Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2018-12-10
Mathas, Christos M., Segou, Olga E., Xylouris, Georgios, Christinakis, Dimitris, Kourtis, Michail-Alexandros, Vassilakis, Costas, Kourtis, Anastasios.  2018.  Evaluation of Apache Spot's Machine Learning Capabilities in an SDN/NFV Enabled Environment. Proceedings of the 13th International Conference on Availability, Reliability and Security. :52:1–52:10.

Software Defined Networking (SDN) and Network Function Virtualisation (NFV) are transforming modern networks towards a service-oriented architecture. At the same time, the cybersecurity industry is rapidly adopting Machine Learning (ML) algorithms to improve detection and mitigation of complex attacks. Traditional intrusion detection systems perform signature-based detection, based on well-known malicious traffic patterns that signify potential attacks. The main drawback of this method is that attack patterns need to be known in advance and signatures must be preconfigured. Hence, typical systems fail to detect a zero-day attack or an attack with unknown signature. This work considers the use of machine learning for advanced anomaly detection, and specifically deploys the Apache Spot ML framework on an SDN/NFV-enabled testbed running cybersecurity services as Virtual Network Functions (VNFs). VNFs are used to capture traffic for ingestion by the ML algorithm and apply mitigation measures in case of a detected anomaly. Apache Spot utilises Latent Dirichlet Allocation to identify anomalous traffic patterns in Netflow, DNS and proxy data. The overall performance of Apache Spot is evaluated by deploying Denial of Service (Slowloris, BoNeSi) and a Data Exfiltration attack (iodine).

2019-07-01
Nwebonyi, Francis N., Martins, Rolando, Correia, Manuel E..  2018.  Reputation-Based Security System For Edge Computing. Proceedings of the 13th International Conference on Availability, Reliability and Security. :39:1-39:8.

Given the centralized architecture of cloud computing, there is a genuine concern about its ability to adequately cope with the demands of connecting devices which are sharply increasing in number and capacity. This has led to the emergence of edge computing technologies, including but not limited to mobile edge-clouds. As a branch of Peer-to-Peer (P2P) networks, mobile edge-clouds inherits disturbing security concerns which have not been adequately addressed in previous methods. P2P security systems have featured many trust-based methods owing to their suitability and cost advantage, but these approaches still lack in a number of ways. They mostly focus on protecting client nodes from malicious service providers, but downplay the security of service provider nodes, thereby creating potential loopholes for bandwidth attack. Similarly, trust bootstrapping is often via default scores, or based on heuristics that does not reflect the identity of a newcomer. This work has patched these inherent loopholes and improved fairness among participating peers. The use cases of mobile edge-clouds have been particularly considered and a scalable reputation based security mechanism was derived to suit them. BitTorrent protocol was modified to form a suitable test bed, using Peersim simulator. The proposed method was compared to some related methods in the literature through detailed simulations. Results show that the new method can foster trust and significantly improve network security, in comparison to previous similar systems.

2019-10-07
Aidan, J. S., Zeenia, Garg, U..  2018.  Advanced Petya Ransomware and Mitigation Strategies. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :23–28.

In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.

2019-11-25
Lu, Xinjin, Lei, Jing, Li, Wei, Pan, Zhipeng.  2018.  A Delayed Feedback Chaotic Encryption Algorithm Based on Polar Codes. 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE). :27–31.
With the development of wireless communication, the reliability and the security of data is very significant for the wireless communication. In this paper, a delayed feedback chaotic encryption algorithm based on polar codes is proposed. In order to protect encoding information, we make uses of wireless channels to extract binary keys. The extracted binary keys will be used as the initial value of chaotic system to produce chaotic sequences. Besides, we use the chain effects of delayed feedback, which increase the difficulty of cryptanalysis. The results of the theoretical analyses and simulations show that the algorithm could guarantee the security of data transmission without affecting reliability.
2020-01-07
Chen, Wei-Hao, Fan, Chun-I, Tseng, Yi-Fan.  2018.  Efficient Key-Aggregate Proxy Re-Encryption for Secure Data Sharing in Clouds. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1-4.

Cloud computing undoubtedly is the most unparalleled technique in rapidly developing industries. Protecting sensitive files stored in the clouds from being accessed by malicious attackers is essential to the success of the clouds. In proxy re-encryption schemes, users delegate their encrypted files to other users by using re-encryption keys, which elegantly transfers the users' burden to the cloud servers. Moreover, one can adopt conditional proxy re-encryption schemes to employ their access control policy on the files to be shared. However, we recognize that the size of re-encryption keys will grow linearly with the number of the condition values, which may be impractical in low computational devices. In this paper, we combine a key-aggregate approach and a proxy re-encryption scheme into a key-aggregate proxy re-encryption scheme. It is worth mentioning that the proposed scheme is the first key-aggregate proxy re-encryption scheme. As a side note, the size of re-encryption keys is constant.

2019-04-01
Robles-Cordero, A. M., Zayas, W. J., Peker, Y. K..  2018.  Extracting the Security Features Implemented in a Bluetooth LE Connection. 2018 IEEE International Conference on Big Data (Big Data). :2559–2563.
Since its introduction in 2010, Bluetooth Low Energy (LE) has seen an abrupt adoption by top companies in the world. From smartphones, PCs, tablets, smartwatches to fitness bands; Bluetooth Low Energy is being implemented more and more on technological devices. Even though the Bluetooth Special Interest Group includes and strongly recommends implementations for security features in their standards for Bluetooth LE devices, recent studies show that many Bluetooth devices do not follow the recommendations. Even worse consumers are rarely informed about what security features are implemented by the products they use. The ultimate goal in this study is to provide a mechanism for users to inform them of the security features implemented in a Bluetooth LE connection that they have initiated. To this end, we developed an app for Android phones that extracts the security features of a Bluetooth LE connection using the btsnoop log stored on the phone. We have verified the correctness of our app using the Frontline BPA Low Energy Analyzer.
2020-07-30
Zhang, Jin, Jin, Dahai, Gong, Yunzhan.  2018.  File Similarity Determination Based on Function Call Graph. 2018 IEEE International Conference on Electronics and Communication Engineering (ICECE). :55—59.
The similarity detection of the program has important significance in code reuse, plagiarism detection, intellectual property protection and information retrieval methods. Attribute counting methods cannot take into account program semantics. The method based on syntax tree or graph structure has a very high construction cost and low space efficiency. So it is difficult to solve problems in large-scale software systems. This paper uses different decision strategies for different levels, then puts forward a similarity detection method at the file level. This method can make full use of the features of the program and take into account the space-time efficiency. By using static analysis methods, we get function features and control flow features of files. And based on this, we establish the function call graph. The similar degree between two files can be measured with the two graphs. Experimental results show the method can effectively detect similar files. Finally, this paper discusses the direction of development of this method.
2019-03-04
Herald, N. E., David, M. W..  2018.  A Framework for Making Effective Responses to Cyberattacks. 2018 IEEE International Conference on Big Data (Big Data). :4798–4805.
The process for determining how to respond to a cyberattack involves evaluating many factors, including some with competing risks. Consequentially, decision makers in the private sector and policymakers in the U.S. government (USG) need a framework in order to make effective response decisions. The authors' research identified two competing risks: 1) the risk of not responding forcefully enough to deter a suspected attacker, and 2) responding in a manner that escalates a situation with an attacker. The authors also identified three primary factors that influence these risks: attribution confidence/time, the scale of the attack, and the relationship with the suspected attacker. This paper provides a framework to help decision makers understand how these factors interact to influence the risks associated with potential response options to cyberattacks. The views expressed do not reflect the official policy or position of the National Intelligence University, the Department of Defense, the U.S. Intelligence Community, or the U.S. Government.
Iqbal, A., Mahmood, F., Shalaginov, A., Ekstedt, M..  2018.  Identification of Attack-based Digital Forensic Evidences for WAMPAC Systems. 2018 IEEE International Conference on Big Data (Big Data). :3079–3087.
Power systems domain has generally been very conservative in terms of conducting digital forensic investigations, especially so since the advent of smart grids. This lack of research due to a multitude of challenges has resulted in absence of knowledge base and resources to facilitate such an investigation. Digitalization in the form of smart grids is upon us but in case of cyber-attacks, attribution to such attacks is challenging and difficult if not impossible. In this research, we have identified digital forensic artifacts resulting from a cyber-attack on Wide Area Monitoring, Protection and Control (WAMPAC) systems, which will help an investigator attribute an attack using the identified evidences. The research also shows the usage of sandboxing for digital forensics along with hardware-in-the-loop (HIL) setup. This is first of its kind effort to identify and acquire all the digital forensic evidences for WAMPAC systems which will ultimately help in building a body of knowledge and taxonomy for power system forensics.
2020-11-17
Qian, K., Parizi, R. M., Lo, D..  2018.  OWASP Risk Analysis Driven Security Requirements Specification for Secure Android Mobile Software Development. 2018 IEEE Conference on Dependable and Secure Computing (DSC). :1—2.
The security threats to mobile applications are growing explosively. Mobile apps flaws and security defects open doors for hackers to break in and access sensitive information. Defensive requirements analysis should be an integral part of secure mobile SDLC. Developers need to consider the information confidentiality and data integrity, to verify the security early in the development lifecycle rather than fixing the security holes after attacking and data leaks take place. Early eliminating known security vulnerabilities will help developers increase the security of apps and reduce the likelihood of exploitation. However, many software developers lack the necessary security knowledge and skills at the development stage, and that's why Secure Mobile Software Development education is very necessary for mobile software engineers. In this paper, we propose a guided security requirement analysis based on OWASP Mobile Top ten security risk recommendations for Android mobile software development and its traceability of the developmental controls in SDLC. Building secure apps immune to the OWASP Mobile Top ten risks would be an effective approach to provide very useful mobile security guidelines.
2020-04-24
Rahman, Lamiya, Adan, Jannatul, Nahid-AI-Masood, Deeba, Shohana Rahman.  2018.  Performance Analysis of Floating Buoy Point Absorber and Oscillating Surge Wave Energy Converters in Onshore and Offshore Locations. 2018 10th International Conference on Electrical and Computer Engineering (ICECE). :233—236.

The aim of this paper is to explore the performance of two well-known wave energy converters (WECs) namely Floating Buoy Point Absorber (FBPA) and Oscillating Surge (OS) in onshore and offshore locations. To achieve clean energy targets by reducing greenhouse gas emissions, integration of renewable energy resources is continuously increasing all around the world. In addition to widespread renewable energy source such as wind and solar photovoltaic (PV), wave energy extracted from ocean is becoming more tangible day by day. In the literature, a number of WEC devices are reported. However, further investigations are still needed to better understand the behaviors of FBPA WEC and OS WEC under irregular wave conditions in onshore and offshore locations. Note that being surrounded by Bay of Bengal, Bangladesh has huge scope of utilizing wave power. To this end, FBPA WEC and OS WEC are simulated using the typical onshore and offshore wave height and wave period of the coastal area of Bangladesh. Afterwards, performances of the aforementioned two WECs are compared by analyzing their power output.

2019-03-11
Hunt, Tyler, Zhu, Zhiting, Xu, Yuanzhong, Peter, Simon, Witchel, Emmett.  2018.  Ryoan: A Distributed Sandbox for Untrusted Computation on Secret Data. ACM Trans. Comput. Syst.. 35:13:1–13:32.
Users of modern data-processing services such as tax preparation or genomic screening are forced to trust them with data that the users wish to keep secret. Ryoan1 protects secret data while it is processed by services that the data owner does not trust. Accomplishing this goal in a distributed setting is difficult, because the user has no control over the service providers or the computational platform. Confining code to prevent it from leaking secrets is notoriously difficult, but Ryoan benefits from new hardware and a request-oriented data model. Ryoan provides a distributed sandbox, leveraging hardware enclaves (e.g., Intel’s software guard extensions (SGX) [40]) to protect sandbox instances from potentially malicious computing platforms. The protected sandbox instances confine untrusted data-processing modules to prevent leakage of the user’s input data. Ryoan is designed for a request-oriented data model, where confined modules only process input once and do not persist state about the input. We present the design and prototype implementation of Ryoan and evaluate it on a series of challenging problems including email filtering, health analysis, image processing and machine translation.
2020-10-05
Wu, Songyang, Zhang, Yong, Chen, Xiao.  2018.  Security Assessment of Dynamic Networks with an Approach of Integrating Semantic Reasoning and Attack Graphs. 2018 IEEE 4th International Conference on Computer and Communications (ICCC). :1166–1174.
Because of the high-value data of an enterprise, sophisticated cyber-attacks targeted at enterprise networks have become prominent. Attack graphs are useful tools that facilitate a scalable security analysis of enterprise networks. However, the administrators face difficulties in effectively modelling security problems and making right decisions when constructing attack graphs as their risk assessment experience is often limited. In this paper, we propose an innovative method of security assessment through an ontology- and graph-based approach. An ontology is designed to represent security knowledge such as assets, vulnerabilities, attacks, countermeasures, and relationships between them in a common vocabulary. An efficient algorithm is proposed to generate an attack graph based on the inference ability of the security ontology. The proposed algorithm is evaluated with different sizes and topologies of test networks; the results show that our proposed algorithm facilitates a scalable security analysis of enterprise networks.
2019-04-01
Liu, F., Li, Z., Li, X., Lv, T..  2018.  A Text-Based CAPTCHA Cracking System with Generative Adversarial Networks. 2018 IEEE International Symposium on Multimedia (ISM). :192–193.
As a multimedia security mechanism, CAPTCHAs are completely automated public turing test to tell computers and humans apart. Although cracking CAPTCHA has been explored for many years, it is still a challenging problem for real practice. In this demo, we present a text based CAPTCHA cracking system by using convolutional neural networks(CNN). To solve small sample problem, we propose to combine conditional deep convolutional generative adversarial networks(cDCGAN) and CNN, which makes a tremendous progress in accuracy. In addition, we also select multiple models with low pearson correlation coefficients for majority voting ensemble, which further improves the accuracy. The experimental results show that the system has great advantages and provides a new mean for cracking CAPTCHAs.
2019-06-10
Eziama, E., Jaimes, L. M. S., James, A., Nwizege, K. S., Balador, A., Tepe, K..  2018.  Machine Learning-Based Recommendation Trust Model for Machine-to-Machine Communication. 2018 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT). :1-6.

The Machine Type Communication Devices (MTCDs) are usually based on Internet Protocol (IP), which can cause billions of connected objects to be part of the Internet. The enormous amount of data coming from these devices are quite heterogeneous in nature, which can lead to security issues, such as injection attacks, ballot stuffing, and bad mouthing. Consequently, this work considers machine learning trust evaluation as an effective and accurate option for solving the issues associate with security threats. In this paper, a comparative analysis is carried out with five different machine learning approaches: Naive Bayes (NB), Decision Tree (DT), Linear and Radial Support Vector Machine (SVM), KNearest Neighbor (KNN), and Random Forest (RF). As a critical element of the research, the recommendations consider different Machine-to-Machine (M2M) communication nodes with regard to their ability to identify malicious and honest information. To validate the performances of these models, two trust computation measures were used: Receiver Operating Characteristics (ROCs), Precision and Recall. The malicious data was formulated in Matlab. A scenario was created where 50% of the information were modified to be malicious. The malicious nodes were varied in the ranges of 10%, 20%, 30%, 40%, and the results were carefully analyzed.

2019-08-05
Ghugar, U., Pradhan, J..  2018.  NL-IDS: Trust Based Intrusion Detection System for Network Layer in Wireless Sensor Networks. 2018 Fifth International Conference on Parallel, Distributed and Grid Computing (PDGC). :512-516.

From the last few years, security in wireless sensor network (WSN) is essential because WSN application uses important information sharing between the nodes. There are large number of issues raised related to security due to open deployment of network. The attackers disturb the security system by attacking the different protocol layers in WSN. The standard AODV routing protocol faces security issues when the route discovery process takes place. The data should be transmitted in a secure path to the destination. Therefore, to support the process we have proposed a trust based intrusion detection system (NL-IDS) for network layer in WSN to detect the Black hole attackers in the network. The sensor node trust is calculated as per the deviation of key factor at the network layer based on the Black hole attack. We use the watchdog technique where a sensor node continuously monitors the neighbor node by calculating a periodic trust value. Finally, the overall trust value of the sensor node is evaluated by the gathered values of trust metrics of the network layer (past and previous trust values). This NL-IDS scheme is efficient to identify the malicious node with respect to Black hole attack at the network layer. To analyze the performance of NL-IDS, we have simulated the model in MATLAB R2015a, and the result shows that NL-IDS is better than Wang et al. [11] as compare of detection accuracy and false alarm rate.

2019-02-08
Jensen, Theodore, Albayram, Yusuf, Khan, Mohammad Maifi Hasan, Buck, Ross, Coman, Emil, Fahim, Md Abdullah Al.  2018.  Initial Trustworthiness Perceptions of a Drone System Based on Performance and Process Information. Proceedings of the 6th International Conference on Human-Agent Interaction. :229-237.

Prior work notes dispositional, learned, and situational aspects of trust in automation. However, no work has investigated the relative role of these factors in initial trust of an automated system. Moreover, trust in automation researchers often consider trust unidimensionally, whereas ability, integrity, and benevolence perceptions (i.e., trusting beliefs) may provide a more thorough understanding of trust dynamics. To investigate this, we recruited 163 participants on Amazon's Mechanical Turk (MTurk) and randomly assigned each to one of 4 videos describing a hypothetical drone system: one control, the others with additional system performance or process, or both types of information. Participants reported on trusting beliefs in the system, propensity to trust other people, risk-taking tendencies, and trust in the government law enforcement agency behind the system. We found that financial risk-taking tendencies influenced trusting beliefs. Also, those who received process information were likely to have higher integrity and ability beliefs than those not receiving process information, while those who received performance information were likely to have higher ability beliefs. Lastly, perceptions of structural assurance positively influenced all three trusting beliefs. Our findings suggest that a) users' risk-taking tendencies influence trustworthiness perceptions of systems, b) different types of information about a system have varied effects on the trustworthiness dimensions, and c) institutions play an important role in users' calibration of trust. Insights gained from this study can help design training materials and interfaces that improve user trust calibration in automated systems.

2019-01-16
Sahay, R., Geethakumari, G., Modugu, K..  2018.  Attack graph — Based vulnerability assessment of rank property in RPL-6LOWPAN in IoT. 2018 IEEE 4th World Forum on Internet of Things (WF-IoT). :308–313.

A significant segment of the Internet of Things (IoT) is the resource constrained Low Power and Lossy Networks (LLNs). The communication protocol used in LLNs is 6LOWPAN (IPv6 over Low-power Wireless Personal Area Network) which makes use of RPL (IPv6 Routing Protocol over Low power and Lossy network) as its routing protocol. In recent times, several security breaches in IoT networks occurred by targeting routers to instigate various DDoS (Distributed Denial of Service) attacks. Hence, routing security has become an important problem in securing the IoT environment. Though RPL meets all the routing requirements of LLNs, it is important to perform a holistic security assessment of RPL as it is susceptible to many security attacks. An important attribute of RPL is its rank property. The rank property defines the placement of sensor nodes in the RPL DODAG (Destination Oriented Directed Acyclic Graphs) based on an Objective Function. Examples of Objective Functions include Expected Transmission Count, Packet Delivery Rate etc. Rank property assists in routing path optimization, reducing control overhead and maintaining a loop free topology through rank based data path validation. In this paper, we investigate the vulnerabilities of the rank property of RPL by constructing an Attack Graph. For the construction of the Attack Graph we analyzed all the possible threats associated with rank property. Through our investigation we found that violation of protocols related to rank property results in several RPL attacks causing topological sub-optimization, topological isolation, resource consumption and traffic disruption. Routing security essentially comprises mechanisms to ensure correct implementation of the routing protocol. In this paper, we also present some observations which can be used to devise mechanisms to prevent the exploitation of the vulnerabilities of the rank property.

2019-11-25
Guo, Tao, Yeung, Raymond w..  2018.  The Explicit Coding Rate Region of Symmetric Multilevel Diversity Coding. 2018 Information Theory and Applications Workshop (ITA). :1–9.
It is well known that superposition coding, namely separately encoding the independent sources, is optimal for symmetric multilevel diversity coding (SMDC) (Yeung-Zhang 1999). However, the characterization of the coding rate region therein involves uncountably many linear inequalities and the constant term (i.e., the lower bound) in each inequality is given in terms of the solution of a linear optimization problem. Thus this implicit characterization of the coding rate region does not enable the determination of the achievability of a given rate tuple. In this paper, we first obtain closed-form expressions of these uncountably many inequalities. Then we identify a finite subset of inequalities that is sufficient for characterizing the coding rate region. This gives an explicit characterization of the coding rate region. We further show by the symmetry of the problem that only a much smaller subset of this finite set of inequalities needs to be verified in determining the achievability of a given rate tuple. Yet, the cardinality of this smaller set grows at least exponentially fast with L.
2019-02-13
Ahmed, N., Talib, M. A., Nasir, Q..  2018.  Program-flow attestation of IoT systems software. 2018 15th Learning and Technology Conference (L T). :67–73.
Remote attestation is the process of measuring the integrity of a device over the network, by detecting modification of software or hardware from the original configuration. Several remote software-based attestation mechanisms have been introduced, that rely on strict time constraints and other impractical constraints that make them inconvenient for IoT systems. Although some research is done to address these issues, they integrated trusted hardware devices to the attested devices to accomplish their aim, which is costly and not convenient for many use cases. In this paper, we propose “Dual Attestation” that includes two stages: static and dynamic. The static attestation phase checks the memory of the attested device. The dynamic attestation technique checks the execution correctness of the application code and can detect the runtime attacks. The objectives are to minimize the overhead and detect these attacks, by developing an optimized dynamic technique that checks the application program flow. The optimization will be done in the prover and the verifier sides.
2021-02-08
Prathusha, P., Jyothi, S., Mamatha, D. M..  2018.  Enhanced Image Edge Detection Methods for Crab Species Identification. 2018 International Conference on Soft-computing and Network Security (ICSNS). :1—7.

Automatic Image Analysis, Image Classification, Automatic Object Recognition are some of the aspiring research areas in various fields of Engineering. Many Industrial and biological applications demand Image Analysis and Image Classification. Sample images available for classification may be complex, image data may be inadequate or component regions in the image may have poor visibility. With the available information each Digital Image Processing application has to analyze, classify and recognize the objects appropriately. Pre-processing, Image segmentation, feature extraction and classification are the most common steps to follow for Classification of Images. In this study we applied various existing edge detection methods like Robert, Sobel, Prewitt, Canny, Otsu and Laplacian of Guassian to crab images. From the conducted analysis of all edge detection operators, it is observed that Sobel, Prewitt, Robert operators are ideal for enhancement. The paper proposes Enhanced Sobel operator, Enhanced Prewitt operator and Enhanced Robert operator using morphological operations and masking. The novelty of the proposed approach is that it gives thick edges to the crab images and removes spurious edges with help of m-connectivity. Parameters which measure the accuracy of the results are employed to compare the existing edge detection operators with proposed edge detection operators. This approach shows better results than existing edge detection operators.

2019-01-31
Rodríguez, Juan M., Merlino, Hernán D., Pesado, Patricia, García-Martínez, Ramón.  2018.  Evaluation of Open Information Extraction Methods Using Reuters-21578 Database. Proceedings of the 2Nd International Conference on Machine Learning and Soft Computing. :87–92.

The following article shows the precision, the recall and the F1-measure for three knowledge extraction methods under Open Information Extraction paradigm. These methods are: ReVerb, OLLIE and ClausIE. For the calculation of these three measures, a representative sample of Reuters-21578 was used; 103 newswire texts were taken randomly from that database. A big discrepancy was observed, after analyzing the obtained results, between the expected and the observed precision for ClausIE. In order to save the observed gap in ClausIE precision, a simple improvement is proposed for the method. Although the correction improved the precision of Clausie, ReVerb turned out to be the most precise method; however ClausIE is the one with the better F1-measure.

2019-08-26
Santos, Bernardo, Do, Van Thuan, Feng, Boning, van Do, Thanh.  2018.  Identity Federation for Cellular Internet of Things. Proceedings of the 2018 7th International Conference on Software and Computer Applications. :223-228.

Although the vision of 5G is to accommodate billions IoT devices and applications, its success depends very much on its ability to provide enhanced and affordable security. This paper introduces an Identity Federation solution which reuses the SIM authentication for cellular IoT devices enabling single-sign-on. The proposed solution alleviates the IoT provider's burden of device identity management at the same time as the operational costs are reduced considerably. The proposed solution is realized by open source software for LTE, identity management and IoT.

2020-11-17
Singh, M., Butakov, S., Jaafar, F..  2018.  Analyzing Overhead from Security and Administrative Functions in Virtual Environment. 2018 International Conference on Platform Technology and Service (PlatCon). :1—6.
The paper provides an analysis of the performance of an administrative component that helps the hypervisor to manage the resources of guest operating systems under fluctuation workload. The additional administrative component provides an extra layer of security to the guest operating systems and system as a whole. In this study, an administrative component was implemented by using Xen-hypervisor based para-virtualization technique and assigned some additional roles and responsibilities that reduce hypervisor workload. The study measured the resource utilizations of an administrative component when excessive input/output load passes passing through the system. Performance was measured in terms of bandwidth and CPU utilisation Based on the analysis of administrative component performance recommendations have been provided with the goal to improve system availability. Recommendations included detection of the performance saturation point that indicates the necessity to start load balancing procedures for the administrative component in the virtualized environment.
2019-12-18
Chugunkov, Ilya V., Fedorov, Leonid O., Achmiz, Bela Sh., Sayfullina, Zarina R..  2018.  Development of the Algorithm for Protection against DDoS-Attacks of Type Pulse Wave. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :292-294.

Protection from DDoS-attacks is one of the most urgent problems in the world of network technologies. And while protect systems has algorithms for detection and preventing DDoS attacks, there are still some unresolved problems. This article is devoted to the DDoS-attack called Pulse Wave. Providing a brief introduction to the world of network technologies and DDoS-attacks, in particular, aims at the algorithm for protecting against DDoS-attack Pulse Wave. The main goal of this article is the implementation of traffic classifier that adds rules for infected computers to put them into a separate queue with limited bandwidth. This approach reduces their load on the service and, thus, firewall neutralises the attack.