Biblio

Found 2356 results

Filters: Keyword is privacy  [Clear All Filters]
2017-09-05
Koteshwara, Sandhya, Kim, Chris H., Parhi, Keshab K..  2016.  Mode-based Obfuscation Using Control-Flow Modifications. Proceedings of the Third Workshop on Cryptography and Security in Computing Systems. :19–24.

Hardware security has emerged as an important topic in the wake of increasing threats on integrated circuits which include reverse engineering, intellectual property (IP) piracy and overbuilding. This paper explores obfuscation of circuits as a hardware security measure and specifically targets digital signal processing (DSP) circuits which are part of most modern systems. The idea of using desired and undesired modes to design obfuscated DSP functions is illustrated using the fast Fourier transform (FFT) as an example. The selection of a mode is dependent on a key input to the circuit. The system is said to work in its desired mode of operation only if the correct key is applied. Other undesired modes are built into the design to confuse an adversary. The approach to obfuscating the design involves control-flow modifications which alter the computations from the desired mode. We present simulation and synthesis results on a reconfigurable, 2-parallel FFT and discuss the security of this approach. It is shown that the proposed approach results in a reconfigurable and flexible design at an area overhead of 8% and a power overhead of 10%.

2017-07-24
Smullen, Daniel, Breaux, Travis D..  2016.  Modeling, Analyzing, and Consistency Checking Privacy Requirements Using Eddy. Proceedings of the Symposium and Bootcamp on the Science of Security. :118–120.

Eddy is a privacy requirements specification language that privacy analysts can use to express requirements over data practices; to collect, use, transfer and retain personal and technical information. The language uses a simple SQL-like syntax to express whether an action is permitted or prohibited, and to restrict those statements to particular data subjects and purposes. Eddy also supports the ability to express modifications on data, including perturbation, data append, and redaction. The Eddy specifications are compiled into Description Logic to automatically detect conflicting requirements and to trace data flows within and across specifications. Conflicts are highlighted, showing which rules are in conflict (expressing prohibitions and rights to perform the same action on equivalent interpretations of the same data, data subjects, or purposes), and what definitions caused the rules to conflict. Each specification can describe an organization's data practices, or the data practices of specific components in a software architecture.

2017-08-18
Ramirez, Anthony, Fernandez, Alfredo.  2016.  MP4 Steganography: Analyzing and Detecting TCSteg. Proceedings of the 5th Annual Conference on Research in Information Technology. :2–6.

The MP4 files has become to most used video media file available, and will mostly likely remain at the top for some time to come. This makes MP4 files an interesting candidate for steganography. With its size and structure, it offers a challenge to steganography developers. While some attempts have been made to create a truly covert file, few are as successful as Martin Fiedler's TCSteg. TCSteg allows users to hide a TrueCrypt hidden volume in an MP4 file. The structure of the file makes it difficult to identify that a volume exists. In our analysis of TCSteg, we will show how Fielder's code works and how we may be able to detect the existence of steganography. We will then implement these methods in hope that other steganography analysis can use them to determine if an MP4 file is a carrier file. Finally, we will address the future of MP4 steganography.

2017-09-19
Jahan, Thanveer, Narsimha, G., Rao, C. V. Guru.  2016.  Multiplicative Data Perturbation Using Fuzzy Logic in Preserving Privacy. Proceedings of the Second International Conference on Information and Communication Technology for Competitive Strategies. :38:1–38:5.

In Data mining is the method of extracting the knowledge from huge amount of data and interesting patterns. With the rapid increase of data storage, cloud and service-based computing, the risk of misuse of data has become a major concern. Protecting sensitive information present in the data is crucial and critical. Data perturbation plays an important role in privacy preserving data mining. The major challenge of privacy preserving is to concentrate on factors to achieve privacy guarantee and data utility. We propose a data perturbation method that perturbs the data using fuzzy logic and random rotation. It also describes aspects of comparable level of quality over perturbed data and original data. The comparisons are illustrated on different multivariate datasets. Experimental study has proved the model is better in achieving privacy guarantee of data, as well as data utility.

2017-09-15
Ghaffari, Mohsen, Parter, Merav.  2016.  Near-Optimal Distributed Algorithms for Fault-Tolerant Tree Structures. Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures. :387–396.

Tree structures such as breadth-first search (BFS) trees and minimum spanning trees (MST) are among the most fundamental graph structures in distributed network algorithms. However, by definition, these structures are not robust against failures and even a single edge's removal can disrupt their functionality. A well-studied concept which attempts to circumvent this issue is Fault-Tolerant Tree Structures, where the tree gets augmented with additional edges from the network so that the functionality of the structure is maintained even when an edge fails. These structures, or other equivalent formulations, have been studied extensively from a centralized viewpoint. However, despite the fact that the main motivations come from distributed networks, their distributed construction has not been addressed before. In this paper, we present distributed algorithms for constructing fault tolerant BFS and MST structures. The time complexity of our algorithms are nearly optimal in the following strong sense: they almost match even the lower bounds of constructing (basic) BFS and MST trees.

Naghmouchi, M. Yassine, Perrot, Nancy, Kheir, Nizar, Mahjoub, A. Ridha, Wary, Jean-Philippe.  2016.  A New Risk Assessment Framework Using Graph Theory for Complex ICT Systems. Proceedings of the 8th ACM CCS International Workshop on Managing Insider Security Threats. :97–100.

In this paper, we propose a new risk analysis framework that enables to supervise risks in complex and distributed systems. Our contribution is twofold. First, we provide the Risk Assessment Graphs (RAGs) as a model of risk analysis. This graph-based model is adaptable to the system changes over the time. We also introduce the potentiality and the accessibility functions which, during each time slot, evaluate respectively the chance of exploiting the RAG's nodes, and the connection time between these nodes. In addition, we provide a worst-case risk evaluation approach, based on the assumption that the intruder threats usually aim at maximising their benefits by inflicting the maximum damage to the target system (i.e. choosing the most likely paths in the RAG). We then introduce three security metrics: the propagated risk, the node risk and the global risk. We illustrate the use of our framework through the simple example of an enterprise email service. Our framework achieves both flexibility and generality requirements, it can be used to assess the external threats as well as the insider ones, and it applies to a wide set of applications.

2017-06-27
Zhang, Baojia, Zhang, He, Yan, Boqun, Zhang, Yuan.  2016.  A New Secure Index Supporting Efficient Index Updating and Similarity Search on Clouds. Proceedings of the 4th ACM International Workshop on Security in Cloud Computing. :37–43.

With the increasing popularity of cloud storage services, many individuals and enterprises start to move their local data to the clouds. To ensure their privacy and data security, some cloud service users may want to encrypt their data before outsourcing them. However, this impedes efficient data utilities based on the plain text search. In this paper, we study how to construct a secure index that supports both efficient index updating and similarity search. Using the secure index, users are able to efficiently perform similarity searches tolerating input mistakes and update the index when new data are available. We formally prove the security of our proposal and also perform experiments on real world data to show its efficiency.

2017-10-03
Chattopadhyay, Eshan, Goyal, Vipul, Li, Xin.  2016.  Non-malleable Extractors and Codes, with Their Many Tampered Extensions. Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing. :285–298.

Randomness extractors and error correcting codes are fundamental objects in computer science. Recently, there have been several natural generalizations of these objects, in the context and study of tamper resilient cryptography. These are seeded non-malleable extractors, introduced by Dodis and Wichs; seedless non-malleable extractors, introduced by Cheraghchi and Guruswami; and non-malleable codes, introduced by Dziembowski, Pietrzak and Wichs. Besides being interesting on their own, they also have important applications in cryptography, e.g, privacy amplification with an active adversary, explicit non-malleable codes etc, and often have unexpected connections to their non-tampered analogues. However, the known constructions are far behind their non-tampered counterparts. Indeed, the best known seeded non-malleable extractor requires min-entropy rate at least 0.49; while explicit constructions of non-malleable two-source extractors were not known even if both sources have full min-entropy, and was left as an open problem by Cheraghchi and Guruswami. In this paper we make progress towards solving the above problems and other related generalizations. Our contributions are as follows. (1) We construct an explicit seeded non-malleable extractor for polylogarithmic min-entropy. This dramatically improves all previous results and gives a simpler 2-round privacy amplification protocol with optimal entropy loss, matching the best known result. In fact, we construct more general seeded non-malleable extractors (that can handle multiple adversaries) which were used in the recent construction of explicit two-source extractors for polylogarithmic min-entropy. (2) We construct the first explicit non-malleable two-source extractor for almost full min-entropy thus resolving the open question posed by Cheraghchi and Guruswami. (3) We motivate and initiate the study of two natural generalizations of seedless non-malleable extractors and non-malleable codes, where the sources or the codeword may be tampered many times. By using the connection found by Cheraghchi and Guruswami and providing efficient sampling algorithms, we obtain the first explicit non-malleable codes with tampering degree t, with near optimal rate and error. We call these stronger notions one-many and many-manynon-malleable codes. This provides a stronger information theoretic analogue of a primitive known as continuous non-malleable codes. Our basic technique used in all of our constructions can be seen as inspired, in part, by the techniques previously used to construct cryptographic non-malleable commitments.

2017-09-15
Ahmadi, Mansour, Ulyanov, Dmitry, Semenov, Stanislav, Trofimov, Mikhail, Giacinto, Giorgio.  2016.  Novel Feature Extraction, Selection and Fusion for Effective Malware Family Classification. Proceedings of the Sixth ACM Conference on Data and Application Security and Privacy. :183–194.

Modern malware is designed with mutation characteristics, namely polymorphism and metamorphism, which causes an enormous growth in the number of variants of malware samples. Categorization of malware samples on the basis of their behaviors is essential for the computer security community, because they receive huge number of malware everyday, and the signature extraction process is usually based on malicious parts characterizing malware families. Microsoft released a malware classification challenge in 2015 with a huge dataset of near 0.5 terabytes of data, containing more than 20K malware samples. The analysis of this dataset inspired the development of a novel paradigm that is effective in categorizing malware variants into their actual family groups. This paradigm is presented and discussed in the present paper, where emphasis has been given to the phases related to the extraction, and selection of a set of novel features for the effective representation of malware samples. Features can be grouped according to different characteristics of malware behavior, and their fusion is performed according to a per-class weighting paradigm. The proposed method achieved a very high accuracy (\$\textbackslashapprox\$ 0.998) on the Microsoft Malware Challenge dataset.

2017-10-25
Mense, Alexander, Steger, Sabrina, Jukic-Sunaric, Dragan, Mészáros, András, Sulek, Matthias.  2016.  Open Source Based Privacy-Proxy to Restrain Connectivity of Mobile Apps. Proceedings of the 14th International Conference on Advances in Mobile Computing and Multi Media. :284–287.

Mobile Devices are part of our lives and we store a lot of private information on it as well as use services that handle sensitive information (e.g. mobile health apps). Whenever users install an application on their smartphones they have to decide whether to trust the applications and share private and sensitive data with at least the developer-owned services. But almost all modern apps not only transmit data to the developer owned servers but also send information to advertising-, analyzing and tracking partners. This paper presents an approach for a "privacy- proxy" which enables to filter unwanted data traffic to third party services without installing additional applications on the smartphone. It is based on a firewall using a black list of tracking- and analyzing networks which is automatically updated on a daily basis. The proof of concept has been implemented with open source components on a Raspberry Pi.

2017-08-18
Chefranov, Alexander G., Narimani, Amir.  2016.  Participant Authenticating, Error Detecting, and 100% Multiple Errors Repairing Chang-Chen-Wang's Secret Sharing Method Enhancement. Proceedings of the 9th International Conference on Security of Information and Networks. :112–115.

Chang-Chen-Wang's (3,n) Secret grayscale image Sharing between n grayscale cover images method with participant Authentication and damaged pixels Repairing (SSAR) properties is analyzed; it restores the secret image from any three of the cover images used. We show that SSAR may fail, is not able fake participant recognizing, and has limited by 62.5% repairing ability. We propose SSAR (4,n) enhancement, SSAR-E, allowing 100% exact restoration of a corrupted pixel using any four of n covers, and recognizing a fake participant with the help of cryptographic hash functions with 5-bit values that allows better (vs. 4 bits) error detection. Using a special permutation with only one loop including all the secret image pixels, SSAR-E is able restoring all the secret image damaged pixels having just one correct pixel left. SSAR-E allows restoring the secret image to authorized parties only contrary to SSAR. The performance and size of cover images for SSAR-E are the same as for SSAR.

2017-09-15
Bortolotti, D., Bartolini, A., Benini, L., Pamula, V. Rajesh, Van Helleputte, N., Van Hoof, C., Verhelst, M., Gemmeke, T., Lopez, R. Braojos, Ansaloni, G. et al..  2016.  PHIDIAS: Ultra-low-power Holistic Design for Smart Bio-signals Computing Platforms. Proceedings of the ACM International Conference on Computing Frontiers. :309–314.

Emerging and future HealthCare policies are fueling up an application-driven shift toward long-term monitoring of biosignals by means of embedded ultra-low power Wireless Body Sensor Networks (WBSNs). In order to break out, these applications needed the emergence of new technologies to allow the development of extremely power-efficient bio-sensing nodes. The PHIDIAS project aims at unlocking the development of ultra-low power bio-sensing WBSNs by tackling multiple and interlocking technological breakthroughs: (i) the development of new signal processing models and methods based on the recently proposed Compressive Sampling paradigm, which allows the design of energy-minimal computational architectures and analog front-ends, (ii) the efficient hardware implementation of components, both analog and digital, building upon an innovative ultra-low-power signal processing front-end, (iii) the evaluation of the global power reduction using a system wide integration of hardware and software components focused on compressed-sensing-based bio-signals analysis. PHIDIAS brought together a mixed consortium of academic and industrial research partners representing pan-European excellence in different fields impacting the energy-aware optimization of WBSNs, including experts in signal processing and digital/analog IC design. In this way, PHIDIAS pioneered a unique holistic approach, ensuring that key breakthroughs worked out in a cooperative way toward the global objective of the project.

Tripp, Omer, Pistoia, Marco, Ferrara, Pietro, Rubin, Julia.  2016.  Pinpointing Mobile Malware Using Code Analysis. Proceedings of the International Conference on Mobile Software Engineering and Systems. :275–276.

Mobile malware has recently become an acute problem. Existing solutions either base static reasoning on syntactic properties, such as exception handlers or configuration fields, or compute data-flow reachability over the program, which leads to scalability challenges. We explore a new and complementary category of features, which strikes a middleground between the above two categories. This new category focuses on security-relevant operations (communcation, lifecycle, etc) –- and in particular, their multiplicity and happens-before order –- as a means to distinguish between malicious and benign applications. Computing these features requires semantic, yet lightweight, modeling of the program's behavior. We have created a malware detection system for Android, MassDroid, that collects traces of security-relevant operations from the call graph via a scalable form of data-flow analysis. These are reduced to happens-before and multiplicity features, then fed into a supervised learning engine to obtain a malicious/benign classification. MassDroid also embodies a novel reporting interface, containing pointers into the code that serve as evidence supporting the determination. We have applied MassDroid to 35,000 Android apps from the wild. The results are highly encouraging with an F-score of 95% in standard testing, and textgreater90% when applied to previously unseen malware signatures. MassDroid is also efficient, requiring about two minutes per app. MassDroid is publicly available as a cloud service for malware detection.

2017-08-18
Libert, Benoît, Mouhartem, Fabrice, Peters, Thomas, Yung, Moti.  2016.  Practical "Signatures with Efficient Protocols" from Simple Assumptions. Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security. :511–522.

Digital signatures are perhaps the most important base for authentication and trust relationships in large scale systems. More specifically, various applications of signatures provide privacy and anonymity preserving mechanisms and protocols, and these, in turn, are becoming critical (due to the recently recognized need to protect individuals according to national rules and regulations). A specific type of signatures called "signatures with efficient protocols", as introduced by Camenisch and Lysyanskaya (CL), efficiently accommodates various basic protocols and extensions like zero-knowledge proofs, signing committed messages, or re-randomizability. These are, in fact, typical operations associated with signatures used in typical anonymity and privacy-preserving scenarios. To date there are no "signatures with efficient protocols" which are based on simple assumptions and truly practical. These two properties assure us a robust primitive: First, simple assumptions are needed for ensuring that this basic primitive is mathematically robust and does not require special ad hoc assumptions that are more risky, imply less efficiency, are more tuned to the protocol itself, and are perhaps less trusted. In the other dimension, efficiency is a must given the anonymity applications of the protocol, since without proper level of efficiency the future adoption of the primitives is always questionable (in spite of their need). In this work, we present a new CL-type signature scheme that is re-randomizable under a simple, well-studied, and by now standard, assumption (SXDH). The signature is efficient (built on the recent QA-NIZK constructions), and is, by design, suitable to work in extended contexts that typify privacy settings (like anonymous credentials, group signature, and offline e-cash). We demonstrate its power by presenting practical protocols based on it.

2020-03-09
Ionescu, Tudor B., Engelbrecht, Gerhard.  2016.  The Privacy Case: Matching Privacy-Protection Goals to Human and Organizational Privacy Concerns. 2016 Joint Workshop on Cyber- Physical Security and Resilience in Smart Grids (CPSR-SG). :1–6.

Processing smart grid data for analytics purposes brings about a series of privacy-related risks. In order to allow for the most suitable mitigation strategies, reasonable privacy risks need to be addressed by taking into consideration the perspective of each smart grid stakeholder separately. In this context, we use the notion of privacy concerns to reflect potential privacy risks from the perspective of different smart grid stakeholders. Privacy concerns help to derive privacy goals, which we represent using the goals structuring notation. Thus represented goals can more comprehensibly be addressed through technical and non-technical strategies and solutions. The thread of argumentation - from concerns to goals to strategies and solutions - is presented in form of a privacy case, which is analogous to the safety case used in the automotive domain. We provide an exemplar privacy case for the smart grid developed as part of the Aspern Smart City Research project.

2017-06-27
Davies, Nigel, Taft, Nina, Satyanarayanan, Mahadev, Clinch, Sarah, Amos, Brandon.  2016.  Privacy Mediators: Helping IoT Cross the Chasm. Proceedings of the 17th International Workshop on Mobile Computing Systems and Applications. :39–44.

Unease over data privacy will retard consumer acceptance of IoT deployments. The primary source of discomfort is a lack of user control over raw data that is streamed directly from sensors to the cloud. This is a direct consequence of the over-centralization of today's cloud-based IoT hub designs. We propose a solution that interposes a locally-controlled software component called a privacy mediator on every raw sensor stream. Each mediator is in the same administrative domain as the sensors whose data is being collected, and dynamically enforces the current privacy policies of the owners of the sensors or mobile users within the domain. This solution necessitates a logical point of presence for mediators within the administrative boundaries of each organization. Such points of presence are provided by cloudlets, which are small locally-administered data centers at the edge of the Internet that can support code mobility. The use of cloudlet-based mediators aligns well with natural personal and organizational boundaries of trust and responsibility.

2020-03-09
Richardson, Christopher, Race, Nicholas, Smith, Paul.  2016.  A Privacy Preserving Approach to Energy Theft Detection in Smart Grids. 2016 IEEE International Smart Cities Conference (ISC2). :1–4.

A major challenge for utilities is energy theft, wherein malicious actors steal energy for financial gain. One such form of theft in the smart grid is the fraudulent amplification of energy generation measurements from DERs, such as photo-voltaics. It is important to detect this form of malicious activity, but in a way that ensures the privacy of customers. Not considering privacy aspects could result in a backlash from customers and a heavily curtailed deployment of services, for example. In this short paper, we present a novel privacy-preserving approach to the detection of manipulated DER generation measurements.

2017-06-27
Chang, Zhao, Zou, Lei, Li, Feifei.  2016.  Privacy Preserving Subgraph Matching on Large Graphs in Cloud. Proceedings of the 2016 International Conference on Management of Data. :199–213.

The wide presence of large graph data and the increasing popularity of storing data in the cloud drive the needs for graph query processing on a remote cloud. But a fundamental challenge is to process user queries without compromising sensitive information. This work focuses on privacy preserving subgraph matching in a cloud server. The goal is to minimize the overhead on both cloud and client sides for subgraph matching, without compromising users' sensitive information. To that end, we transform an original graph \$G\$ into a privacy preserving graph Gk, which meets the requirement of an existing privacy model known as k-automorphism. By making use of the symmetry in a k-automorphic graph, a subgraph matching query can be efficiently answered using a graph Go, a small subset of Gk. This approach saves both space and query cost in the cloud server. We also anonymize the query graphs to protect their label information using label generalization technique. To reduce the search space for a subgraph matching query, we propose a cost model to select the more effective label combinations. The effectiveness and efficiency of our method are demonstrated through extensive experimental results on real datasets.

2017-10-25
Ferdous, Md Sadek, Chowdhury, Soumyadeb, Jose, Joemon M.  2016.  Privacy Threat Model in Lifelogging. Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct. :576–581.

The lifelogging activity enables a user, the lifelogger, to passively capture multimodal records from a first-person perspective and ultimately create a visual diary encompassing every possible aspect of her life with unprecedented details. In recent years it has gained popularity among different groups of users. However, the possibility of ubiquitous presence of lifelogging devices especially in private spheres has raised serious concerns with respect to personal privacy. Different practitioners and active researchers in the field of lifelogging have analysed the issue of privacy in lifelogging and proposed different mitigation strategies. However, none of the existing works has considered a well-defined privacy threat model in the domain of lifelogging. Without a proper threat model, any analysis and discussion of privacy threats in lifelogging remains incomplete. In this paper we aim to fill in this gap by introducing a first-ever privacy threat model identifying several threats with respect to lifelogging. We believe that the introduced threat model will be an essential tool and will act as the basis for any further research within this domain.

2017-09-05
Amar, Yousef, Haddadi, Hamed, Mortier, Richard.  2016.  Privacy-Aware Infrastructure for Managing Personal Data. Proceedings of the 2016 ACM SIGCOMM Conference. :571–572.

In recent times, we have seen a proliferation of personal data. This can be attributed not just to a larger proportion of our lives moving online, but also through the rise of ubiquitous sensing through mobile and IoT devices. Alongside this surge, concerns over privacy, trust, and security are expressed more and more as different parties attempt to take advantage of this rich assortment of data. The Databox seeks to enable all the advantages of personal data analytics while at the same time enforcing **accountability** and **control** in order to protect a user's privacy. In this work, we propose and delineate a personal networked device that allows users to **collate**, **curate**, and **mediate** their personal data.

2017-10-25
Perera, Charith, McCormick, Ciaran, Bandara, Arosha K., Price, Blaine A., Nuseibeh, Bashar.  2016.  Privacy-by-Design Framework for Assessing Internet of Things Applications and Platforms. Proceedings of the 6th International Conference on the Internet of Things. :83–92.

The Internet of Things (IoT) systems are designed and developed either as standalone applications from the ground-up or with the help of IoT middleware platforms. They are designed to support different kinds of scenarios, such as smart homes and smart cities. Thus far, privacy concerns have not been explicitly considered by IoT applications and middleware platforms. This is partly due to the lack of systematic methods for designing privacy that can guide the software development process in IoT. In this paper, we propose a set of guidelines, a privacy by-design framework, that can be used to assess privacy capabilities and gaps of existing IoT applications as well as middleware platforms. We have evaluated two open source IoT middleware platforms, namely OpenIoT and Eclipse SmartHome, to demonstrate how our framework can be used in this way.

2017-09-05
Preuveneers, Davy, Joosen, Wouter.  2016.  Privacy-enabled Remote Health Monitoring Applications for Resource Constrained Wearable Devices. Proceedings of the 31st Annual ACM Symposium on Applied Computing. :119–124.

Recent computing paradigms like cloud computing and big data have become very appealing to outsource computation and storage, making it easier to realize personalized and patient centric healthcare through real-time analytics on user data. Although these technologies can significantly complement resource constrained mobile and wearable devices to store and process personal health information, privacy concerns are keeping patients from reaping the full benefits. In this paper, we present and evaluate a practical smart-watch based lifelog application for diabetics that leverages the cloud and homomorphic encryption for caregivers to analyze blood glucose, insulin values, and other parameters in a privacy friendly manner to ensure confidentiality such that even a curious cloud service provider remains oblivious of sensitive health data.

2017-05-22
Khaledi, Mojgan, Khaledi, Mehrdad, Kasera, Sneha Kumar.  2016.  Profitable Task Allocation in Mobile Cloud Computing. Proceedings of the 12th ACM Symposium on QoS and Security for Wireless and Mobile Networks. :9–17.

We propose a game theoretic framework for task allocation in mobile cloud computing that corresponds to offloading of compute tasks to a group of nearby mobile devices. Specifically, in our framework, a distributor node holds a multidimensional auction for allocating the tasks of a job among nearby mobile nodes based on their computational capabilities and also the cost of computation at these nodes, with the goal of reducing the overall job completion time. Our proposed auction also has the desired incentive compatibility property that ensures that mobile devices truthfully reveal their capabilities and costs and that those devices benefit from the task allocation. To deal with node mobility, we perform multiple auctions over adaptive time intervals. We develop a heuristic approach to dynamically find the best time intervals between auctions to minimize unnecessary auctions and the accompanying overheads. We evaluate our framework and methods using both real world and synthetic mobility traces. Our evaluation results show that our game theoretic framework improves the job completion time by a factor of 2-5 in comparison to the time taken for executing the job locally, while minimizing the number of auctions and the accompanying overheads. Our approach is also profitable for the nearby nodes that execute the distributor's tasks with these nodes receiving a compensation higher than their actual costs.

2017-09-15
Wang, Aosen, Jin, Zhanpeng, Xu, Wenyao.  2016.  A Programmable Analog-to-Information Converter for Agile Biosensing. Proceedings of the 2016 International Symposium on Low Power Electronics and Design. :206–211.

In recent years, the analog-to-information converter (AIC), based on compressed sensing (CS) paradigm, is a promising solution to overcome the performance and energy-efficiency limitations of traditional analog-to-digital converters (ADC). Especially, AIC can enable sub-Nyquist signal sampling proportional to the intrinsic information in biomedical applications. However, the legacy AIC structure is tailored toward specific applications, which lacks of flexibility and prevents its universality. In this paper, we introduce a novel programmable AIC architecture, Pro-AIC, to enable effective configurability and reduce its energy overhead by integrating efficient multiplexing hardware design. To improve the quality and time-efficiency of Pro-AIC configuration, we also develop a rapid configuration algorithm, called RapSpiral, to quickly find the near-optimal parameter configuration in Pro-AIC architecture. Specifically, we present a design metric, trade-off penalty, to quantitatively evaluate the performance-energy trade-off. The RapSpiral controls a penalty-driven shrinking triangle to progressively approximate to the optimal trade-off. Our proposed RapSpiral is with log(n) complexity yet high accuracy, without pretraining and complex parameter tuning procedure. RapSpiral is also probable to avoid the local minimum pitfalls. Experimental results indicate that our RapSpiral algorithm can achieve more than 30x speedup compared with the brute force algorithm, with only about 3% trade-off compromise to the optimum in Pro-AIC. Furthermore, the scalability is also verified on larger size benchmarks.

2017-07-24
Karasevich, Aleksandr M., Tutnov, Igor A., Baryshev, Gennady K..  2016.  The Prospects of Application of Information Technologies and the Principles of Intelligent Automated Systems to Manage the Security Status of Objects of Energy Supply of Smart Cities. Proceedings of the International Conference on Electronic Governance and Open Society: Challenges in Eurasia. :9–14.

The paper focuses on one of the methods of designing a highly-automated hardware-software complex aimed at controlling the security of power grids and units that support both central heating and power systems of smart cities. We understand this condition as a situation when any energy consumers of smart cities will be provided with necessary for their living amounts of energy and fuel at any time, including possible periods of techno genic and natural hazards. Two main scientific principles lie in the base of the approach introduced. The first one is diversification of risks of energy security of smart cities by rational choosing the different energy generation sources ratio for fuel-energy balance of a smart city, including large fuel electric power plants and small power autonomous generators. For example, they can be wind energy machinery of sun collectors, heat pipes, etc. The second principle is energy efficiency and energy saving of smart cities. In our case this principle is realized by the high level of automation of monitoring and operation of security status of energy systems and complexes that provide the consumers of smart cities with heat, hot water and electricity, as well as by preventive alert of possible emergencies and high reliability of functioning of all energy facilities. We formulate the main principle governing the construction of a smart hardware-software complex used to maintain a highly-automated control over risks connected with functioning of both power sources and transmission grids. This principle is for open block architecture, including highly autonomous block-modules of primary registration of measuring information, data analysis and systems of automated operation. It also describes general IT-tools used to control the risks of supplying smart cities with energy and shows the structure of a highly-automated system designed to select technological and managerial solutions for a smart city's energy supply system.