Biblio
Filters: Keyword is Metrics [Clear All Filters]
Design of Portable Sensor Data Storage System Based on Homomorphic Encryption Algorithm. 2022 International Conference on Knowledge Engineering and Communication Systems (ICKES). :1—4.
.
2022. With the development of sensor technology, people put forward a higher level, more diversified demand for portable rangefinders. However, its data storage method has not been developed in a large scale and breakthrough. This paper studies the design of portable sensor data storage system based on homomorphic encryption algorithm, which aims to maintain the security of sensor data storage through homomorphic encryption algorithm. This paper analyzes the functional requirements of the sensor data storage system, puts forward the overall design scheme of the system, and explains in detail the requirements and indicators for the specific realization of each part of the function. Analyze the different technical resources currently used in the storage system field, and dig deep into the key technologies that match the portable sensor data storage system. This paper has changed the problem of cumbersome operation steps and inconvenient data recovery in the sensor data storage system. This paper mainly uses the method of control variables and data comparison to carry out the experiment. The experimental results show that the success rate of the sensor data storage system under the homomorphic encryption algorithm is infinitely close to 100% as the number of data blocks increases.
Design of Smart Risk Assessment System for Agricultural Products and Food Safety Inspection Based on Multivariate Data Analysis. 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT). :1206—1210.
.
2022. Design of smart risk assessment system for the agricultural products and the food safety inspection based on multivariate data analysis is studied in this paper. The designed quality traceability system also requires the collaboration and cooperation of various companies in the supply chain, and a unified database, including agricultural product identification system, code system and security status system, is required to record in detail the trajectory and status of agricultural products in the logistics chain. For the improvement, the multivariate data analysis is combined. Hadoop cannot be used on hardware with high price and high reliability. Even for groups with high probability of the problems, HDFS will continue to use when facing problems, and at the same time. Hence, the core model of HDFS is applied into the system. In the verification part, the analytic performance is simulated.
Designing a Framework of an Integrated Network and Security Operation Center: A Convergence Approach. 2022 IEEE 7th International conference for Convergence in Technology (I2CT). :1—4.
.
2022. Cyber-security incidents have grown significantly in modern networks, far more diverse and highly destructive and disruptive. According to the 2021 Cyber Security Statistics Report [1], cybercrime is up 600% during this COVID pandemic, the top attacks are but are not confined to (a) sophisticated phishing emails, (b) account and DNS hijacking, (c) targeted attacks using stealth and air gap malware, (d) distributed denial of services (DDoS), (e) SQL injection. Additionally, 95% of cyber-security breaches result from human error, according to Cybint Report [2]. The average time to identify a breach is 207 days as per Ponemon Institute and IBM, 2022 Cost of Data Breach Report [3]. However, various preventative controls based on cyber-security risk estimation and awareness results decrease most incidents, but not all. Further, any incident detection delay and passive actions to cyber-security incidents put the organizational assets at risk. Therefore, the cyber-security incident management system has become a vital part of the organizational strategy. Thus, the authors propose a framework to converge a "Security Operation Center" (SOC) and a "Network Operations Center" (NOC) in an "Integrated Network Security Operation Center" (INSOC), to overcome cyber-threat detection and mitigation inefficiencies in the near-real-time scenario. We applied the People, Process, Technology, Governance and Compliance (PPTGC) approach to develop the INSOC conceptual framework, according to the requirements we formulated for its operation [4], [5]. The article briefly describes the INSOC conceptual framework and its usefulness, including the central area of the PPTGC approach while designing the framework.
Detecting and Classifying Self-Deleting Windows Malware Using Prefetch Files. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0745–0751.
.
2022. Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity.
Detecting Malware Using Graph Embedding and DNN. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :28—31.
.
2022. Nowadays, the popularity of intelligent terminals makes malwares more and more serious. Among the many features of application, the call graph can accurately express the behavior of the application. The rapid development of graph neural network in recent years provides a new solution for the malicious analysis of application using call graphs as features. However, there are still problems such as low accuracy. This paper established a large-scale data set containing more than 40,000 samples and selected the class call graph, which was extracted from the application, as the feature and used the graph embedding combined with the deep neural network to detect the malware. The experimental results show that the accuracy of the detection model proposed in this paper is 97.7%; the precision is 96.6%; the recall is 96.8%; the F1-score is 96.4%, which is better than the existing detection model based on Markov chain and graph embedding detection model.
Detection and Incentive: A Tampering Detection Mechanism for Object Detection in Edge Computing. 2022 41st International Symposium on Reliable Distributed Systems (SRDS). :166—177.
.
2022. The object detection tasks based on edge computing have received great attention. A common concern hasn't been addressed is that edge may be unreliable and uploads the incorrect data to cloud. Existing works focus on the consistency of the transmitted data by edge. However, in cases when the inputs and the outputs are inherently different, the authenticity of data processing has not been addressed. In this paper, we first simply model the tampering detection. Then, bases on the feature insertion and game theory, the tampering detection and economic incentives mechanism (TDEI) is proposed. In tampering detection, terminal negotiates a set of features with cloud and inserts them into the raw data, after the cloud determines whether the results from edge contain the relevant information. The honesty incentives employs game theory to instill the distrust among different edges, preventing them from colluding and thwarting the tampering detection. Meanwhile, the subjectivity of nodes is also considered. TDEI distributes the tampering detection to all edges and realizes the self-detection of edge results. Experimental results based on the KITTI dataset, show that the accuracy of detection is 95% and 80%, when terminal's additional overhead is smaller than 30% for image and 20% for video, respectively. The interference ratios of TDEI to raw data are about 16% for video and 0% for image, respectively. Finally, we discuss the advantage and scalability of TDEI.
Detection and prediction of DDoS cyber attacks using spline functions. 2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET). :710–713.
.
2022. The issues of development and legal regulation of cybersecurity in Ukraine are considered. The expediency of further improvement of the regulatory framework, its implementation and development of cybersecurity systems is substantiated. Further development of the theoretical base of cyber defense using spline functions is proposed. The characteristics of network traffic are considered from the point of view of detecting DDoS cyber attacks (SYN-Flood, ICMP-Flood, UDP-Flood) and predicting DDoS cyber-attacks using spline functions. The spline extrapolation method makes it possible to predict DDoS cyber attacks with great accuracy.
Detection and Prevention of UDP Reflection Amplification Attack in WSN Using Cumulative Sum Algorithm. 2022 IEEE International Conference on Data Science and Information System (ICDSIS). :1–5.
.
2022. Wireless sensor networks are used in many areas such as war field surveillance, monitoring of patient, controlling traffic, environmental and building surveillance. Wireless technology, on the other hand, brings a load of new threats with it. Because WSNs communicate across radio frequencies, they are more susceptible to interference than wired networks. The authors of this research look at the goals of WSNs in terms of security as well as DDOS attacks. The majority of techniques are available for detecting DDOS attacks in WSNs. These alternatives, on the other hand, stop the assault after it has begun, resulting in data loss and wasting limited sensor node resources. The study finishes with a new method for detecting the UDP Reflection Amplification Attack in WSN, as well as instructions on how to use it and how to deal with the case.
Detection of Botnets in IoT Networks using Graph Theory and Machine Learning. 2022 6th International Conference on Trends in Electronics and Informatics (ICOEI). :590—597.
.
2022. The Internet of things (IoT) is proving to be a boon in granting internet access to regularly used objects and devices. Sensors, programs, and other innovations interact and trade information with different gadgets and frameworks over the web. Even in modern times, IoT gadgets experience the ill effects of primary security threats, which expose them to many dangers and malware, one among them being IoT botnets. Botnets carry out attacks by serving as a vector and this has become one of the significant dangers on the Internet. These vectors act against associations and carry out cybercrimes. They are used to produce spam, DDOS attacks, click frauds, and steal confidential data. IoT gadgets bring various challenges unlike the common malware on PCs and Android devices as IoT gadgets have heterogeneous processor architecture. Numerous researches use static or dynamic analysis for detection and classification of botnets on IoT gadgets. Most researchers haven't addressed the multi-architecture issue and they use a lot of computing resources for analyzing. Therefore, this approach attempts to classify botnets in IoT by using PSI-Graphs which effectively addresses the problem of encryption in IoT botnet detection, tackles the multi-architecture problem, and reduces computation time. It proposes another methodology for describing and recognizing botnets utilizing graph-based Machine Learning techniques and Exploratory Data Analysis to analyze the data and identify how separable the data is to recognize bots at an earlier stage so that IoT devices can be prevented from being attacked.
Detection of relevant digital evidence in the forensic timelines. 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI). :1–7.
.
2022. Security incident handling and response are essen-tial parts of every organization's information and cyber security. Security incident handling consists of several phases, among which digital forensic analysis has an irreplaceable place. Due to particular digital evidence being recorded at a specific time, timelines play an essential role in analyzing this digital evidence. One of the vital tasks of the digital forensic investigator is finding relevant records in this timeline. This operation is performed manually in most cases. This paper focuses on the possibilities of automatically identifying digital evidence pertinent to the case and proposes a model that identifies this digital evidence. For this purpose, we focus on Windows operating system and the NTFS file system and use outlier detection (Local Outlier Factor method). Collected digital evidence is preprocessed, transformed to binary values, and aggregated by file system inodes and names. Subsequently, we identify digital records (file inodes, file names) relevant to the case. This paper analyzes the combinations of attributes, aggregation functions, local outlier factor parameters, and their impact on the resulting selection of relevant file inodes and file names.
Detection of web attacks using machine learning based URL classification techniques. 2022 2nd International Conference on Intelligent Technologies (CONIT). :1–13.
.
2022. For a long time, online attacks were regarded to pose a severe threat to web - based applications, websites, and clients. It can bypass authentication methods, steal sensitive information from datasets and clients, and also gain ultimate authority of servers. A variety of ways for safeguarding online apps have been developed and used to deal the website risks. Based on the studies about the intersection of cybersecurity and machine learning, countermeasures for identifying typical web assaults have recently been presented (ML). In order to establish a better understanding on this essential topic, it is necessary to study ML methodologies, feature extraction techniques, evaluate datasets, and performance metrics utilised in a systematic manner. In this paper, we go through web security flaws like SQLi, XSS, malicious URLs, phishing attacks, path traversal, and CMDi in detail. We also go through the existing security methods for detecting these threats using machine learning approaches for URL classification. Finally, we discuss potential research opportunities for ML and DL-based techniques in this category, based on a thorough examination of existing solutions in the literature.
Development of a Model for Managing the Openness of an Information System in the Context of Information Security Risks of Critical Information Infrastructure Object. 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus). :431—435.
.
2022. The problem of information security of critical information infrastructure objects in the conditions of openness is formulated. The concept of information infrastructure openness is analyzed. An approach to assessing the openness of an information system is presented. A set-theoretic model of information resources openness was developed. The formulation of the control problem over the degree of openness with restrictions on risk was carried out. An example of solving the problem of finding the coefficient of openness is presented.
Development of a Two-Factor Authentication System for Enhanced Security of Vehicles at a Carpark. 2022 International Conference on Electrical and Information Technology (IEIT). :35–39.
.
2022. The increasing number of vehicles registered demands for safe and secure carparks due to increase in vehicle theft. The current Automatic Number Plate Recognition (ANPR) systems is a single authentication system and hence it is not secure. Therefore, this research has developed a double authentication system by combing ANPR with a Quick Response (QR) code system to create ANPR-DAS that improves the security at a carpark. It has yielded an accuracy of up to 93% and prevents car theft at a car park.
Development of an Intrusion Detection System Prototype in Mobile Ad Hoc Networks Based on Machine Learning Methods. 2022 International Russian Automation Conference (RusAutoCon). :171—175.
.
2022. Wireless ad hoc networks are characterized by dynamic topology and high node mobility. Network attacks on wireless ad hoc networks can significantly reduce performance metrics, such as the packet delivery ratio from the source to the destination node, overhead, throughput, etc. The article presents an experimental study of an intrusion detection system prototype in mobile ad hoc networks based on machine learning. The experiment is carried out in a MANET segment of 50 nodes, the detection and prevention of DDoS and cooperative blackhole attacks are investigated. The dependencies of features on the type of network traffic and the dependence of performance metrics on the speed of mobile nodes in the network are investigated. The conducted experimental studies show the effectiveness of an intrusion detection system prototype on simulated data.
Development of Key Technologies of Legal Case Management Information System Based on J2EE. 2022 International Conference on Innovation, Knowledge, and Management (ICIKM). :49–53.
.
2022. With the development of society, people have higher and higher requirements for the quality of life, and the management of legal cases has become more and more important. In this case, the research on how to realize electronization and networking has become the inevitable demand of the current information age. Therefore, this paper designs and develops the legal case management information system based on J2EE. Firstly, this paper introduces the related technologies of J2EE, then expounds the importance of legal case management informatization, and designs the legal case management information system according to the technical framework of J2EE. Finally, the performance of the system is tested. The test results show that the load capacity of the system is strong, the response time is 2–4 seconds, the resource utilization is relatively low, and the number of concurrent users is maintained at about 150. These show that the performance of the system fully meets the needs of legal case information management.
Development of Key Technologies of Legal Case Management Information System Considering QoS Optimization. 2022 International Conference on Electronics and Renewable Systems (ICEARS). :693–696.
.
2022. This paper conducts the development of the key technologies of the legal case management information system considering QoS optimization. The designed system administrator can carry out that the all-round management of the system, including account management, database management, security setting management, core data entry management, and data statistics management. With this help, the QoS optimization model is then integrated to improve the systematic performance of the system as the key technology. Similar to the layering in the data source, the data set is composed of the fields of the data set, and contains the relevant information of the attribute fields of various entity element categories. Furthermore, the designed system is analyzed and implemented on the public data sets to show the results.
Device Onboarding in Eclipse Arrowhead Using Power of Attorney Based Authorization. 2022 IEEE 27th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). :26–32.
.
2022. Large-scale onboarding of industrial cyber physical systems requires efficiency and security. In situations with the dynamic addition of devices (e.g., from subcontractors entering a workplace), automation of the onboarding process is desired. The Eclipse Arrowhead framework, which provides a platform for industrial automation, requires reliable, flexible, and secure device onboarding to local clouds. In this paper, we propose a device onboarding method in the Arrowhead framework where decentralized authorization is provided by Power of Attorney. The model allows users to subgrant power to trusted autonomous devices to act on their behalf. We present concepts, an implementation of the proposed system, and a use case for scalable onboarding where Powers of Attorney at two levels are used to allow a subcontractor to onboard its devices to an industrial site. We also present performance evaluation results.
ISSN: 2378-4873
A DevSecOps-enabled Framework for Risk Management of Critical Infrastructures. 2022 IEEE/ACM 44th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). :242–244.
.
2022. This paper presents a Ph.D. research plan that focuses on solving the existing problems in risk management of critical infrastructures, by means of a novel DevSecOps-enabled framework. Critical infrastructures are complex physical and cyber-based systems that form the lifeline of a modern society, and their reliable and secure operation is of paramount importance to national security and economic vitality. Therefore, this paper proposes DevSecOps technology for managing risk throughout the entire development life cycle of such systems.
A Diagnostic survey on Sybil attack on cloud and assert possibilities in risk mitigation. 2022 First International Conference on Artificial Intelligence Trends and Pattern Recognition (ICAITPR). :1–6.
.
2022. Any decentralized, biased distributed network is susceptible to the Sybil malicious attack, in which a malicious node masquerades as numerous different nodes, collectively referred to as Sybil nodes, causing the network to become unresponsive. Cloud computing environments are characterized by their loosely linked nature, which means that no node has comprehensive information of the entire system. In order to prevent Sybil attacks in cloud computing systems, it is necessary to detect them as soon as they occur. The network’s ability to function properly A Sybil attacker has the ability to construct. It is necessary to have multiple identities on a single physical device in order to execute a concerted attack on the network or switch between networks identities in order to make the detection process more difficult, and thereby lack of accountability is being promoted throughout the network. The purpose of this study is to Various varieties of Sybil assaults have been documented, including those that occur in Peer-to-peer reputation systems, self-organizing networks, and other similar technologies. The topic of social network systems is discussed. In addition, there are other approaches in which it has been urged over time that they be reduced or eliminated Their potential risks are also thoroughly investigated.
Discovery of AI/ML Supply Chain Vulnerabilities within Automotive Cyber-Physical Systems. 2022 IEEE International Conference on Assured Autonomy (ICAA). :93—96.
.
2022. Steady advancement in Artificial Intelligence (AI) development over recent years has caused AI systems to become more readily adopted across industry and military use-cases globally. As powerful as these algorithms are, there are still gaping questions regarding their security and reliability. Beyond adversarial machine learning, software supply chain vulnerabilities and model backdoor injection exploits are emerging as potential threats to the physical safety of AI reliant CPS such as autonomous vehicles. In this work in progress paper, we introduce the concept of AI supply chain vulnerabilities with a provided proof of concept autonomous exploitation framework. We investigate the viability of algorithm backdoors and software third party library dependencies for applicability into modern AI attack kill chains. We leverage an autonomous vehicle case study for demonstrating the applicability of our offensive methodologies within a realistic AI CPS operating environment.
Disparity Analysis Between the Assembly and Byte Malware Samples with Deep Autoencoders. 2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP). :1—4.
.
2022. Malware attacks in the cyber world continue to increase despite the efforts of Malware analysts to combat this problem. Recently, Malware samples have been presented as binary sequences and assembly codes. However, most researchers focus only on the raw Malware sequence in their proposed solutions, ignoring that the assembly codes may contain important details that enable rapid Malware detection. In this work, we leveraged the capabilities of deep autoencoders to investigate the presence of feature disparities in the assembly and raw binary Malware samples. First, we treated the task as outliers to investigate whether the autoencoder would identify and justify features as samples from the same family. Second, we added noise to all samples and used Deep Autoencoder to reconstruct the original samples by denoising. Experiments with the Microsoft Malware dataset showed that the byte samples' features differed from the assembly code samples.
Diverse Approaches Have Been Presented To Mitigate SQL Injection Attack, But It Is Still Alive: A Review. 2022 International Conference on Computer and Applications (ICCA). :1–5.
.
2022. A huge amount of stored and transferred data is expanding rapidly. Therefore, managing and securing the big volume of diverse applications should have a high priority. However, Structured Query Language Injection Attack (SQLIA) is one of the most common dangerous threats in the world. Therefore, a large number of approaches and models have been presented to mitigate, detect or prevent SQL injection attack but it is still alive. Most of old and current models are created based on static, dynamic, hybrid or machine learning techniques. However, SQL injection attack still represents the highest risk in the trend of web application security risks based on several recent studies in 2021. In this paper, we present a review of the latest research dealing with SQL injection attack and its types, and demonstrating several types of most recent and current techniques, models and approaches which are used in mitigating, detecting or preventing this type of dangerous attack. Then, we explain the weaknesses and highlight the critical points missing in these techniques. As a result, we still need more efforts to make a real, novel and comprehensive solution to be able to cover all kinds of malicious SQL commands. At the end, we provide significant guidelines to follow in order to mitigate such kind of attack, and we strongly believe that these tips will help developers, decision makers, researchers and even governments to innovate solutions in the future research to stop SQLIA.
Domain Infused Conversational Response Generation for Tutoring based Virtual Agent. 2022 International Joint Conference on Neural Networks (IJCNN). :1–8.
.
2022. Recent advances in deep learning typically, with the introduction of transformer based models has shown massive improvement and success in many Natural Language Processing (NLP) tasks. One such area which has leveraged immensely is conversational agents or chatbots in open-ended (chit-chat conversations) and task-specific (such as medical or legal dialogue bots etc.) domains. However, in the era of automation, there is still a dearth of works focused on one of the most relevant use cases, i.e., tutoring dialog systems that can help students learn new subjects or topics of their interest. Most of the previous works in this domain are either rule based systems which require a lot of manual efforts or are based on multiple choice type factual questions. In this paper, we propose EDICA (Educational Domain Infused Conversational Agent), a language tutoring Virtual Agent (VA). EDICA employs two mechanisms in order to converse fluently with a student/user over a question and assist them to learn a language: (i) Student/Tutor Intent Classification (SIC-TIC) framework to identify the intent of the student and decide the action of the VA, respectively, in the on-going conversation and (ii) Tutor Response Generation (TRG) framework to generate domain infused and intent/action conditioned tutor responses at every step of the conversation. The VA is able to provide hints, ask questions and correct student's reply by generating an appropriate, informative and relevant tutor response. We establish the superiority of our proposed approach on various evaluation metrics over other baselines and state of the art models.
ISSN: 2161-4407
Drone Forensics: A Case Study on DJI Mavic Air 2. 2022 24th International Conference on Advanced Communication Technology (ICACT). :291—296.
.
2022. With the inundation of more cost effective and improved flight performance Unmanned Aerial Vehicles (UAVs) into the consumer market, we have seen more uses of these for both leisure and business purposes. As such, demand for digital forensic examination on these devices has seen an increase as well. This research will explore and discuss the forensic examination process on one of the more popular brands of UAV in Singapore, namely DJI. The findings are from the examination of the exposed File Transfer Protocol (FTP) channel and the extraction of the Data-at-Rest on the memory chip of the drone. The extraction was done using the Chip-Off and Chip-On technique.
Dynamic Cat-Boost Enabled Keystroke Analysis for User Stress Level Detection. 2022 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). :556–560.
.
2022. The impact of digital gadgets is enormous in the current Internet world because of the easy accessibility, flexibility and time-saving benefits for the consumers. The number of computer users is increasing every year. Meanwhile, the time spent and the computers also increased. Computer users browse the internet for various information gathering and stay on the internet for a long time without control. Nowadays working people from home also spend time with the smart devices, computers, and laptops, for a longer duration to complete professional work, personal work etc. the proposed study focused on deriving the impact factors of Smartphones by analyzing the keystroke dynamics Based on the usage pattern of keystrokes the system evaluates the stress level detection using machine learning techniques. In the proposed study keyboard users are intended for testing purposes. Volunteers of 200 members are collectively involved in generating the test dataset. They are allowed to sit for a certain frame of time to use the laptop in the meanwhile the keystroke of the Mouse and keyboard are recorded. The system reads the dataset and trains the model using the Dynamic Cat-Boost algorithm (DCB), which acts as the classification model. The evaluation metrics are framed by calculating Euclidean distance (ED), Manhattan Distance (MahD), Mahalanobis distance (MD) etc. Quantitative measures of DCB are framed through Accuracy, precision and F1Score.