Biblio
Software Defined Networking (SDN) and Network Function Virtualisation (NFV) are transforming modern networks towards a service-oriented architecture. At the same time, the cybersecurity industry is rapidly adopting Machine Learning (ML) algorithms to improve detection and mitigation of complex attacks. Traditional intrusion detection systems perform signature-based detection, based on well-known malicious traffic patterns that signify potential attacks. The main drawback of this method is that attack patterns need to be known in advance and signatures must be preconfigured. Hence, typical systems fail to detect a zero-day attack or an attack with unknown signature. This work considers the use of machine learning for advanced anomaly detection, and specifically deploys the Apache Spot ML framework on an SDN/NFV-enabled testbed running cybersecurity services as Virtual Network Functions (VNFs). VNFs are used to capture traffic for ingestion by the ML algorithm and apply mitigation measures in case of a detected anomaly. Apache Spot utilises Latent Dirichlet Allocation to identify anomalous traffic patterns in Netflow, DNS and proxy data. The overall performance of Apache Spot is evaluated by deploying Denial of Service (Slowloris, BoNeSi) and a Data Exfiltration attack (iodine).
Given the centralized architecture of cloud computing, there is a genuine concern about its ability to adequately cope with the demands of connecting devices which are sharply increasing in number and capacity. This has led to the emergence of edge computing technologies, including but not limited to mobile edge-clouds. As a branch of Peer-to-Peer (P2P) networks, mobile edge-clouds inherits disturbing security concerns which have not been adequately addressed in previous methods. P2P security systems have featured many trust-based methods owing to their suitability and cost advantage, but these approaches still lack in a number of ways. They mostly focus on protecting client nodes from malicious service providers, but downplay the security of service provider nodes, thereby creating potential loopholes for bandwidth attack. Similarly, trust bootstrapping is often via default scores, or based on heuristics that does not reflect the identity of a newcomer. This work has patched these inherent loopholes and improved fairness among participating peers. The use cases of mobile edge-clouds have been particularly considered and a scalable reputation based security mechanism was derived to suit them. BitTorrent protocol was modified to form a suitable test bed, using Peersim simulator. The proposed method was compared to some related methods in the literature through detailed simulations. Results show that the new method can foster trust and significantly improve network security, in comparison to previous similar systems.
In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.
Cloud computing undoubtedly is the most unparalleled technique in rapidly developing industries. Protecting sensitive files stored in the clouds from being accessed by malicious attackers is essential to the success of the clouds. In proxy re-encryption schemes, users delegate their encrypted files to other users by using re-encryption keys, which elegantly transfers the users' burden to the cloud servers. Moreover, one can adopt conditional proxy re-encryption schemes to employ their access control policy on the files to be shared. However, we recognize that the size of re-encryption keys will grow linearly with the number of the condition values, which may be impractical in low computational devices. In this paper, we combine a key-aggregate approach and a proxy re-encryption scheme into a key-aggregate proxy re-encryption scheme. It is worth mentioning that the proposed scheme is the first key-aggregate proxy re-encryption scheme. As a side note, the size of re-encryption keys is constant.
The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.
The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.
From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.
Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.
A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.
Automatic Image Analysis, Image Classification, Automatic Object Recognition are some of the aspiring research areas in various fields of Engineering. Many Industrial and biological applications demand Image Analysis and Image Classification. Sample images available for classification may be complex, image data may be inadequate or component regions in the image may have poor visibility. With the available information each Digital Image Processing application has to analyze, classify and recognize the objects appropriately. Pre-processing, Image segmentation, feature extraction and classification are the most common steps to follow for Classification of Images. In this study we applied various existing edge detection methods like Robert, Sobel, Prewitt, Canny, Otsu and Laplacian of Guassian to crab images. From the conducted analysis of all edge detection operators, it is observed that Sobel, Prewitt, Robert operators are ideal for enhancement. The paper proposes Enhanced Sobel operator, Enhanced Prewitt operator and Enhanced Robert operator using morphological operations and masking. The novelty of the proposed approach is that it gives thick edges to the crab images and removes spurious edges with help of m-connectivity. Parameters which measure the accuracy of the results are employed to compare the existing edge detection operators with proposed edge detection operators. This approach shows better results than existing edge detection operators.
The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.
Although the vision of 5G is to accommodate billions IoT devices and applications, its success depends very much on its ability to provide enhanced and affordable security. This paper introduces an Identity Federation solution which reuses the SIM authentication for cellular IoT devices enabling single-sign-on. The proposed solution alleviates the IoT provider's burden of device identity management at the same time as the operational costs are reduced considerably. The proposed solution is realized by open source software for LTE, identity management and IoT.
Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.