Biblio

Found 7524 results

Filters: Keyword is Metrics  [Clear All Filters]
2023-02-17
Mahmood, Riyadh, Pennington, Jay, Tsang, Danny, Tran, Tan, Bogle, Andrea.  2022.  A Framework for Automated API Fuzzing at Enterprise Scale. 2022 IEEE Conference on Software Testing, Verification and Validation (ICST). :377–388.
Web-based Application Programming Interfaces (APIs) are often described using SOAP, OpenAPI, and GraphQL specifications. These specifications provide a consistent way to define web services and enable automated fuzz testing. As such, many fuzzers take advantage of these specifications. However, in an enterprise setting, the tools are usually installed and scaled by individual teams, leading to duplication of efforts. There is a need for an enterprise-wide fuzz testing solution to provide shared, cost efficient, off-nominal testing at scale where fuzzers can be plugged-in as needed. Internet cloud-based fuzz testing-as-a-service solutions mitigate scalability concerns but are not always feasible as they require artifacts to be uploaded to external infrastructure. Typically, corporate policies prevent sharing artifacts with third parties due to cost, intellectual property, and security concerns. We utilize API specifications and combine them with cluster computing elasticity to build an automated, scalable framework that can fuzz multiple apps at once and retain the trust boundary of the enterprise.
ISSN: 2159-4848
2023-08-25
Padmavathi, G., Shanmugapriya, D., Asha, S..  2022.  A Framework to Detect the Malicious Insider Threat in Cloud Environment using Supervised Learning Methods. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :354—358.
A malicious insider threat is more vulnerable to an organization. It is necessary to detect the malicious insider because of its huge impact to an organization. The occurrence of a malicious insider threat is less but quite destructive. So, the major focus of this paper is to detect the malicious insider threat in an organization. The traditional insider threat detection algorithm is not suitable for real time insider threat detection. A supervised learning-based anomaly detection technique is used to classify, predict and detect the malicious and non-malicious activity based on highest level of anomaly score. In this paper, a framework is proposed to detect the malicious insider threat using supervised learning-based anomaly detection. It is used to detect the malicious insider threat activity using One-Class Support Vector Machine (OCSVM). The experimental results shows that the proposed framework using OCSVM performs well and detects the malicious insider who obtain huge anomaly score than a normal user.
2022-12-09
M, Gayathri, Gomathy, C..  2022.  Fuzzy based Trusted Communication in Vehicular Ad hoc Network. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1—4.
Vehicular Ad hoc Network (VANET) is an emerging technology that is used to provide communication between vehicle users. VANET provides communication between one vehicle node to another vehicle node, vehicle to the roadside unit, vehicle to pedestrian, and even vehicle to rail users. Communication between nodes should be very secure and confidential, Since VANET communicates through wireless mode, a malicious node may enter inside the communication zone to hack, inject false messages, and interrupt the communication. A strong protocol is necessary to detect malicious nodes and authenticate the VANET user to protect them from malicious attacks. In this paper, a fuzzy-based trust authentication scheme is used to detect malicious nodes with the Mamdani fuzzy Inference system. The parameter estimation, rules have been framed using MATLAB Mamdani Fuzzy Inference system to select a genuine node for data transmission.
2023-09-01
Ye, Jiao.  2022.  A fuzzy decision tree reasoning method for network forensics analysis. 2022 World Automation Congress (WAC). :41—45.
As an important branch of computer forensics, network forensics technology, whether abroad or at home, is in its infancy. It mainly focuses on the research on the framework of some forensics systems or some local problems, and has not formed a systematic theory, method and system. In order to improve the network forensics sys-tem, have a relatively stable and correct model for refer-ence, ensure the authenticity and credibility of network fo-rensics from the forensics steps, provide professional and non professional personnel with a standard to measure the availability of computer network crime investigation, guide the current network forensics process, and promote the gradual maturity of network forensics theories and methods, This paper presents a fuzzy decision tree reason-ing method for network forensics analysis.
2023-07-31
Abdaoui, Abderrazak, Erbad, Aiman, Al-Ali, Abdulla Khalid, Mohamed, Amr, Guizani, Mohsen.  2022.  Fuzzy Elliptic Curve Cryptography for Authentication in Internet of Things. IEEE Internet of Things Journal. 9:9987—9998.
The security and privacy of the network in Internet of Things (IoT) systems are becoming more critical as we are more dependent on smart systems. Considering that packets are exchanged between the end user and the sensing devices, it is then important to ensure the security, privacy, and integrity of the transmitted data by designing a secure and a lightweight authentication protocol for IoT systems. In this article, in order to improve the authentication and the encryption in IoT systems, we present a novel method of authentication and encryption based on elliptic curve cryptography (ECC) using random numbers generated by fuzzy logic. We evaluate our novel key generation method by using standard randomness tests, such as: frequency test, frequency test with mono block, run test, discrete Fourier transform (DFT) test, and advanced DFT test. Our results show superior performance compared to existing ECC based on shift registers. In addition, we apply some attack algorithms, such as Pollard’s \textbackslashrho and Baby-step Giant-step, to evaluate the vulnerability of the proposed scheme.
2023-07-28
Bhande, Sapana A, Chandrakar, V. K..  2022.  Fuzzy Logic based Static Synchronous Series Compensator (SSSC) to enhance Power System Security. 2022 IEEE IAS Global Conference on Emerging Technologies (GlobConET). :667—672.
In today's power market, it's vital to keep electrical energy affordable to the vast majority of people while maintaining the highest degree of dependability. Due to which, the transmission network must operate beyond transfer limitations, generating congestion on transmission lines. These transmission line difficulties can be alleviated with the use of reactive power adjustment based on FACTS devices. Using a fuzzy tuned Static Synchronous Series Compensator [SSSC], this research proposes a novel method for calculating the effective damping oscillation control signals. The performance of the SSSC is compared to that of fuzzy logic-based controllers using PI controllers. According to the simulation results, the SSSC with fuzzy logic control effectively improves power flow under disrupted conditions
Reddy, V. Nagi, Gayathri, T., Nyamathulla, S K, Shaik, Nazma Sultana.  2022.  Fuzzy Logic Based WSN with High Packet Success Rate and Security. 2022 IEEE International Conference on Current Development in Engineering and Technology (CCET). :1—5.
Considering the evidence that conditions accept a considerable place in each of the structures, owing to limited assets available at each sensor center, it is a difficult problem. Vitality safety is the primary concern in many of the implementations in remote sensor hubs. This is critical as the improvement in the lifetime of the device depends primarily on restricting the usage of vitality in sensor hubs. The rationing and modification of the usage of vitality are of the most serious value in this context. In a remote sensor arrangement, the fundamental test is to schedule measurements for the least use of vitality. These classification frameworks are used to frame the classes in the structure and help efficiently use the strength that burdens out the lifespan of the network. Besides, the degree of the center was taken into account in this work considering the measurement of cluster span as an improvement to the existing methods. The crucial piece of leeway of this suggested approach on affair clustering using fuzzy logic is which can increase the lifespan of the system by reducing the problem area problem word.
Khunchai, Seree, Kruekaew, Adool, Getvongsa, Natthapong.  2022.  A Fuzzy Logic-Based System of Abnormal Behavior Detection Using PoseNet for Smart Security System. 2022 37th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). :912—915.
This paper aims to contribute towards creating ambient abnormal behavior detection for smart security system from real-time human pose estimation using fuzzy-based systems. Human poses from keypoint detected by pose estimation model are transformed to as angle positions of the axis between human bodies joints comparing to reference point in the axis x to deal with problem of the position change occurred when an individual move in the image. Also, the article attempts to resolve the problem of the ambiguity interpreting the poses with triangular fuzzy logic-based system that determines the detected individual behavior and compares to the poses previously learnt, trained, and recorded by the system. The experiment reveals that the accuracy of the system ranges between 90.75% (maximum) and 84% (minimum). This means that if the accuracy of the system at 85%. The system can be applied to guide future research for designing automatic visual human behavior detection systems.
2023-07-31
Guo, Yaqiong, Zhou, Peng, Lu, Xin, Sun, Wangshu, Sun, Jiasai.  2022.  A Fuzzy Multi-Identity Based Signature. 2022 Tenth International Conference on Advanced Cloud and Big Data (CBD). :219—223.
Identity based digital signature is an important research topic of public key cryptography, which can effectively guarantee the authentication, integrity and unforgeability of data. In this paper, a new fuzzy multi-identity based signature scheme is proposed. It is proved that the scheme is existentially unforgeable against adaptively chosen message attack, and the security of the signature scheme can be reduced to CDH assumption. The storage cost and the communication overhead are small, therefore the new fuzzy multi-identity based signature (FMIBS) scheme can be implemented efficiently.
2023-08-04
Bian, Yuan, Lin, Haitao, Song, Yuecai.  2022.  Game model of attack and defense for underwater wireless sensor networks. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:559–563.
At present, the research on the network security problem of underwater wireless sensors is still few, and since the underwater environment is exposed, passive security defense technology is not enough to deal with unknown security threats. Aiming at this problem, this paper proposes an offensive and defensive game model from the finite rationality of the network attack and defense sides, combined with evolutionary game theory. The replicated dynamic equation is introduced to analyze the evolution trend of strategies under different circumstances, and the selection algorithm of optimal strategy is designed, which verifies the effectiveness of this model through simulation and provides guidance for active defense technology.
ISSN: 2693-2865
2023-02-03
Lu, Dongzhe, Fei, Jinlong, Liu, Long, Li, Zecun.  2022.  A GAN-based Method for Generating SQL Injection Attack Samples. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:1827–1833.
Due to the simplicity of implementation and high threat level, SQL injection attacks are one of the oldest, most prevalent, and most destructive types of security attacks on Web-based information systems. With the continuous development and maturity of artificial intelligence technology, it has been a general trend to use AI technology to detect SQL injection. The selection of the sample set is the deciding factor of whether AI algorithms can achieve good results, but dataset with tagged specific category labels are difficult to obtain. This paper focuses on data augmentation to learn similar feature representations from the original data to improve the accuracy of classification models. In this paper, deep convolutional generative adversarial networks combined with genetic algorithms are applied to the field of Web vulnerability attacks, aiming to solve the problem of insufficient number of SQL injection samples. This method is also expected to be applied to sample generation for other types of vulnerability attacks.
ISSN: 2693-2865
2022-12-20
Hassanshahi, Behnaz, Lee, Hyunjun, Krishnan, Paddy.  2022.  Gelato: Feedback-driven and Guided Security Analysis of Client-side Web Applications. 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER). :618–629.
Modern web applications are getting more sophisticated by using frameworks that make development easy, but pose challenges for security analysis tools. New analysis techniques are needed to handle such frameworks that grow in number and popularity. In this paper, we describe Gelato that addresses the most crucial challenges for a security-aware client-side analysis of highly dynamic web applications. In particular, we use a feedback-driven and state-aware crawler that is able to analyze complex framework-based applications automatically, and is guided to maximize coverage of security-sensitive parts of the program. Moreover, we propose a new lightweight client-side taint analysis that outperforms the state-of-the-art tools, requires no modification to browsers, and reports non-trivial taint flows on modern JavaScript applications. Gelato reports vulnerabilities with higher accuracy than existing tools and achieves significantly better coverage on 12 applications of which three are used in production.
ISSN: 1534-5351
2023-06-22
He, Yuxin, Zhuang, Yaqiang, Zhuang, Xuebin, Lin, Zijian.  2022.  A GNSS Spoofing Detection Method based on Sparse Decomposition Technique. 2022 IEEE International Conference on Unmanned Systems (ICUS). :537–542.
By broadcasting false Global Navigation Satellite System (GNSS) signals, spoofing attacks will induce false position and time fixes within the victim receiver. In this article, we propose a Sparse Decomposition (SD)-based spoofing detection algorithm in the acquisition process, which can be applied in a single-antenna receiver. In the first step, we map the Fast Fourier transform (FFT)-based acquisition result in a two-dimensional matrix, which is a distorted autocorrelation function when the receiver is under spoof attack. In the second step, the distorted function is decomposed into two main autocorrelation function components of different code phases. The corresponding elements of the result vector of the SD are the code-phase values of the spoofed and the authentic signals. Numerical simulation results show that the proposed method can not only outcome spoofing detection result, but provide reliable estimations of the code phase delay of the spoof attack.
ISSN: 2771-7372
2023-03-17
Woralert, Chutitep, Liu, Chen, Blasingame, Zander.  2022.  HARD-Lite: A Lightweight Hardware Anomaly Realtime Detection Framework Targeting Ransomware. 2022 Asian Hardware Oriented Security and Trust Symposium (AsianHOST). :1–6.
Recent years have witnessed a surge in ransomware attacks. Especially, many a new variant of ransomware has continued to emerge, employing more advanced techniques distributing the payload while avoiding detection. This renders the traditional static ransomware detection mechanism ineffective. In this paper, we present our Hardware Anomaly Realtime Detection - Lightweight (HARD-Lite) framework that employs semi-supervised machine learning method to detect ransomware using low-level hardware information. By using an LSTM network with a weighted majority voting ensemble and exponential moving average, we are able to take into consideration the temporal aspect of hardware-level information formed as time series in order to detect deviation in system behavior, thereby increasing the detection accuracy whilst reducing the number of false positives. Testing against various ransomware across multiple families, HARD-Lite has demonstrated remarkable effectiveness, detecting all cases tested successfully. What's more, with a hierarchical design that distributing the classifier from the user machine that is under monitoring to a server machine, Hard-Lite enables good scalability as well.
2023-07-13
Hao, Qiang, Xu, Dongdong, Zhang, Zhun, Wang, Jiqing, Le, Tong, Wang, Jiawei, Zhang, Jinlei, Liu, Jiakang, Ma, Jinhui, Wang, Xiang.  2022.  A Hardware-Assisted Security Monitoring Method for Jump Instruction and Jump Address in Embedded Systems. 2022 8th Annual International Conference on Network and Information Systems for Computers (ICNISC). :197–202.
With the development of embedded systems towards networking and intelligence, the security threats they face are becoming more difficult to prevent. Existing protection methods make it difficult to monitor jump instructions and their target addresses for tampering by attackers at the low hardware implementation overhead and performance overhead. In this paper, a hardware-assisted security monitoring module is designed to monitor the integrity of jump instructions and jump addresses when executing programs. The proposed method has been implemented on the Xilinx Kintex-7 FPGA platform. Experiments show that this method is able to effectively monitor tampering attacks on jump instructions as well as target addresses while the embedded system is executing programs.
2023-07-11
Gritti, Fabio, Pagani, Fabio, Grishchenko, Ilya, Dresel, Lukas, Redini, Nilo, Kruegel, Christopher, Vigna, Giovanni.  2022.  HEAPSTER: Analyzing the Security of Dynamic Allocators for Monolithic Firmware Images. 2022 IEEE Symposium on Security and Privacy (SP). :1082—1099.
Dynamic memory allocators are critical components of modern systems, and developers strive to find a balance between their performance and their security. Unfortunately, vulnerable allocators are routinely abused as building blocks in complex exploitation chains. Most of the research regarding memory allocators focuses on popular and standardized heap libraries, generally used by high-end devices such as desktop systems and servers. However, dynamic memory allocators are also extensively used in embedded systems but they have not received much scrutiny from the security community.In embedded systems, a raw firmware image is often the only available piece of information, and finding heap vulnerabilities is a manual and tedious process. First of all, recognizing a memory allocator library among thousands of stripped firmware functions can quickly become a daunting task. Moreover, emulating firmware functions to test for heap vulnerabilities comes with its own set of challenges, related, but not limited, to the re-hosting problem.To fill this gap, in this paper we present HEAPSTER, a system that automatically identifies the heap library used by a monolithic firmware image, and tests its security with symbolic execution and bounded model checking. We evaluate HEAPSTER on a dataset of 20 synthetic monolithic firmware images — used as ground truth for our analyses — and also on a dataset of 799 monolithic firmware images collected in the wild and used in real-world devices. Across these datasets, our tool identified 11 different heap management library (HML) families containing a total of 48 different variations. The security testing performed by HEAPSTER found that all the identified variants are vulnerable to at least one critical heap vulnerability. The results presented in this paper show a clear pattern of poor security standards, and raise some concerns over the security of dynamic memory allocators employed by IoT devices.
2023-03-03
Xu, Bo, Zhang, Xiaona, Cao, Heyang, Li, Yu, Wang, Li-Ping.  2022.  HERMS: A Hierarchical Electronic Records Management System Based on Blockchain with Distributed Key Generation. 2022 IEEE International Conference on Services Computing (SCC). :295–304.
In a traditional electronic records management system (ERMS), the legitimacy of the participants’ identities is verified by Certificate Authority (CA) certifications. The authentication process is complicated and takes up lots of memory. To overcome this problem, we construct a hierarchical electronic records management system by using a Hierarchical Identity-Based Cryptosystem (HIBC) to replace CA. However, there exist the threats of malicious behavior from a private key generator (PKG) or an entity in the upper layer because the private keys are generated by a PKG or upper entity in HIBC. Thus, we adopt distributed key generation protocols in HIBC to avoid the threats. Finally, we use blockchain technology in our system to achieve decentralized management.
2023-07-12
Xiang, Peng, Peng, ChengWei, Li, Qingshan.  2022.  Hierarchical Association Features Learning for Network Traffic Recognition. 2022 International Conference on Information Processing and Network Provisioning (ICIPNP). :129—133.
With the development of network technology, identifying specific traffic has become important in network monitoring and security. However, designing feature sets that can accurately describe network traffic is still an urgent problem. Most of existing researches cannot realize effectively the identification of targets, and don't perform well in the complex and dynamic network environment. Aiming at these problems, we propose a novel method in this paper, which learns correlation features of network traffic based on the hierarchical structure. Firstly, the method learns the spatial-temporal features using convolutional neural networks (CNNs) and the bidirectional long short-term memory networks (Bi-LSTMs), then builds network topology to capture dependency characteristics between sessions and learns the context-related features through the graph attention networks (GATs). Finally, the network traffic session is classified using a fully connected network. The experimental results show that our method can effectively improve the detection ability and achieve a better classification performance overall.
2023-03-31
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.  2022.  Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.
2023-05-19
Vega-Martinez, Valeria, Cooper, Austin, Vera, Brandon, Aljohani, Nader, Bretas, Arturo.  2022.  Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
2023-01-13
Clausen, Marie, Schütz, Johann.  2022.  Identifying Security Requirements for Smart Grid Components: A Smart Grid Security Metric. 2022 IEEE 20th International Conference on Industrial Informatics (INDIN). :208—213.
The most vital requirement for the electric power system as a critical infrastructure is its security of supply. In course of the transition of the electric energy system, however, the security provided by the N-1 principle increasingly reaches its limits. The IT/OT convergence changes the threat structure significantly. New risk factors, that can lead to major blackouts, are added to the existing ones. The problem, however, the cost of security optimizations are not always in proportion to their value. Not every component is equally critical to the energy system, so the question arises, "How secure does my system need to be?". To adress the security-by-design principle, this contribution introduces a Security Metric (SecMet) that can be applied to Smart Grid architectures and its components and deliver an indicator for the "Securitisation Need" based on an individual risk assessment.
2023-02-28
Gopalakrishna, Nikhil Krishna, Anandayuvaraj, Dharun, Detti, Annan, Bland, Forrest Lee, Rahaman, Sazzadur, Davis, James C..  2022.  “If security is required”: Engineering and Security Practices for Machine Learning-based IoT Devices. 2022 IEEE/ACM 4th International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT). :1—8.
The latest generation of IoT systems incorporate machine learning (ML) technologies on edge devices. This introduces new engineering challenges to bring ML onto resource-constrained hardware, and complications for ensuring system security and privacy. Existing research prescribes iterative processes for machine learning enabled IoT products to ease development and increase product success. However, these processes mostly focus on existing practices used in other generic software development areas and are not specialized for the purpose of machine learning or IoT devices. This research seeks to characterize engineering processes and security practices for ML-enabled IoT systems through the lens of the engineering lifecycle. We collected data from practitioners through a survey (N=25) and interviews (N=4). We found that security processes and engineering methods vary by company. Respondents emphasized the engineering cost of security analysis and threat modeling, and trade-offs with business needs. Engineers reduce their security investment if it is not an explicit requirement. The threats of IP theft and reverse engineering were a consistent concern among practitioners when deploying ML for IoT devices. Based on our findings, we recommend further research into understanding engineering cost, compliance, and security trade-offs.
2023-02-03
Khoury, David, Balian, Patrick, Kfoury, Elie.  2022.  Implementation of Blockchain Domain Control Verification (B-DCV). 2022 45th International Conference on Telecommunications and Signal Processing (TSP). :17–22.
Security in the communication systems rely mainly on a trusted Public Key Infrastructure (PKI) and Certificate Authorities (CAs). Besides the lack of automation, the complexity and the cost of assigning a signed certificate to a device, several allegations against CAs have been discovered, which has created trust issues in adopting this standard model for secure systems. The automation of the servers certificate assignment was achieved by the Automated Certificate Management Environment (ACME) method, but without confirming the trust of assigned certificate. This paper presents a complete tested and implemented solution to solve the trust of the Certificates provided to the servers by using the blockchain platform for certificate validation. The Blockchain network provides an immutable data store, holding the public keys of all domain names, while resolving the trust concerns by applying an automated Blockchain-based Domain Control Validation (B-DCV) for the server and client server verification. The evaluation was performed on the Ethereum Rinkeby testnet adopting the Proof of Authority (PoA) consensus algorithm which is an improved version of Proof of Stake (Po \$S\$) applied on Ethereum 2.0 providing superior performance compared to Ethereum 1.0.
2023-04-14
Monani, Ravi, Rogers, Brian, Rezaei, Amin, Hedayatipour, Ava.  2022.  Implementation of Chaotic Encryption Architecture on FPGA for On-Chip Secure Communication. 2022 IEEE Green Energy and Smart System Systems (IGESSC). :1–6.
Chaos is an interesting phenomenon for nonlinear systems that emerges due to its complex and unpredictable behavior. With the escalated use of low-powered edge-compute devices, data security at the edge develops the need for security in communication. The characteristic that Chaos synchronizes over time for two different chaotic systems with their own unique initial conditions, is the base for chaos implementation in communication. This paper proposes an encryption architecture suitable for communication of on-chip sensors to provide a POC (proof of concept) with security encrypted on the same chip using different chaotic equations. In communication, encryption is achieved with the help of microcontrollers or software implementations that use more power and have complex hardware implementation. The small IoT devices are expected to be operated on low power and constrained with size. At the same time, these devices are highly vulnerable to security threats, which elevates the need to have low power/size hardware-based security. Since the discovery of chaotic equations, they have been used in various encryption applications. The goal of this research is to take the chaotic implementation to the CMOS level with the sensors on the same chip. The hardware co-simulation is demonstrated on an FPGA board for Chua encryption/decryption architecture. The hardware utilization for Lorenz, SprottD, and Chua on FPGA is achieved with Xilinx System Generation (XSG) toolbox which reveals that Lorenz’s utilization is 9% lesser than Chua’s.
ISSN: 2640-0138
2023-08-11
Biswas, Ankur, Karan, Ashish, Nigam, Nidhi, Doreswamy, Hema, Sadykanova, Serikkhan, Rauliyevna, Mangazina Zhanel.  2022.  Implementation of Cyber Security for Enabling Data Protection Analysis and Data Protection using Robot Key Homomorphic Encryption. 2022 Sixth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC). :170—174.
Cloud computing plays major role in the development of accessing clouduser’s document and sensitive information stored. It has variety of content and representation. Cyber security and attacks in the cloud is a challenging aspect. Information security attains a vital part in Cyber Security management. It involves actions intended to reduce the adverse impacts of such incidents. To access the documents stored in cloud safely and securely, access control will be introduced based on cloud users to access the user’s document in the cloud. To achieve this, it is highly required to combine security components (e.g., Access Control, Usage Control) in the security document to get automatic information. This research work has proposed a Role Key Homomorphic Encryption Algorithm (RKHEA) to monitor the cloud users, who access the services continuously. This method provides access creation of session-based key to store the singularized encryption to reduce the key size from random methods to occupy memory space. It has some terms and conditions to be followed by the cloud users and also has encryption method to secure the document content. Hence the documents are encrypted with the RKHEA algorithm based on Service Key Access (SKA). Then, the encrypted key will be created based on access control conditions. The proposed analytics result shows an enhanced control over the documents in cloud and improved security performance.