes a Bloom filter to encode its search tags. We also show that the attack can be mitigated by carefully configuring Bloom filter parameters.
The average computer user is no longer restricted to one device. They may have several devices and expect their applications to work on all of them. A challenge arises when these applications need the cryptographic private key of the devices' owner. Here the device owner typically has to manage keys manually with a "keychain" app, which leads to private keys being transferred insecurely between devices – or even to other people. Even with intuitive synchronization mechanisms, theft and malware still pose a major risk to keys. Phones and watches are frequently removed or set down, and a single compromised device leads to the loss of the owner's private key, a catastrophic failure that can be quite difficult to recover from. We introduce Shatter, an open-source framework that runs on desktops, Android, and Android Wear, and performs key distribution on a user's behalf. Shatter uses threshold cryptography to turn the security weakness of having multiple devices into a strength. Apps that delegate cryptographic operations to Shatter have their keys compromised only when a threshold number of devices are compromised by the same attacker. We demonstrate how our framework operates with two popular Android apps (protecting identity keys for a messaging app, and encryption keys for a note-taking app) in a backwards-compatible manner: only Shatter users need to move to a Shatter-aware version of the app. Shatter has minimal impact on app performance, with signatures and decryption being calculated in 0.5s and security proofs in 14s.