Biblio
The fifth generation of cellular networks (5G) will enable different use cases where security will be more critical than ever before (e.g. autonomous vehicles and critical IoT devices). Unfortunately, the new networks are being built on the certainty that security problems cannot be solved in the short term. Far from reinventing the wheel, one of our goals is to allow security software developers to implement and test their reactive solutions for the capillary network of 5G devices. Therefore, in this paper a solution for analysing proximity-based attacks in 5G environments is modelled and tested using OMNET++. The solution, named CRAT, is able to decouple the security analysis from the hardware of the device with the aim to extend the analysis of proximity-based attacks to different use-cases in 5G. We follow a high-level approach, in which the devices can take the role of victim, offender and guardian following the principles of the routine activity theory.
Compressed sensing (CS) integrates sampling and compression into a single step to reduce the processed data amount. However, the CS reconstruction generally suffers from high complexity. To solve this problem, compressive signal processing (CSP) is recently proposed to implement some signal processing tasks directly in the compressive domain without reconstruction. Among various CSP techniques, compressive detection achieves the signal detection based on the CS measurements. This paper investigates the compressive detection problem of random signals when the measurements are corrupted. Different from the current studies that only consider the dense noise, our study considers both the dense noise and sparse error. The theoretical performance is derived, and simulations are provided to verify the derived theoretical results.
A Cyber Physical Sensor System (CPSS) consists of a computing platform equipped with wireless access points, sensors, and actuators. In a Cyber Physical System, CPSS constantly collects data from a physical object that is under process and performs local real-time control activities based on the process algorithm. The collected data is then transmitted through the network layer to the enterprise command and control center or to the cloud computing services for further processing and analysis. This paper investigates the CPSS' most common cyber security threats and vulnerabilities and provides countermeasures. Furthermore, the paper addresses how the CPSS are attacked, what are the leading consequences of the attacks, and the possible remedies to prevent them. Detailed case studies are presented to help the readers understand the CPSS threats, vulnerabilities, and possible solutions.
This paper presents a computational platform for dynamic security assessment (DSA) of large electricity grids, developed as part of the iTesla project. It leverages High Performance Computing (HPC) to analyze large power systems, with many scenarios and possible contingencies, thus paving the way for pan-European operational stability analysis. The results of the DSA are summarized by decision trees of 11 stability indicators. The platform's workflow and parallel implementation architecture is described in detail, including the way commercial tools are integrated into a plug-in architecture. A case study of the French grid is presented, with over 8000 scenarios and 1980 contingencies. Performance data of the case study (using 10,000 parallel cores) is analyzed, including task timings and data flows. Finally, the generated decision trees are compared with test data to quantify the functional performance of the DSA platform.
Today's emerging Industrial Internet of Things (IIoT) scenarios are characterized by the exchange of data between services across enterprises. Traditional access and usage control mechanisms are only able to determine if data may be used by a subject, but lack an understanding of how it may be used. The ability to control the way how data is processed is however crucial for enterprises to guarantee (and provide evidence of) compliant processing of critical data, as well as for users who need to control if their private data may be analyzed or linked with additional information - a major concern in IoT applications processing personal information. In this paper, we introduce LUCON, a data-centric security policy framework for distributed systems that considers data flows by controlling how messages may be routed across services and how they are combined and processed. LUCON policies prevent information leaks, bind data usage to obligations, and enforce data flows across services. Policy enforcement is based on a dynamic taint analysis at runtime and an upfront static verification of message routes against policies. We discuss the semantics of these two complementing enforcement models and illustrate how LUCON policies are compiled from a simple policy language into a first-order logic representation. We demonstrate the practical application of LUCON in a real-world IoT middleware and discuss its integration into Apache Camel. Finally, we evaluate the runtime impact of LUCON and discuss performance and scalability aspects.
Key derivation from the physical layer features of the communication channels is a promising approach which can help the key management and security enhancement in communication networks. In this paper, we consider a key generation technique that quantizes the received signal phase to obtain the secret keys. We then study the effect of a jamming attack on this system. The jammer is an active attacker that tries to make a disturbance in the key derivation procedure and changes the phase of the received signal by transmitting an adversary signal. We evaluate the effect of jamming on the security performance of the system and show the ways to improve this performance. Our numerical results show that more phase quantization regions limit the probability of successful attacks.
In the smart grid, residents' electricity usage needs to be periodically measured and reported for the purpose of better energy management. At the same time, real-time collection of residents' electricity consumption may unfavorably incur privacy leakage, which has motivated the research on privacy-preserving aggregation of electricity readings. Most previous studies either rely on a trusted third party (TTP) or suffer from expensive computation. In this paper, we first reveal the privacy flaws of a very recent scheme pursing privacy preservation without relying on the TTP. By presenting concrete attacks, we show that this scheme has failed to meet the design goals. Then, for better privacy protection, we construct a new scheme called PMDA, which utilizes Shamir's secret sharing to allow smart meters to negotiate aggregation parameters in the absence of a TTP. Using only lightweight cryptography, PMDA efficiently supports multi-functional aggregation of the electricity readings, and simultaneously preserves residents' privacy. Theoretical analysis is provided with regard to PMDA's security and efficiency. Moreover, experimental data obtained from a prototype indicates that our proposal is efficient and feasible for practical deployment.
The Internet of Things (IoT) is the network where physical devices, sensors, appliances and other different objects can communicate with each other without the need for human intervention. Wireless Sensor Networks (WSNs) are main building blocks of the IoT. Both the IoT and WSNs have many critical and non-critical applications that touch almost every aspect of our modern life. Unfortunately, these networks are prone to various types of security threats. Therefore, the security of IoT and WSNs became crucial. Furthermore, the resource limitations of the devices used in these networks complicate the problem. One of the most recent and effective approaches to address such challenges is machine learning. Machine learning inspires many solutions to secure the IoT and WSNs. In this paper, we survey the different threats that can attack both IoT and WSNs and the machine learning techniques developed to counter them.
Information Centric Networking (ICN) changed the communication model from host-based to content-based to cope with the high volume of traffic due to the rapidly increasing number of users, data objects, devices, and applications. ICN communication model requires new security solutions that will be integrated with ICN architectures. In this paper, we present a security framework to manage ICN traffic by detecting, preventing, and responding to ICN attacks. The framework consists of three components: availability, access control, and privacy. The availability component ensures that contents are available for legitimate users. The access control component allows only legitimate users to get restrictedaccess contents. The privacy component prevents attackers from knowing content popularities or user requests. We also show our specific solutions as examples of the framework components.
In recent years, there has been progress in applying information technology to industrial control systems (ICS), which is expected to make the development cost of control devices and systems lower. On the other hand, the security threats are becoming important problems. In 2017, a command injection issue on a data logger was reported. In this paper, we focus on the risk assessment in security design for data loggers used in industrial control systems. Our aim is to provide a risk assessment method optimized for control devices and systems in such a way that one can prioritize threats more preciously, that would lead work resource (time and budget) can be assigned for more important threats than others. We discuss problems with application of the automotive-security guideline of JASO TP15002 to ICS risk assessment. Consequently, we propose a three-phase risk assessment method with a novel Risk Scoring Systems (RSS) for quantitative risk assessment, RSS-CWSS. The idea behind this method is to apply CWSS scoring systems to RSS by fixing values for some of CWSS metrics, considering what the designers can evaluate during the concept phase. Our case study with ICS employing a data logger clarifies that RSS-CWSS can offer an interesting property that it has better risk-score dispersion than the TP15002-specified RSS.
Smartphones have become ubiquitous in our everyday lives, providing diverse functionalities via millions of applications (apps) that are readily available. To achieve these functionalities, apps need to access and utilize potentially sensitive data, stored in the user's device. This can pose a serious threat to users' security and privacy, when considering malicious or underskilled developers. While application marketplaces, like Google Play store and Apple App store, provide factors like ratings, user reviews, and number of downloads to distinguish benign from risky apps, studies have shown that these metrics are not adequately effective. The security and privacy health of an application should also be considered to generate a more reliable and transparent trustworthiness score. In order to automate the trustworthiness assessment of mobile applications, we introduce the Trust4App framework, which not only considers the publicly available factors mentioned above, but also takes into account the Security and Privacy (S&P) health of an application. Additionally, it considers the S&P posture of a user, and provides an holistic personalized trustworthiness score. While existing automatic trustworthiness frameworks only consider trustworthiness indicators (e.g. permission usage, privacy leaks) individually, Trust4App is, to the best of our knowledge, the first framework to combine these indicators. We also implement a proof-of-concept realization of our framework and demonstrate that Trust4App provides a more comprehensive, intuitive and actionable trustworthiness assessment compared to existing approaches.
Industrial cluster is an important organization form and carrier of development of small and medium-sized enterprises, and information service platform is an important facility of industrial cluster. Improving the credibility of the network platform is conducive to eliminate the adverse effects of distrust and information asymmetry on industrial clusters. The decentralization, transparency, openness, and intangibility of block chain technology make it an inevitable choice for trustworthiness optimization of industrial cluster network platform. This paper first studied on trusted standard of industry cluster network platform and construct a new trusted framework of industry cluster network platform. Then the paper focus on trustworthiness optimization of data layer and application layer of the platform. The purpose of this paper is to build an industrial cluster network platform with data access, information trustworthiness, function availability, high-speed and low consumption, and promote the sustainable and efficient development of industrial cluster.
Digital microfluidic biochips (DMFBs) have become popular in the healthcare industry recently because of its lowcost, high-throughput, and portability. Users can execute the experiments on biochips with high resolution, and the biochips market therefore grows significantly. However, malicious attackers exploit Intellectual Property (IP) piracy and Trojan attacks to gain illegal profits. The conventional approaches present defense mechanisms that target either IP piracy or Trojan attacks. In practical, DMFBs may suffer from the threat of being attacked by these two attacks at the same time. This paper presents a comprehensive security system to protect DMFBs from IP piracy and Trojan attacks. We propose an authentication mechanism to protect IP and detect errors caused by Trojans with CCD cameras. By our security system, we could generate secret keys for authentication and determine whether the bioassay is under the IP piracy and Trojan attacks. Experimental results demonstrate the efficacy of our security system without overhead of the bioassay completion time.
Device-to-device communication is widely used for mobile devices and Internet of Things. Authentication and key agreement are critical to build a secure channel between two devices. However, existing approaches often rely on a pre-built fingerprint database and suffer from low key generation rate. We present GeneWave, a fast device authentication and key agreement protocol for commodity mobile devices. GeneWave first achieves bidirectional initial authentication based on the physical response interval between two devices. To keep the accuracy of interval estimation, we eliminate time uncertainty on commodity devices through fast signal detection and redundancy time cancellation. Then, we derive the initial acoustic channel response for device authentication. We design a novel coding scheme for efficient key agreement while ensuring security. Therefore, two devices can authenticate each other and securely agree on a symmetric key. GeneWave requires neither special hardware nor pre-built fingerprint database, and thus it is easyto-use on commercial mobile devices. We implement GeneWave on mobile devices (i.e., Nexus 5X and Nexus 6P) and evaluate its performance through extensive experiments. Experimental results show that GeneWave efficiently accomplish secure key agreement on commodity smartphones with a key generation rate 10× faster than the state-of-the-art approach.
The problem of optimal attack path analysis is one of the hotspots in network security. Many methods are available to calculate an optimal attack path, such as Q-learning algorithm, heuristic algorithms, etc. But most of them have shortcomings. Some methods can lead to the problem of path loss, and some methods render the result un-comprehensive. This article proposes an improved Monte Carlo Graph Search algorithm (IMCGS) to calculate optimal attack paths in target network. IMCGS can avoid the problem of path loss and get comprehensive results quickly. IMCGS is divided into two steps: selection and backpropagation, which is used to calculate optimal attack paths. A weight vector containing priority, host connection number, CVSS value is proposed for every host in an attack path. This vector is used to calculate the evaluation value, the total CVSS value and the average CVSS value of a path in the target network. Result for a sample test network is presented to demonstrate the capabilities of the proposed algorithm to generate optimal attack paths in one single run. The results obtained by IMCGS show good performance and are compared with Ant Colony Optimization Algorithm (ACO) and k-zero attack graph.
It is a research hotspot that using blockchain technology to solve the security problems of the Internet of Things (IoT). Although many related ideas have been proposed, there are very few literatures with theoretical and data support. This paper focuses on the research of model construction and performance evaluation. First, an IoT security model is established based on blockchain and InterPlanetary File System (IPFS). In this model, many security risks of traditional IoT architectures can be avoided, and system performance is significantly improved in distributed large capacity storage, concurrency and query. Secondly, the performance of the proposed model is evaluated through the average latency and throughput, which are meaningful for further research and optimization of this direction. Analysis and test results demonstrate the effectiveness of the blockchain-based security model.
An air-gapped network is a type of IT network that is separated from the Internet - physically - due to the sensitive information it stores. Even if such a network is compromised with a malware, the hermetic isolation from the Internet prevents an attacker from leaking out any data - thanks to the lack of connectivity. In this paper we show how attackers can covertly leak sensitive data from air-gapped networks via the row of status LEDs on networking equipment such as LAN switches and routers. Although it is known that some network equipment emanates optical signals correlated with the information being processed by the device (‘side-channel'), malware controlling the status LEDs to carry any type of data (‘covert-channel') has never studied before. Sensitive data can be covertly encoded over the blinking of the LEDs and received by remote cameras and optical sensors. A malicious code is executed in a compromised LAN switch or router allowing the attacker direct, low-level control of the LEDs. We provide the technical background on the internal architecture of switches and routers at both the hardware and software level which enables these attacks. We present different modulation and encoding schemas, along with a transmission protocol. We implement prototypes of the malware and discuss its design and implementation. We tested various receivers including remote cameras, security cameras, smartphone cameras, and optical sensors, and discuss detection and prevention countermeasures. Our experiments show that sensitive data can be covertly leaked via the status LEDs of switches and routers at bit rates of 1 bit/sec to more than 2000 bit/sec per LED.