Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
2023-01-05
Mefteh, Syrine, Rosdahl, Alexa L., Fagan, Kaitlin G., Kumar, Anirudh V..  2022.  Evaluating Chemical Supply Chain Criticality in the Water Treatment Industry: A Risk Analysis and Mitigation Model. 2022 Systems and Information Engineering Design Symposium (SIEDS). :73—78.
The assurance of the operability of surface water treatment facilities lies in many factors, but the factor with the largest impact on said assurance is the availability of the necessary chemicals. Facilities across the country vary in their processes and sources, but all require chemicals to produce potable water. The purpose of this project was to develop a risk assessment tool to determine the shortfalls and risks in the water treatment industry's chemical supply chain, which was used to produce a risk mitigation plan ensuring plant operability. To achieve this, a Fault Tree was built to address four main areas of concern: (i) market supply and demand, (ii) chemical substitutability, (iii) chemical transportation, and (iv) chemical storage process. Expert elicitation was then conducted to formulate a Failure Modes and Effects Analysis (FMEA) and develop Radar Charts, regarding the operations and management of specific plants. These tools were then employed to develop a final risk mitigation plan comprising two parts: (i) a quantitative analysis comparing and contrasting the risks of the water treatment plants under study and (ii) a qualitative recommendation for each of the plants-both culminating in a mitigation model on how to control and monitor chemical-related risks.
2023-01-06
Khalid, Saneeha, Hussain, Faisal Bashir.  2022.  Evaluating Opcodes for Detection of Obfuscated Android Malware. 2022 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :044—049.
Obfuscation refers to changing the structure of code in a way that original semantics can be hidden. These techniques are often used by application developers for code hardening but it has been found that obfuscation techniques are widely used by malware developers in order to hide the work flow and semantics of malicious code. Class Encryption, Code Re-Ordering, Junk Code insertion and Control Flow modifications are Code Obfuscation techniques. In these techniques, code of the application is changed. These techniques change the signature of the application and also affect the systems that use sequence of instructions in order to detect maliciousness of an application. In this paper an ’Opcode sequence’ based detection system is designed and tested against obfuscated samples. It has been found that the system works efficiently for the detection of non obfuscated samples but the performance is effected significantly against obfuscated samples. The study tests different code obfuscation schemes and reports the effect of each on sequential opcode based analytic system.
2023-02-03
Oldal, Laura Gulyás, Kertész, Gábor.  2022.  Evaluation of Deep Learning-based Authorship Attribution Methods on Hungarian Texts. 2022 IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems (ICCC). :000161–000166.
The range of text analysis methods in the field of natural language processing (NLP) has become more and more extensive thanks to the increasing computational resources of the 21st century. As a result, many deep learning-based solutions have been proposed for the purpose of authorship attribution, as they offer more flexibility and automated feature extraction compared to traditional statistical methods. A number of solutions have appeared for the attribution of English texts, however, the number of methods designed for Hungarian language is extremely small. Hungarian is a morphologically rich language, sentence formation is flexible and the alphabet is different from other languages. Furthermore, a language specific POS tagger, pretrained word embeddings, dependency parser, etc. are required. As a result, methods designed for other languages cannot be directly applied on Hungarian texts. In this paper, we review deep learning-based authorship attribution methods for English texts and offer techniques for the adaptation of these solutions to Hungarian language. As a part of the paper, we collected a new dataset consisting of Hungarian literary works of 15 authors. In addition, we extensively evaluate the implemented methods on the new dataset.
2023-04-14
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Salcedo, Mathew David, Abid, Mehdi, Kim, Yoohwan, Jo, Ju-Yeon.  2022.  Evil-Twin Browsers: Using Open-Source Code to Clone Browsers for Malicious Purposes. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0776—0784.
Browsers are one of the most widely used types of software around the world. This prevalence makes browsers a prime target for cyberattacks. To mitigate these threats, users can practice safe browsing habits and take advantage of the security features available to browsers. These protections, however, could be severely crippled if the browser itself were malicious. Presented in this paper is the concept of the evil-twin browser (ETB), a clone of a legitimate browser that looks and behaves identically to the original browser, but discreetly performs other tasks that harm a user's security. To better understand the concept of the evil-twin browser, a prototype ETB named ChroNe was developed. The creation and installation process of ChroN e is discussed in this paper. This paper also explores the motivation behind creating such a browser, examines existing relevant work, inspects the open-source codebase Chromium that assisted in ChroNe's development, and discusses relevant topics like ways to deliver an ETB, the capabilities of an ETB, and possible ways to defend against ETBs.
2023-02-03
Patil, Vishwas T., Shyamasundar, R.K..  2022.  Evolving Role of PKI in Facilitating Trust. 2022 IEEE International Conference on Public Key Infrastructure and its Applications (PKIA). :1–7.
A digital certificate is by far the most widely used artifact to establish secure electronic communication over the Internet. It certifies to its user that the public key encapsulated in it is associated with the subject of the certificate. A Public Key Infrastructure (PKI) is responsible to create, store, distribute, and revoke digital certificates. To establish a secure communication channel two unfamiliar entities rely on a common certificate issuer (a part of PKI) that vouches for both entities' certificates - thus authenticating each other via public keys listed in each other's certificates. Therefore, PKIs act as a trusted third party for two previously unfamiliar entities. Certificates are static data structures, their revocation status must be checked before usage; this step inadvertently involves a PKI for every secure channel establishment - leading to privacy violations of relying parties. As PKIs act as trust anchors for their subjects, any inadvertent event or malfeasance in PKI setup breaches the trust relationship leading to identity theft. Alternative PKI trust models, like PGP and SPKI, have been proposed but with limited deployment. With several retrofitting amendments to the prevalent X.509 standard, the standard has been serving its core objective of entity authentication but with modern requirements of contextual authentication, it is falling short to accommodate the evolving requirements. With the advent of blockchain as a trust management protocol, the time has come to rethink flexible alternatives to PKI core functionality; keeping in mind the modern-day requirements of contextual authentication-cum-authorization, weighted trust anchors, privacy-preservation, usability, and cost-efficient key management. In this paper, we assess this technology's complementary role in modern-day evolving security requirements. We discuss the feasibility of re-engineering PKIs with the help of blockchains, and identity networks.
2022-12-02
Kalafatidis, Sarantis, Demiroglou, Vassilis, Mamatas, Lefteris, Tsaoussidis, Vassilis.  2022.  Experimenting with an SDN-Based NDN Deployment over Wireless Mesh Networks. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1—6.
Internet of Things (IoT) evolution calls for stringent communication demands, including low delay and reliability. At the same time, wireless mesh technology is used to extend the communication range of IoT deployments, in a multi-hop manner. However, Wireless Mesh Networks (WMNs) are facing link failures due to unstable topologies, resulting in unsatisfied IoT requirements. Named-Data Networking (NDN) can enhance WMNs to meet such IoT requirements, thanks to the content naming scheme and in-network caching, but necessitates adaptability to the challenging conditions of WMNs.In this work, we argue that Software-Defined Networking (SDN) is an ideal solution to fill this gap and introduce an integrated SDN-NDN deployment over WMNs involving: (i) global view of the network in real-time; (ii) centralized decision making; and (iii) dynamic NDN adaptation to network changes. The proposed system is deployed and evaluated over the wiLab.1 Fed4FIRE+ test-bed. The proof-of-concept results validate that the centralized control of SDN effectively supports the NDN operation in unstable topologies with frequent dynamic changes, such as the WMNs.
2023-08-25
Kim, Jawon, Chang, Hangbae.  2022.  An Exploratory Study of Security Data Analysis Method for Insider Threat Prevention. 2022 13th International Conference on Information and Communication Technology Convergence (ICTC). :611—613.
Insider threats are steadily increasing, and the damage is also enormous. To prevent insider threats, security solutions, such as DLP, SIEM, etc., are being steadily developed. However, they have limitations due to the high rate of false positives. In this paper, we propose a data analysis method and methodology for responding to a technology leak incident. The future study may be performed based on the proposed methodology.
2022-12-02
Rethfeldt, Michael, Brockmann, Tim, Eckhardt, Richard, Beichler, Benjamin, Steffen, Lukas, Haubelt, Christian, Timmermann, Dirk.  2022.  Extending the FLExible Network Tester (Flent) for IEEE 802.11s WLAN Mesh Networks. 2022 IEEE International Symposium on Measurements & Networking (M&N). :1—6.
Mesh networks based on the wireless local area network (WLAN) technology, as specified by the standards amendment IEEE 802.11s, provide for a flexible and low-cost interconnection of devices and embedded systems for various use cases. To assess the real-world performance of WLAN mesh networks and potential optimization strategies, suitable testbeds and measurement tools are required. Designed for highly automated transport-layer throughput and latency measurements, the software FLExible Network Tester (Flent) is a promising candidate. However, so far Flent does not integrate information specific to IEEE 802.11s networks, such as peer link status data or mesh routing metrics. Consequently, we propose Flent extensions that allow to additionally capture IEEE 802.11s information as part of the automated performance tests. For the functional validation of our extensions, we conduct Flent measurements in a mesh mobility scenario using the network emulation framework Mininet-WiFi.
2023-07-21
Sadikoğlu, Fahreddin M., Idle Mohamed, Mohamed.  2022.  Facial Expression Recognition Using CNN. 2022 International Conference on Artificial Intelligence in Everything (AIE). :95—99.
Facial is the most dynamic part of the human body that conveys information about emotions. The level of diversity in facial geometry and facial look makes it possible to detect various human expressions. To be able to differentiate among numerous facial expressions of emotion, it is crucial to identify the classes of facial expressions. The methodology used in this article is based on convolutional neural networks (CNN). In this paper Deep Learning CNN is used to examine Alex net architectures. Improvements were achieved by applying the transfer learning approach and modifying the fully connected layer with the Support Vector Machine(SVM) classifier. The system succeeded by achieving satisfactory results on icv-the MEFED dataset. Improved models achieved around 64.29 %of recognition rates for the classification of the selected expressions. The results obtained are acceptable and comparable to the relevant systems in the literature provide ideas a background for further improvements.
2023-08-25
Utomo, Rio Guntur, Yahya, Farashazillah, Almarshad, Fahdah, Wills, Gary B.  2022.  Factors Affecting Information Assurance for Big Data. 2022 1st International Conference on Software Engineering and Information Technology (ICoSEIT). :1–5.
Big Data is a concept used in various sectors today, including the government sector in the Smart Government initiative. With a large amount of structured and unstructured data being managed, information assurance becomes important in adopting Big Data. However, so far, no research has focused on information assurance for Big Data. This paper identified information assurance factors for Big Data. This research used the systematic snapshot mapping approach to examine factors relating to information assurance from the literature related to Big Data from 2011 through 2021. The data extraction process in gathering 15 relevant papers. The findings revealed ten factors influencing the information assurance implementation for Big Data, with the security factor becoming the most concentrated factor with 18 sub-factors. The findings are expected to serve as a foundation for adopting information assurance for Big Data to develop an information assurance framework for Smart Government.
2023-02-03
Chakraborty, Joymallya, Majumder, Suvodeep, Tu, Huy.  2022.  Fair-SSL: Building fair ML Software with less data. 2022 IEEE/ACM International Workshop on Equitable Data & Technology (FairWare). :1–8.
Ethical bias in machine learning models has become a matter of concern in the software engineering community. Most of the prior software engineering works concentrated on finding ethical bias in models rather than fixing it. After finding bias, the next step is mitigation. Prior researchers mainly tried to use supervised approaches to achieve fairness. However, in the real world, getting data with trustworthy ground truth is challenging and also ground truth can contain human bias. Semi-supervised learning is a technique where, incrementally, labeled data is used to generate pseudo-labels for the rest of data (and then all that data is used for model training). In this work, we apply four popular semi-supervised techniques as pseudo-labelers to create fair classification models. Our framework, Fair-SSL, takes a very small amount (10%) of labeled data as input and generates pseudo-labels for the unlabeled data. We then synthetically generate new data points to balance the training data based on class and protected attribute as proposed by Chakraborty et al. in FSE 2021. Finally, classification model is trained on the balanced pseudo-labeled data and validated on test data. After experimenting on ten datasets and three learners, we find that Fair-SSL achieves similar performance as three state-of-the-art bias mitigation algorithms. That said, the clear advantage of Fair-SSL is that it requires only 10% of the labeled training data. To the best of our knowledge, this is the first SE work where semi-supervised techniques are used to fight against ethical bias in SE ML models. To facilitate open science and replication, all our source code and datasets are publicly available at https://github.com/joymallyac/FairSSL. CCS CONCEPTS • Software and its engineering → Software creation and management; • Computing methodologies → Machine learning. ACM Reference Format: Joymallya Chakraborty, Suvodeep Majumder, and Huy Tu. 2022. Fair-SSL: Building fair ML Software with less data. In International Workshop on Equitable Data and Technology (FairWare ‘22), May 9, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3524491.3527305
2023-05-11
Zhu, Lei, Huang, He, Gao, Song, Han, Jun, Cai, Chao.  2022.  False Data Injection Attack Detection Method Based on Residual Distribution of State Estimation. 2022 12th International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER). :724–728.
While acquiring precise and intelligent state sensing and control capabilities, the cyber physical power system is constantly exposed to the potential cyber-attack threat. False data injection (FDI) attack attempts to disrupt the normal operation of the power system through the coupling of cyber side and physical side. To deal with the situation that stealthy FDI attack can bypass the bad data detection and thus trigger false commands, a system feature extraction method in state estimation is proposed, and the corresponding FDI attack detection method is presented. Based on the principles of state estimation and stealthy FDI attack, we analyze the impacts of FDI attack on measurement residual. Gaussian fitting method is used to extract the characteristic parameters of residual distribution as the system feature, and attack detection is implemented in a sliding time window by comparison. Simulation results prove that the proposed attack detection method is effectiveness and efficiency.
ISSN: 2642-6633
2023-02-03
Wang, Yingsen, Li, Yixiao, Zhao, Juanjuan, Wang, Guibin, Jiao, Weihan, Qiang, Yan, Li, Keqin.  2022.  A Fast and Secured Peer-to-Peer Energy Trading Using Blockchain Consensus. 2022 IEEE Industry Applications Society Annual Meeting (IAS). :1–8.
The architecture and functioning of the electricity markets are rapidly evolving in favour of solutions based on real-time data sharing and decentralised, distributed, renewable energy generation. Peer-to-peer (P2P) energy markets allow two individuals to transact with one another without the need of intermediaries, reducing the load on the power grid during peak hours. However, such a P2P energy market is prone to various cyber attacks. Blockchain technology has been proposed to implement P2P energy trading to support this change. One of the most crucial components of blockchain technology in energy trading is the consensus mechanism. It determines the effectiveness and security of the blockchain for energy trading. However, most of the consensus used in energy trading today are traditional consensus such as Proof-of-Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). These traditional mechanisms cannot be directly adopted in P2P energy trading due to their huge computational power, low throughput, and high latency. Therefore, we propose the Block Alliance Consensus (BAC) mechanism based on Hashgraph. In a massive P2P energy trading network, BAC can keep Hashgraph's throughput while resisting Sybil attacks and supporting the addition and deletion of energy participants. The high efficiency and security of BAC and the blockchain-based energy trading platform are verified through experiments: our improved BAC has an average throughput that is 2.56 times more than regular BFT, 5 times greater than PoW, and 30% greater than the original BAC. The improved BAC has an average latency that is 41% less than BAC and 81% less than original BFT. Our energy trading blockchain (ETB)'s READ performance can achieve the most outstanding throughput of 1192 tps at a workload of 1200 tps, while WRITE can achieve 682 tps at a workload of 800 tps with a success rate of 95% and 0.18 seconds of latency.
ISSN: 2576-702X
2023-01-05
Bouchiba, Nouha, Kaddouri, Azeddine.  2022.  Fault detection and localization based on Decision Tree and Support vector machine algorithms in electrical power transmission network. 2022 2nd International Conference on Advanced Electrical Engineering (ICAEE). :1—6.
This paper introduces an application of machine learning algorithms. In fact, support vector machine and decision tree approaches are studied and applied to compare their performances in detecting, classifying, and locating faults in the transmission network. The IEEE 14-bus transmission network is considered in this work. Besides, 13 types of faults are tested. Particularly, the one fault and the multiple fault cases are investigated and tested separately. Fault simulations are performed using the SimPowerSystems toolbox in Matlab. Basing on the accuracy score, a comparison is made between the proposed approaches while testing simple faults, on the one hand, and when complicated faults are integrated, on the other hand. Simulation results prove that the support vector machine technique can achieve an accuracy of 87% compared to the decision tree which had an accuracy of 53% in complicated cases.
2023-03-17
Wang, Wenchao, Liu, Chuanyi, Wang, Zhaoguo, Liang, Tiancai.  2022.  FBIPT: A New Robust Reversible Database Watermarking Technique Based on Position Tuples. 2022 4th International Conference on Data Intelligence and Security (ICDIS). :67–74.
Nowadays, data is essential in several fields, such as science, finance, medicine, and transportation, which means its value continues to rise. Relational databases are vulnerable to copyright threats when transmitted and shared as a carrier of data. The watermarking technique is seen as a partial solution to the problem of securing copyright ownership. However, most of them are currently restricted to numerical attributes in relational databases, limiting their versatility. Furthermore, they modify the source data to a large extent, failing to keep the characteristics of the original database, and they are susceptible to solid malicious attacks. This paper proposes a new robust reversible watermarking technique, Fields Based Inserting Position Tuples algorithm (FBIPT), for relational databases. FBIPT does not modify the original database directly; instead, it inserts some position tuples based on three Fields―Group Field, Feature Field, and Control Field. Field information can be calculated by numeric attributes and any attribute that can be transformed into binary bits. FBIPT technique retains all the characteristics of the source database, and experimental results prove the effectiveness of FBIPT and show its highly robust performance compared to state-of-the-art watermarking schemes.
2023-08-11
Reddy, H Manohar, P C, Sajimon, Sankaran, Sriram.  2022.  On the Feasibility of Homomorphic Encryption for Internet of Things. 2022 IEEE 8th World Forum on Internet of Things (WF-IoT). :1—6.
Homomorphic encryption (HE) facilitates computing over encrypted data without using the secret keys. It is currently inefficient for practical implementation on the Internet of Things (IoT). However, the performance of these HE schemes may increase with optimized libraries and hardware capabilities. Thus, implementing and analyzing HE schemes and protocols on resource-constrained devices is essential to deriving optimized and secure schemes. This paper develops an energy profiling framework for homomorphic encryption on IoT devices. In particular, we analyze energy consumption and performance such as CPU and Memory utilization and execution time of numerous HE schemes using SEAL and HElib libraries on the Raspberry Pi 4 hardware platform and study energy-performance-security trade-offs. Our analysis reveals that HE schemes can incur a maximum of 70.07% in terms of energy consumption among the libraries. Finally, we provide guidelines for optimization of Homomorphic Encryption by leveraging multi-threading and edge computing capabilities for IoT applications. The insights obtained from this study can be used to develop secure and resource-constrained implementation of Homomorphic encryption depending on the needs of IoT applications.
2023-01-05
Zhao, Jing, Wang, Ruwu.  2022.  FedMix: A Sybil Attack Detection System Considering Cross-layer Information Fusion and Privacy Protection. 2022 19th Annual IEEE International Conference on Sensing, Communication, and Networking (SECON). :199–207.
Sybil attack is one of the most dangerous internal attacks in Vehicular Ad Hoc Network (VANET). It affects the function of the VANET network by maliciously claiming or stealing multiple identity propagation error messages. In order to prevent VANET from Sybil attacks, many solutions have been proposed. However, the existing solutions are specific to the physical or application layer's single-level data and lack research on cross-layer information fusion detection. Moreover, these schemes involve a large number of sensitive data access and transmission, do not consider users' privacy, and can also bring a severe communication burden, which will make these schemes unable to be actually implemented. In this context, this paper introduces FedMix, the first federated Sybil attack detection system that considers cross-layer information fusion and provides privacy protection. The system can integrate VANET physical layer data and application layer data for joint analyses simultaneously. The data resides locally in the vehicle for local training. Then, the central agency only aggregates the generated model and finally distributes it to the vehicles for attack detection. This process does not involve transmitting and accessing any vehicle's original data. Meanwhile, we also designed a new model aggregation algorithm called SFedAvg to solve the problems of unbalanced vehicle data quality and low aggregation efficiency. Experiments show that FedMix can provide an intelligent model with equivalent performance under the premise of privacy protection and significantly reduce communication overhead, compared with the traditional centralized training attack detection model. In addition, the SFedAvg algorithm and cross-layer information fusion bring better aggregation efficiency and detection performance, respectively.
2023-02-03
Firdaus, Taufiq Maulana, Lubis, Fahdi Saidi, Lubis, Muharman.  2022.  Financial Technology Risk Analysis for Peer to Peer Lending Process: A Case Study of Sharia Aggregator Financial Technology. 2022 10th International Conference on Cyber and IT Service Management (CITSM). :1–4.
Financial technology (Fintech) is an amalgamation of financial management using a technology system. Fintech has become a public concern because this service provides many service features to make it easier from the financial side, such as being used in cooperative financial institutions, banking and insurance. This paper will analyze the opportunities and challenges of Fintech sharia in Indonesia. By exploring the existing literature, this article will try to answer that question. This research is carried out using a literature review approach and comparative qualitative method which will determined the results of the SWOT analysis of sharia financial technology in indonesia. It is needed to mitigate risk of funding in a peer to peer method in overcoming the security of funds and data from investors, firstly companies can perform transparency on the clarity of investor funds. This is done as one of the facilities provided to investors in the Fintech application. In the future, it is hoped that in facing competition, sharia-based fintech companies must be able to provide targeted services through the socialization of sharia fintech to the public, both online and offline. Investors are expected to be more careful before investing in choosing Fintech Peer to Peer (P2P) Lending services by checking the list of Fintech lending and lending companies registered and found by the Financial Services Authority (OJK).
ISSN: 2770-159X
2023-07-14
Reis, Lúcio H. A., de Oliveira, Marcela T., Olabarriaga, Sílvia D..  2022.  Fine-grained Encryption for Secure Research Data Sharing. 2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS). :465–470.
Research data sharing requires provision of adequate security. The requirements for data privacy are extremely demanding for medical data that is reused for research purposes. To address these requirements, the research institutions must implement adequate security measurements, and this demands large effort and costs to do it properly. The usage of adequate access controls and data encryption are key approaches to effectively protect research data confidentiality; however, the management of the encryption keys is challenging. There are novel mechanisms that can be explored for managing access to the encryption keys and encrypted files. These mechanisms guarantee that data are accessed by authorised users and that auditing is possible. In this paper we explore these mechanisms to implement a secure research medical data sharing system. In the proposed system, the research data are stored on a secure cloud system. The data are partitioned into subsets, each one encrypted with a unique key. After the authorisation process, researchers are given rights to use one or more of the keys and to selectively access and decrypt parts of the dataset. Our proposed solution offers automated fine-grain access control to research data, saving time and work usually made manually. Moreover, it maximises and fortifies users' trust in data sharing through secure clouds solutions. We present an initial evaluation and conclude with a discussion about the limitations, open research questions and future work around this challenging topic.
ISSN: 2372-9198
2023-01-13
Marinho Queiróz, Leandro Meira, Eduardo Garcia, Rogério, Eler, Danilo Medeiros, Celso Messias Correia, Ronaldo.  2022.  Fireasy: a tool to aid security policy modeling, translation and understanding firewall configuration. 2022 17th Iberian Conference on Information Systems and Technologies (CISTI). :1–6.
Companies store increasing amounts of data, requiring the implementation of mechanisms to protect them from malicious people. There are techniques and procedures that aim to increase the security of computer systems, such as network protection services, firewalls. They are intended to filter packets that enter and leave a network. Its settings depend on security policies, which consist of documents that describe what is allowed to travel on the network and what is prohibited. The transcription of security policies into rules, written in native firewall language, that represent them, is the main source of errors in firewall configurations. In this work, concepts related to security between networks and firewalls are presented. Related works on security policies and their translations into firewall rules are also referenced. Furthermore, the developed tool, named Fireasy, is presented, which allows the modeling of security policies through graphic elements, and the maintenance of rules written in native firewall language, also representing them in graphic elements. Finally, a controlled experiment was conducted to validate the approach, which indicated, in addition to the correct functioning of the tool, an improvement in the translation of security policies into firewall rules using the tool. In the task of understanding firewall rules, there was a homogenization of the participants' performance when they used the tool.
2023-03-31
Heravi, Mohammad Mahdi Lotfi, Khorrampanah, Mahsa, Houshmand, Monireh.  2022.  Forecasting Crude Oil Prices Using Improved Deep Belief Network (IDBN) and Long-Term Short-Term Memory Network (LSTM). 2022 30th International Conference on Electrical Engineering (ICEE). :823–826.
Historically, energy resources are of strategic importance for the social welfare and economic growth. So, predicting crude oil price fluctuations is an important issue. Since crude oil price changes are affected by many risk factors in markets, this price shows more complicated nonlinear behavior and creates more risk levels for investors than in the past. We propose a new method of prediction of crude oil price to model nonlinear dynamics. The results of the experiments show that the superior performance of the model based on the proposed method against statistical previous works is statistically significant. In general, we found that the combination of the IDBN or LSTM model lowered the MSE value to 4.65, which is 0.81 lower than the related work (Chen et al. protocol), indicating an improvement in prediction accuracy.
ISSN: 2642-9527
2022-12-20
Hariharan, Meenu, Thakar, Akash, Sharma, Parvesh.  2022.  Forensic Analysis of Private Mode Browsing Artifacts in Portable Web Browsers Using Memory Forensics. 2022 International Conference on Computing, Communication, Security and Intelligent Systems (IC3SIS). :1–5.
The popularity of portable web browsers is increasing due to its convenient and compact nature along with the benefit of the data being stored and transferred easily using a USB drive. As technology gets updated frequently, developers are working on web browsers that can be portable in nature with additional security features like private mode browsing, built in ad blockers etc. The increased probability of using portable web browsers for carrying out nefarious activities is a result of cybercriminals with the thought that if they use portable web browsers in private mode it won't leave a digital footprint. Hence, the research paper aims at performing a comparative study of four portable web browsers namely Brave, TOR, Vivaldi, and Maxthon along with various memory acquisition tools to understand the quantity and quality of the data that can be recovered from the memory dump in two different conditions that is when the browser tabs were open and when the browser tabs were closed in a system to aid the forensic investigators.
2023-07-31
Legrand, Antoine, Macq, Benoît, De Vleeschouwer, Christophe.  2022.  Forward Error Correction Applied to JPEG-XS Codestreams. 2022 IEEE International Conference on Image Processing (ICIP). :3723—3727.
JPEG-XS offers low complexity image compression for applications with constrained but reasonable bit-rate, and low latency. Our paper explores the deployment of JPEG-XS on lossy packet networks. To preserve low latency, Forward Error Correction (FEC) is envisioned as the protection mechanism of interest. Although the JPEG-XS codestream is not scalable in essence, we observe that the loss of a codestream fraction impacts the decoded image quality differently, depending on whether this codestream fraction corresponds to codestream headers, to coefficient significance information, or to low/high frequency data. Hence, we propose a rate-distortion optimal unequal error protection scheme that adapts the redundancy level of Reed-Solomon codes according to the rate of channel losses and the type of information protected by the code. Our experiments demonstrate that, at 5% loss rates, it reduces the Mean Squared Error by up to 92% and 65%, compared to a transmission without and with optimal but equal protection, respectively.