Biblio
An enormous number of images are currently shared through social networking services such as Facebook. These images usually contain appearance of people and may violate the people's privacy if they are published without permission from each person. To remedy this privacy concern, visual privacy protection, such as blurring, is applied to facial regions of people without permission. However, in addition to image quality degradation, this may spoil the context of the image: If some people are filtered while the others are not, missing facial expression makes comprehension of the image difficult. This paper proposes an image melding-based method that modifies facial regions in a visually unintrusive way with preserving facial expression. Our experimental results demonstrated that the proposed method can retain facial expression while protecting privacy.
Today, by widely spread of information technology (IT) usage, E-commerce security and its related legislations are very critical issue in information technology and court law. There is a consensus that security matters are the significant foundation of e-commerce, electronic consumers, and firms' privacy. While e-commerce networks need a policy for security privacy, they should be prepared for a simple consumer friendly infrastructure. Hence it is necessary to review the theoretical models for revision. In This theory review, we embody a number of former articles that cover security of e-commerce and legislation ambit at the individual level by assessing five criteria. Whether data of articles provide an effective strategy for secure-protection challenges in e-commerce and e-consumers. Whether provisions clearly remedy precedents or they need to flourish? This paper focuses on analyzing the former discussion regarding e-commerce security and existence legislation toward cyber-crime activity of e-commerce the article also purports recommendation for subsequent research which is indicate that through secure factors of e-commerce we are able to fill the vacuum of its legislation.
The smart grid changes the way energy is produced and distributed. In addition both, energy and information is exchanged bidirectionally among participating parties. Therefore heterogeneous systems have to cooperate effectively in order to achieve a common high-level use case, such as smart metering for billing or demand response for load curtailment. Furthermore, a substantial amount of personal data is often needed for achieving that goal. Capturing and processing personal data in the smart grid increases customer concerns about privacy and in addition, certain statutory and operational requirements regarding privacy aware data processing and storage have to be met. An increase of privacy constraints, however, often limits the operational capabilities of the system. In this paper, we present an approach that automates the process of finding an optimal balance between privacy requirements and operational requirements in a smart grid use case and application scenario. This is achieved by formally describing use cases in an abstract model and by finding an algorithm that determines the optimum balance by forward mapping privacy and operational impacts. For this optimal balancing algorithm both, a numeric approximation and - if feasible - an analytic assessment are presented and investigated. The system is evaluated by applying the tool to a real-world use case from the University of Southern California (USC) microgrid.
This paper presents an efficiency and adaptive cryptographic protocol to ensure users' privacy and data integrity in RFID system. Radio Frequency Identification technology offers more intelligent systems and applications, but privacy and security issues have to be addressed before and after its adoption. The design of the proposed model is based on clustering configuration of the involved tags where they interchange the data with the reader whenever it sends a request. This scheme provides a strong mutual authentication framework that suits for real heterogeneous RFID applications such as in supply-chain management systems, healthcare monitoring and industrial environment. In addition, we contribute with a mathematical analysis to the delay analysis and optimization in a clustering topology tag-based. Finally, a formal security and proof analysis is demonstrated to prove the effectiveness of the proposed protocol and that achieves security and privacy.
Sharing cyber security data across organizational boundaries brings both privacy risks in the exposure of personal information and data, and organizational risk in disclosing internal information. These risks occur as information leaks in network traffic or logs, and also in queries made across organizations. They are also complicated by the trade-offs in privacy preservation and utility present in anonymization to manage disclosure. In this paper, we define three principles that guide sharing security information across organizations: Least Disclosure, Qualitative Evaluation, and Forward Progress. We then discuss engineering approaches that apply these principles to a distributed security system. Application of these principles can reduce the risk of data exposure and help manage trust requirements for data sharing, helping to meet our goal of balancing privacy, organizational risk, and the ability to better respond to security with shared information.
The quantity of personal data gathered by service providers via our daily activities continues to grow at a rapid pace. The sharing, and the subsequent analysis of, such data can support a wide range of activities, but concerns around privacy often prompt an organization to transform the data to meet certain protection models (e.g., k-anonymity or E-differential privacy). These models, however, are based on simplistic adversarial frameworks, which can lead to both under- and over-protection. For instance, such models often assume that an adversary attacks a protected record exactly once. We introduce a principled approach to explicitly model the attack process as a series of steps. Specically, we engineer a factored Markov decision process (FMDP) to optimally plan an attack from the adversary's perspective and assess the privacy risk accordingly. The FMDP captures the uncertainty in the adversary's belief (e.g., the number of identied individuals that match the de-identified data) and enables the analysis of various real world deterrence mechanisms beyond a traditional protection model, such as a penalty for committing an attack. We present an algorithm to solve the FMDP and illustrate its efficiency by simulating an attack on publicly accessible U.S. census records against a real identied resource of over 500,000 individuals in a voter registry. Our results demonstrate that while traditional privacy models commonly expect an adversary to attack exactly once per record, an optimal attack in our model may involve exploiting none, one, or more indiviuals in the pool of candidates, depending on context.
Smart home automation and IoT promise to bring many advantages but they also expose their users to certain security and privacy vulnerabilities. For example, leaking the information about the absence of a person from home or the medicine somebody is taking may have serious security and privacy consequences for home users and potential legal implications for providers of home automation and IoT platforms. We envision that a new ecosystem within an existing smartphone ecosystem will be a suitable platform for distribution of apps for smart home and IoT devices. Android is increasingly becoming a popular platform for smart home and IoT devices and applications. Built-in security mechanisms in ecosystems such as Android have limitations that can be exploited by malicious apps to leak users' sensitive data to unintended recipients. For instance, Android enforces that an app requires the Internet permission in order to access a web server but it does not control which servers the app talks to or what data it shares with other apps. Therefore, sub-ecosystems that enforce additional fine-grained custom policies on top of existing policies of the smartphone ecosystems are necessary for smart home or IoT platforms. To this end, we have built a tool that enforces additional policies on inter-app interactions and permissions of Android apps. We have done preliminary testing of our tool on three proprietary apps developed by a future provider of a home automation platform. Our initial evaluation demonstrates that it is possible to develop mechanisms that allow definition and enforcement of custom security policies appropriate for ecosystems of the like smart home automation and IoT.
Objective: The overarching goal is to convey the concept of science of security and the contributions that a scientifically based, human factors approach can make to this interdisciplinary field.Background: Rather than a piecemeal approach to solving cybersecurity problems as they arise, the U.S. government is mounting a systematic effort to develop an approach grounded in science. Because humans play a central role in security measures, research on security-related decisions and actions grounded in principles of human information-processing and decision-making is crucial to this interdisciplinary effort.Method: We describe the science of security and the role that human factors can play in it, and use two examples of research in cybersecurity—detection of phishing attacks and selection of mobile applications—to illustrate the contribution of a scientific, human factors approach.Results: In these research areas, we show that systematic information-processing analyses of the decisions that users make and the actions they take provide a basis for integrating the human component of security science.Conclusion: Human factors specialists should utilize their foundation in the science of applied information processing and decision making to contribute to the science of cybersecurity.
Honey pots and honey nets are popular tools in the area of network security and network forensics. The deployment and usage of these tools are influenced by a number of technical and legal issues, which need to be carefully considered together. In this paper, we outline privacy issues of honey pots and honey nets with respect to technical aspects. The paper discusses the legal framework of privacy, legal ground to data processing, and data collection. The analysis of legal issues is based on EU law and is supported by discussions on privacy and related issues. This paper is one of the first papers which discuss in detail privacy issues of honey pots and honey nets in accordance with EU law.
Online Social Networks exploit a lightweight process to identify their users so as to facilitate their fast adoption. However, such convenience comes at the price of making legitimate users subject to different threats created by fake accounts. Therefore, there is a crucial need to empower users with tools helping them in assigning a level of trust to whomever they interact with. To cope with this issue, in this paper we introduce a novel model, DIVa, that leverages on mining techniques to find correlations among user profile attributes. These correlations are discovered not from user population as a whole, but from individual communities, where the correlations are more pronounced. DIVa exploits a decentralized learning approach and ensures privacy preservation as each node in the OSN independently processes its local data and is required to know only its direct neighbors. Extensive experiments using real-world OSN datasets show that DIVa is able to extract fine-grained community-aware correlations among profile attributes with average improvements up to 50% than the global approach.
The RFID technology has attracted considerable attention in recent years, and brings convenience to supply chain management. In this paper, we concentrate on designing path-checking protocols to check the valid paths in supply chains. By entering a valid path, the check reader can distinguish whether the tags have gone through the path or not. Based on modified schnorr signature scheme, we provide a path-checking method to achieve multi-signatures and final verification. In the end, we conduct security and privacy analysis to the scheme.
Based on the analysis relationships of challenger and attestation in remote attestation process, we propose a dynamic remote attestation model based on concerns. By combines the trusted root and application of dynamic credible monitoring module, Convert the Measurement for all load module of integrity measurement architecture into the Attestation of the basic computing environments, dynamic credible monitoring module, and request service software module. Discuss the rationality of the model. The model used Merkel hash tree to storage applications software integrity metrics, both to protect the privacy of the other party application software, and also improves the efficiency of remote attestation. Experimental prototype system shows that the model can verify the dynamic behavior of the software, to make up for the lack of static measure.
User uses smartphones for web surfing and browsing data. Many smartphones are embedded with inbuilt location aware system called GPS [Global Positioning System]. Using GPS user have to register and share his all private information to the LBS server. LBS is nothing but Location Based Service. Simply user sends the query to the LBS server. Then what is happening the LBS server gives a private information regarding particular user location. There will be a possibility to misuse this information so using mobile crowd method hides user location from LBS server and avoid sharing of privacy information with server. Our solution does not required to change the LBS server architecture.
Nowadays, Online Social Networks (OSNs) are very popular and have become an integral part of our life. People are dependent on Online Social Networks for various purposes. The activities of most of the users are normal, but a few of the users exhibit unusual and suspicious behavior. We term this suspicious and unusual behavior as malicious behavior. Malicious behavior in Online Social Networks includes a wide range of unethical activities and actions performed by individuals or communities to manipulate thought process of OSN users to fulfill their vested interest. Such malicious behavior needs to be checked and its effects should be minimized. To minimize effects of such malicious activities, we require proper detection and containment strategy. Such strategy will protect millions of users across the OSNs from misinformation and security threats. In this paper, we discuss the different studies performed in the area of malicious behavior analysis and propose a framework for detection of malicious behavior in OSNs.
Strength of security and privacy of any cryptographic mechanisms that use random numbers require that the random numbers generated have two important properties namely 1. Uniform distribution and 2. Independence. With the growth of Internet many devices are connected to Internet that host sensors. One idea proposed is to use sensor data as seed for Random Number Generator (RNG) since sensors measure the physical phenomena that exhibit randomness over time. The random numbers generated from sensor data can be used for cryptographic algorithms in Internet activities. These sensor data also pose weaknesses where sensors may be under adversarial control that may lead to generating expected random sequence which breaks the security and privacy. This paper proposes a wash-rinse-spin approach to process the raw sensor data that increases randomness in the seed value. The generated sequences from two sensors are combined by Decimation method to improve unpredictability. This makes the sensor data to be more secure in generating random numbers preventing attackers from knowing the random sequence through adversarial control.
Steganography is the art of the hidden data in such a way that it detection of hidden knowledge prevents. As the necessity of security and privacy increases, the need of the hiding secret data is ongoing. In this paper proposed an enhanced detection of the 1-2-4 LSB steganography and RSA cryptography in Gray Scale and Color images. For color images, we apply 1-2-4 LSB on component of the RGB, then encrypt information applying RSA technique. For Gray Images, we use LSB to then encrypt information and also detect edges of gray image. In the experimental outcomes, calculate PSNR and MSE. We calculate peak signal noise ratio for quality and brightness. This method makes sure that the information has been encrypted before hiding it into an input image. If in any case the cipher text got revealed from the input image, the middle person other than receiver can't access the information as it is in encrypted form.
In the RFID technology, the privacy of low-cost tag is a hot issue in recent years. A new mutual authentication protocol is achieved with the time stamps, hash function and PRNG. This paper analyzes some common attack against RFID and the relevant solutions. We also make the security performance comparison with original security authentication protocol. This protocol can not only speed up the proof procedure but also save cost and it can prevent the RFID system from being attacked by replay, clone and DOS, etc..
The enormous size of video data of natural scene and objects is a practical threat to storage, transmission. The efficient handling of video data essentially requires compression for economic utilization of storage space, access time and the available network bandwidth of the public channel. In addition, the protection of important video is of utmost importance so as to save it from malicious intervention, attack or alteration by unauthorized users. Therefore, security and privacy has become an important issue. Since from past few years, number of researchers concentrate on how to develop efficient video encryption for secure video transmission, a large number of multimedia encryption schemes have been proposed in the literature like selective encryption, complete encryption and entropy coding based encryption. Among above three kinds of algorithms, they all remain some kind of shortcomings. In this paper, we have proposed a lightweight selective encryption algorithm for video conference which is based on efficient XOR operation and symmetric hierarchical encryption, successfully overcoming the weakness of complete encryption while offering a better security. The proposed algorithm guarantees security, fastness and error tolerance without increasing the video size.
With the growing observed success of big data use, many challenges appeared. Timeless, scalability and privacy are the main problems that researchers attempt to figure out. Privacy preserving is now a highly active domain of research, many works and concepts had seen the light within this theme. One of these concepts is the de-identification techniques. De-identification is a specific area that consists of finding and removing sensitive information either by replacing it, encrypting it or adding a noise to it using several techniques such as cryptography and data mining. In this report, we present a new model of de-identification of textual data using a specific Immune System algorithm known as CLONALG.
The amount of personal information contributed by individuals to digital repositories such as social network sites has grown substantially. The existence of this data offers unprecedented opportunities for data analytics research in various domains of societal importance including medicine and public policy. The results of these analyses can be considered a public good which benefits data contributors as well as individuals who are not making their data available. At the same time, the release of personal information carries perceived and actual privacy risks to the contributors. Our research addresses this problem area. In our work, we study a game-theoretic model in which individuals take control over participation in data analytics projects in two ways: 1) individuals can contribute data at a self-chosen level of precision, and 2) individuals can decide whether they want to contribute at all (or not). From the analyst's perspective, we investigate to which degree the research analyst has flexibility to set requirements for data precision, so that individuals are still willing to contribute to the project, and the quality of the estimation improves. We study this tradeoffs scenario for populations of homogeneous and heterogeneous individuals, and determine Nash equilibrium that reflect the optimal level of participation and precision of contributions. We further prove that the analyst can substantially increase the accuracy of the analysis by imposing a lower bound on the precision of the data that users can reveal.
In recent years, the issues of RFID security and privacy are a concern. To prevent the tag is cloned, physically unclonable function (PUF) has been proposed. In each PUF-enabled tag, the responses of PUF depend on the structural disorder that cannot be cloned or reproduced. Therefore, many responses need to store in the database in the initial phase of many authentication protocols. In the supply chain, the owners of the PUF-enabled Tags change frequently, many authentication and delegation protocols are proposed. In this paper, a new lightweight authentication and delegation protocol for RFID tags (LADP) is proposed. The new protocol does not require pre-stored many PUF's responses in the database. When the authentication messages are exchanged, the next response of PUF is passed to the reader secretly. In the transfer process of ownership, the new owner will not get the information of the interaction of the original owner. It can protect the privacy of the original owner. Meanwhile, the original owner cannot continue to access or track the tag. It can protect the privacy of the new owner. In terms of efficiency, the new protocol replaces the pseudorandom number generator with the randomness of PUF that suitable for use in the low-cost tags. The cost of computation and communication are reduced and superior to other protocols.
The ownership transfer of RFID tag means a tagged product changes control over the supply chain. Recently, Doss et al. proposed two secure RFID tag ownership transfer (RFID-OT) protocols based on quadratic residues. However, we find that they are vulnerable to the desynchronization attack. The attack is probabilistic. As the parameters in the protocols are adopted, the successful probability is 93.75%. We also show that the use of the pseudonym of the tag h(TID) and the new secret key KTID are not feasible. In order to solve these problems, we propose the improved schemes. Security analysis shows that the new protocols can resist in the desynchronization attack and other attacks. By optimizing the performance of the new protocols, it is more practical and feasible in the large-scale deployment of RFID tags.
Networked systems have adapted Radio Frequency identification technology (RFID) to automate their business process. The Networked RFID Systems (NRS) has some unique characteristics which raise new privacy and security concerns for organizations and their NRS systems. The businesses are always having new realization of business needs using NRS. One of the most recent business realization of NRS implementation on large scale distributed systems (such as Internet of Things (IoT), supply chain) is to ensure visibility and traceability of the object throughout the chain. However, this requires assurance of security and privacy to ensure lawful business operation. In this paper, we are proposing a secure tracker protocol that will ensure not only visibility and traceability of the object but also genuineness of the object and its travel path on-site. The proposed protocol is using Physically Unclonable Function (PUF), Diffie-Hellman algorithm and simple cryptographic primitives to protect privacy of the partners, injection of fake objects, non-repudiation, and unclonability. The tag only performs a simple mathematical computation (such as combination, PUF and division) that makes the proposed protocol suitable to passive tags. To verify our security claims, we performed experiment on Security Protocol Description Language (SPDL) model of the proposed protocol using automated claim verification tool Scyther. Our experiment not only verified our claims but also helped us to eliminate possible attacks identified by Scyther.
In the era of Cloud and Social Networks, mobile devices exhibit much more powerful abilities for big media data storage and sharing. However, many users are still reluctant to share/store their data via clouds due to the potential leakage of confidential or private information. Although some cloud services provide storage encryption and access protection, privacy risks are still high since the protection is not always adequately conducted from end-to-end. Most customers are aware of the danger of letting data control out of their hands, e.g., Storing them to YouTube, Flickr, Facebook, Google+. Because of substantial practical and business needs, existing cloud services are restricted to the desired formats, e.g., Video and photo, without allowing arbitrary encrypted data. In this paper, we propose a format-compliant end-to-end privacy-preserving scheme for media sharing/storage issues with considerations for big data, clouds, and mobility. To realize efficient encryption for big media data, we jointly achieve format-compliant, compression-independent and correlation-preserving via multi-channel chained solutions under the guideline of Markov cipher. The encryption and decryption process is integrated into an image/video filter via GPU Shader for display-to-display full encryption. The proposed scheme makes big media data sharing/storage safer and easier in the clouds.