Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2019-03-25
Kim, H., Yun, S., Lee, J., Yi, O..  2018.  Lightweight Mutual Authentication and Key Agreement in IoT Networks and Wireless Sensor Networks Proposal of Authentication and Key Agreement in IoT Network and Sensor Network Using Poor Wireless Communication of Less Than 1 Kbps. 2018 International Conference on Platform Technology and Service (PlatCon). :1–6.

Recently, as the age of the Internet of Things is approaching, there are more and more devices that communicate data with each other by incorporating sensors and communication functions in various objects. If the IoT is miniaturized, it can be regarded as a sensor having only the sensing ability and the low performance communication ability. Low-performance sensors are difficult to use high-quality communication, and wireless security used in expensive wireless communication devices cannot be applied. Therefore, this paper proposes authentication and key Agreement that can be applied in sensor networks using communication with speed less than 1 Kbps and has limited performances.

2019-05-20
Prokofiev, A. O., Smirnova, Y. S., Surov, V. A..  2018.  A method to detect Internet of Things botnets. 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus). :105–108.

The main security problems, typical for the Internet of Things (IoT), as well as the purpose of gaining unauthorized access to the IoT, are considered in this paper. Common characteristics of the most widespread botnets are provided. A method to detect compromised IoT devices included into a botnet is proposed. The method is based on a model of logistic regression. The article describes a developed model of logistic regression which allows to estimate the probability that a device initiating a connection is running a bot. A list of network protocols, used to gain unauthorized access to a device and to receive instructions from common and control (C&C) server, is provided too.

2020-07-16
Lingasubramanian, Karthikeyan, Kumar, Ranveer, Gunti, Nagendra Babu, Morris, Thomas.  2018.  Study of hardware trojans based security vulnerabilities in cyber physical systems. 2018 IEEE International Conference on Consumer Electronics (ICCE). :1—6.

The dependability of Cyber Physical Systems (CPS) solely lies in the secure and reliable functionality of their backbone, the computing platform. Security of this platform is not only threatened by the vulnerabilities in the software peripherals, but also by the vulnerabilities in the hardware internals. Such threats can arise from malicious modifications to the integrated circuits (IC) based computing hardware, which can disable the system, leak information or produce malfunctions. Such modifications to computing hardware are made possible by the globalization of the IC industry, where a computing chip can be manufactured anywhere in the world. In the complex computing environment of CPS such modifications can be stealthier and undetectable. Under such circumstances, design of these malicious modifications, and eventually their detection, will be tied to the functionality and operation of the CPS. So it is imperative to address such threats by incorporating security awareness in the computing hardware design in a comprehensive manner taking the entire system into consideration. In this paper, we present a study in the influence of hardware Trojans on closed-loop systems, which form the basis of CPS, and establish threat models. Using these models, we perform a case study on a critical CPS application, gas pipeline based SCADA system. Through this process, we establish a completely virtual simulation platform along with a hardware-in-the-loop based simulation platform for implementation and testing.

2019-05-01
Ando, Ruo.  2018.  Automated Reduction of Attack Surface Using Call Graph Enumeration. Proceedings of the 2018 2Nd International Conference on Management Engineering, Software Engineering and Service Sciences. :118-121.

There have been many research efforts on detecting vulnerability such as model checking and formal method. However, according to Rice's theorem, checking whether a program contains vulnerable code by static checking is undecidable in general. In this paper, we propose a method of attack surface reduction using enumeration of call graph. Proposal system is divided into two steps: enumerating edge E[Function Fi, Function Fi+1] and constructing call graph by recursive search of [E1, E2, En]. Proposed method enables us to find the sum of paths of which leaf node is vulnerable function VF. Also, root node RF of call graph is part of program which is open to attacker. Therefore, call graph [VF, RF] can be eliminated according the situation where the program is running. We apply proposal method to the real programs (Xen) and extracts the attack surface of CVE-2013-4371. These vulnerabilities are classified into two class: use-after-free and assertion failure. Also, numerical result is shown in searching attack surface of Xen with different search depth of constructing call graph.

Chen, Ming-Hung, Ciou, Jyun-Yan, Chung, I-Hsin, Chou, Cheng-Fu.  2018.  FlexProtect: A SDN-Based DDoS Attack Protection Architecture for Multi-Tenant Data Centers. Proceedings of the International Conference on High Performance Computing in Asia-Pacific Region. :202-209.

With the recent advances in software-defined networking (SDN), the multi-tenant data centers provide more efficient and flexible cloud platform to their subscribers. However, as the number, scale, and diversity of distributed denial-of-service (DDoS) attack is dramatically escalated in recent years, the availability of those platforms is still under risk. We note that the state-of-art DDoS protection architectures did not fully utilize the potential of SDN and network function virtualization (NFV) to mitigate the impact of attack traffic on data center network. Therefore, in this paper, we exploit the flexibility of SDN and NFV to propose FlexProtect, a flexible distributed DDoS protection architecture for multi-tenant data centers. In FlexProtect, the detection virtual network functions (VNFs) are placed near the service provider and the defense VNFs are placed near the edge routers for effectively detection and avoid internal bandwidth consumption, respectively. Based on the architecture, we then propose FP-SYN, an anti-spoofing SYN flood protection mechanism. The emulation and simulation results with real-world data demonstrates that, compared with the traditional approach, the proposed architecture can significantly reduce 46% of the additional routing path and save 60% internal bandwidth consumption. Moreover, the proposed detection mechanism for anti-spoofing can achieve 98% accuracy.

2019-11-12
Dreier, Jannik, Hirschi, Lucca, Radomirovic, Sasa, Sasse, Ralf.  2018.  Automated Unbounded Verification of Stateful Cryptographic Protocols with Exclusive OR. 2018 IEEE 31st Computer Security Foundations Symposium (CSF). :359-373.

Exclusive-or (XOR) operations are common in cryptographic protocols, in particular in RFID protocols and electronic payment protocols. Although there are numerous applications, due to the inherent complexity of faithful models of XOR, there is only limited tool support for the verification of cryptographic protocols using XOR. The Tamarin prover is a state-of-the-art verification tool for cryptographic protocols in the symbolic model. In this paper, we improve the underlying theory and the tool to deal with an equational theory modeling XOR operations. The XOR theory can be freely combined with all equational theories previously supported, including user-defined equational theories. This makes Tamarin the first tool to support simultaneously this large set of equational theories, protocols with global mutable state, an unbounded number of sessions, and complex security properties including observational equivalence. We demonstrate the effectiveness of our approach by analyzing several protocols that rely on XOR, in particular multiple RFID-protocols, where we can identify attacks as well as provide proofs.

2020-11-09
Bose, S., Raikwar, M., Mukhopadhyay, D., Chattopadhyay, A., Lam, K..  2018.  BLIC: A Blockchain Protocol for Manufacturing and Supply Chain Management of ICS. 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :1326–1335.
Blockchain technology has brought a huge paradigm shift in multiple industries, by integrating distributed ledger, smart contracts and consensus protocol under the same roof. Notable applications of blockchain include cryptocurrencies and large-scale multi-party transaction management systems. The latter fits very well into the domain of manufacturing and supply chain management for Integrated Circuits (IC), which, despite several advanced technologies, is vulnerable to malicious practices, such as overproduction, IP piracy and deleterious design modification to gain unfair advantages. To combat these threats, researchers have proposed several ideas like hardware metering, design obfuscation, split manufacturing and watermarking. In this paper, we show, how these issues can be complementarily dealt with using blockchain technology coupled with identity-based encryption and physical unclonable functions, for improved resilience against certain adversarial motives. As part of our proposed blockchain protocol, titled `BLIC', we propose an authentication mechanism to secure both active and passive IC transactions, and a composite consensus protocol designed for IC supply chains. We also present studies on the security, scalability, privacy and anonymity of the BLIC protocol.
2020-06-01
Tang, Yuzhe, Zou, Qiwu, Chen, Ju, Li, Kai, Kamhoua, Charles A., Kwiat, Kevin, Njilla, Laurent.  2018.  ChainFS: Blockchain-Secured Cloud Storage. 2018 IEEE 11th International Conference on Cloud Computing (CLOUD). :987–990.
This work presents ChainFS, a middleware system that secures cloud storage services using a minimally trusted Blockchain. ChainFS hardens the cloud-storage security against forking attacks. The ChainFS middleware exposes a file-system interface to end users. Internally, ChainFS stores data files in the cloud and exports minimal and necessary functionalities to the Blockchain for key distribution and file operation logging. We implement the ChainFS system on Ethereum and S3FS and closely integrate it with FUSE clients and Amazon S3 cloud storage. We measure the system performance and demonstrate low overhead.
2019-03-04
Aborisade, O., Anwar, M..  2018.  Classification for Authorship of Tweets by Comparing Logistic Regression and Naive Bayes Classifiers. 2018 IEEE International Conference on Information Reuse and Integration (IRI). :269–276.

At a time when all it takes to open a Twitter account is a mobile phone, the act of authenticating information encountered on social media becomes very complex, especially when we lack measures to verify digital identities in the first place. Because the platform supports anonymity, fake news generated by dubious sources have been observed to travel much faster and farther than real news. Hence, we need valid measures to identify authors of misinformation to avert these consequences. Researchers propose different authorship attribution techniques to approach this kind of problem. However, because tweets are made up of only 280 characters, finding a suitable authorship attribution technique is a challenge. This research aims to classify authors of tweets by comparing machine learning methods like logistic regression and naive Bayes. The processes of this application are fetching of tweets, pre-processing, feature extraction, and developing a machine learning model for classification. This paper illustrates the text classification for authorship process using machine learning techniques. In total, there were 46,895 tweets used as both training and testing data, and unique features specific to Twitter were extracted. Several steps were done in the pre-processing phase, including removal of short texts, removal of stop-words and punctuations, tokenizing and stemming of texts as well. This approach transforms the pre-processed data into a set of feature vector in Python. Logistic regression and naive Bayes algorithms were applied to the set of feature vectors for the training and testing of the classifier. The logistic regression based classifier gave the highest accuracy of 91.1% compared to the naive Bayes classifier with 89.8%.

2019-02-21
Aranha, Claus, Junior, Jair Pereira, Kanoh, Hitoshi.  2018.  Comparative study on discrete SI approaches to the graph coloring problem. :81–82.

The Graph Coloring Problem is an important benchmark problem for decision and discrete optimization problems. In this work, we perform a comparative experimental study of four algorithms based on Swarm Intelligence for the 3-Graph Coloring Problem: Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Cuckoo Search (CS) and FireFly Algorithm (FFA). For each algorithm, we test parameter settings published in the literature, as well as parameters found by an automated tuning methodology (irace). This comparison may shed some light at the strengths and weaknesses of each algorithm, as well as their dependence on parameter values.

2020-07-30
Shey, James, Karimi, Naghmeh, Robucci, Ryan, Patel, Chintan.  2018.  Design-Based Fingerprinting Using Side-Channel Power Analysis for Protection Against IC Piracy. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :614—619.

Intellectual property (IP) and integrated circuit (IC) piracy are of increasing concern to IP/IC providers because of the globalization of IC design flow and supply chains. Such globalization is driven by the cost associated with the design, fabrication, and testing of integrated circuits and allows avenues for piracy. To protect the designs against IC piracy, we propose a fingerprinting scheme based on side-channel power analysis and machine learning methods. The proposed method distinguishes the ICs which realize a modified netlist, yet same functionality. Our method doesn't imply any hardware overhead. We specifically focus on the ability to detect minimal design variations, as quantified by the number of logic gates changed. Accuracy of the proposed scheme is greater than 96 percent, and typically 99 percent in detecting one or more gate-level netlist changes. Additionally, the effect of temperature has been investigated as part of this work. Results depict 95.4 percent accuracy in detecting the exact number of gate changes when data and classifier use the same temperature, while training with different temperatures results in 33.6 percent accuracy. This shows the effectiveness of building temperature-dependent classifiers from simulations at known operating temperatures.

2019-03-25
Li, Y., Guan, Z., Xu, C..  2018.  Digital Image Self Restoration Based on Information Hiding. 2018 37th Chinese Control Conference (CCC). :4368–4372.
With the rapid development of computer networks, multimedia information is widely used, and the security of digital media has drawn much attention. The revised photo as a forensic evidence will distort the truth of the case badly tampered pictures on the social network can have a negative impact on the parties as well. In order to ensure the authenticity and integrity of digital media, self-recovery of digital images based on information hiding is studied in this paper. Jarvis half-tone change is used to compress the digital image and obtain the backup data, and then spread the backup data to generate the reference data. Hash algorithm aims at generating hash data by calling reference data and original data. Reference data and hash data together as a digital watermark scattered embedded in the digital image of the low-effective bits. When the image is maliciously tampered with, the hash bit is used to detect and locate the tampered area, and the image self-recovery is performed by extracting the reference data hidden in the whole image. In this paper, a thorough rebuild quality assessment of self-healing images is performed and better performance than the traditional DCT(Discrete Cosine Transform)quantization truncation approach is achieved. Regardless of the quality of the tampered content, a reference authentication system designed according to the principles presented in this paper allows higher-quality reconstruction to recover the original image with good quality even when the large area of the image is tampered.
2020-04-24
Vazquez Sandoval, Itzel, Lenzini, Gabriele.  2018.  Experience Report: How to Extract Security Protocols' Specifications from C Libraries. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 02:719—724.

Often, analysts have to face a challenging situation when formally verifying the implementation of a security protocol: they need to build a model of the protocol from only poorly or not documented code, and with little or no help from the developers to better understand it. Security protocols implementations frequently use services provided by libraries coded in the C programming language; automatic tools for codelevel reverse engineering offer good support to comprehend the behavior of code in object-oriented languages but are ineffective to deal with libraries in C. Here we propose a systematic, yet human-dependent approach, which combines the capabilities of state-of-the-art tools in order to help the analyst to retrieve, step by step, the security protocol specifications from a library in C. Those specifications can then be used to create the formal model needed to carry out the analysis.

Ogale, Pushkar, Shin, Michael, Abeysinghe, Sasanka.  2018.  Identifying Security Spots for Data Integrity. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 02:462—467.

This paper describes an approach to detecting malicious code introduced by insiders, which can compromise the data integrity in a program. The approach identifies security spots in a program, which are either malicious code or benign code. Malicious code is detected by reviewing each security spot to determine whether it is malicious or benign. The integrity breach conditions (IBCs) for object-oriented programs are specified to identify security spots in the programs. The IBCs are specified by means of the concepts of coupling within an object or between objects. A prototype tool is developed to validate the approach with a case study.

2019-09-30
Kim, Seung-Wook, Park, Sun Young, Han, Junghyun.  2018.  Magnetization Dynamics for Magnetic Object Interactions. ACM Trans. Graph.. 37:121:1–121:13.
The goal of this paper is to simulate the interactions between magnetic objects in a physically correct way. The simulation scheme is based on magnetization dynamics, which describes the temporal change of magnetic moments. For magnetization dynamics, the Landau-Lifshitz-Gilbert equation is adopted, which is widely used in micromagnetics. Through effectively-designed novel models of magnets, it is extended into the macro scale so as to be combined with real-time rigid-body dynamics. The overall simulation is stable and enables us to implement mutual induction and remanence that have not been tackled by the state-of-the-art technique in magnet simulation. The proposed method can be applied to various fields including magnet experiments in the virtual world.
2020-11-09
Patooghy, A., Aerabi, E., Rezaei, H., Mark, M., Fazeli, M., Kinsy, M. A..  2018.  Mystic: Mystifying IP Cores Using an Always-ON FSM Obfuscation Method. 2018 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). :626–631.
The separation of manufacturing and design processes in the integrated circuit industry to tackle the ever increasing circuit complexity and time to market issues has brought with it some major security challenges. Chief among them is IP piracy by untrusted parties. Hardware obfuscation which locks the functionality and modifies the structure of an IP core to protect it from malicious modifications or piracy has been proposed as a solution. In this paper, we develop an efficient hardware obfuscation method, called Mystic (Mystifying IP Cores), to protect IP cores from reverse engineering, IP overproduction, and IP piracy. The key idea behind Mystic is to add additional state transitions to the original/functional FSM (Finite State Machine) that are taken only when incorrect keys are applied to the circuit. Using the proposed Mystic obfuscation approach, the underlying functionality of the IP core is locked and normal FSM transitions are only available to authorized chip users. The synthesis results of ITC99 circuit benchmarks for ASIC 45nm technology reveal that the Mystic protection method imposes on average 5.14% area overhead, 5.21% delay overhead, and 8.06% power consumption overheads while it exponentially lowers the probability that an unauthorized user will gain access to or derive the chip functionality.
2019-03-25
Son, W., Jung, B. C., Kim, C., Kim, J. M..  2018.  Pseudo-Random Beamforming with Beam Selection for Improving Physical-Layer Security. 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN). :382–384.
In this paper, we propose a novel pseudo-random beamforming technique with beam selection for improving physical-layer security (PLS) in a downlink cellular network where consists of a base station (BS) with Ntantennas, NMSlegitimate mobile stations (MSs), and NEeavesdroppers. In the proposed technique, the BS generates multiple candidates of beamforming matrix each of which consists of orthogonal beamforming vectors in a pseudo-random manner. Each legitimate MS opportunistically feeds back the received signal-to-interference-and-noise ratio (SINR) value for all beamforming vectors to the BS. The BS transmits data to the legitimate MSs with the optimal beamforming matrix among multiple beam forming matrices that maximizes the secrecy sum-rate. Simulation results show that the proposed technique outperforms the conventional random beamforming technique in terms of the achievable secrecy sum-rate.
2020-07-27
Zheng, Junjun, Okamura, Hiroyuki, Dohi, Tadashi.  2018.  A Pull-Type Security Patch Management of an Intrusion Tolerant System Under a Periodic Vulnerability Checking Strategy. 2018 IEEE 42nd Annual Computer Software and Applications Conference (COMPSAC). 01:630–635.
In this paper, we consider a stochastic model to evaluate the system availability of an intrusion tolerant system (ITS), where the system undergoes the patch management with a periodic vulnerability checking strategy, i.e., a pull-type patch management. Based on the model, this paper discusses the appropriate timing for patch applying. In particular, the paper models the attack behavior of adversary and the system behaviors under reactive defense strategies by a composite stochastic reward net (SRN). Furthermore, we formulate the interval availability by applying the phase-type (PH) approximation to solve the Markov regenerative process (MRGP) models derived from the SRNs. Numerical experiments are conducted to study the sensitivity of the system availability with respect to the number of checking.
2019-02-21
Bi, Q., Huang, Y..  2018.  A Self-organized Shape Formation Method for Swarm Controlling. 2018 37th Chinese Control Conference (CCC). :7205–7209.
This paper presents a new approach for the shape formation based on the artificial method. It refers to the basic concept in the swarm intelligence: complex behaviors of the swarm can be formed with simple rules designed in the agents. In the framework, the distance image is used to generate not only an attraction field to keep all the agents in the given shape, but also repulsive force field among the agents to make them distribute uniformly. Compared to the traditional methods based on centralized control, the algorithm has properties of distributed and simple computation, convergence and robustness, which is very suitable for the swarm robots in the real world considering the limitation of communication, collision avoidance and calculation problems. We also show that some initial sensitive method can be improved in the similar way. The simulation results prove the proposed approach is suitable for convex. non-convex and line shapes.
2019-04-01
Zhang, T., Zheng, H., Zhang, L..  2018.  Verification CAPTCHA Based on Deep Learning. 2018 37th Chinese Control Conference (CCC). :9056–9060.
At present, the captcha is widely used in the Internet. The method of captcha recognition using the convolutional neural networks was introduced in this paper. It was easier to apply the convolution neural network model of simple training to segment the captcha, and the network structure was established imitating VGGNet model. and the correct rate can be reached more than 90%. For the more difficult segmentation captcha, it can be used the end-to-end thought to the captcha as a whole to training, In this way, the recognition rate of the more difficult segmentation captcha can be reached about 85%.
2020-12-01
Kalyanaraman, A., Halappanavar, M..  2018.  Guest Editorial: Advances in Parallel Graph Processing: Algorithms, Architectures, and Application Frameworks. IEEE Transactions on Multi-Scale Computing Systems. 4:188—189.

The papers in this special section explore recent advancements in parallel graph processing. In the sphere of modern data science and data-driven applications, graph algorithms have achieved a pivotal place in advancing the state of scientific discovery and knowledge. Nearly three centuries of ideas have made graph theory and its applications a mature area in computational sciences. Yet, today we find ourselves at a crossroads between theory and application. Spurred by the digital revolution, data from a diverse range of high throughput channels and devices, from across internet-scale applications, are starting to mark a new era in data-driven computing and discovery. Building robust graph models and implementing scalable graph application frameworks in the context of this new era are proving to be significant challenges. Concomitant to the digital revolution, we have also experienced an explosion in computing architectures, with a broad range of multicores, manycores, heterogeneous platforms, and hardware accelerators (CPUs, GPUs) being actively developed and deployed within servers and multinode clusters. Recent advances have started to show that in more than one way, these two fields—graph theory and architectures–are capable of benefiting and in fact spurring new research directions in one another. This special section is aimed at introducing some of the new avenues of cutting-edge research happening at the intersection of graph algorithm design and their implementation on advanced parallel architectures.

Li, W., Guo, D., Li, K., Qi, H., Zhang, J..  2018.  iDaaS: Inter-Datacenter Network as a Service. IEEE Transactions on Parallel and Distributed Systems. 29:1515—1529.

Increasing number of Internet-scale applications, such as video streaming, incur huge amount of wide area traffic. Such traffic over the unreliable Internet without bandwidth guarantee suffers unpredictable network performance. This result, however, is unappealing to the application providers. Fortunately, Internet giants like Google and Microsoft are increasingly deploying their private wide area networks (WANs) to connect their global datacenters. Such high-speed private WANs are reliable, and can provide predictable network performance. In this paper, we propose a new type of service-inter-datacenter network as a service (iDaaS), where traditional application providers can reserve bandwidth from those Internet giants to guarantee their wide area traffic. Specifically, we design a bandwidth trading market among multiple iDaaS providers and application providers, and concentrate on the essential bandwidth pricing problem. The involved challenging issue is that the bandwidth price of each iDaaS provider is not only influenced by other iDaaS providers, but also affected by the application providers. To address this issue, we characterize the interaction between iDaaS providers and application providers using a Stackelberg game model, and analyze the existence and uniqueness of the equilibrium. We further present an efficient bandwidth pricing algorithm by blending the advantage of a geometrical Nash bargaining solution and the demand segmentation method. For comparison, we present two bandwidth reservation algorithms, where each iDaaS provider's bandwidth is reserved in a weighted fair manner and a max-min fair manner, respectively. Finally, we conduct comprehensive trace-driven experiments. The evaluation results show that our proposed algorithms not only ensure the revenue of iDaaS providers, but also provide bandwidth guarantee for application providers with lower bandwidth price per unit.

2019-12-09
Nozaki, Yusuke, Yoshikawa, Masaya.  2018.  Area Constraint Aware Physical Unclonable Function for Intelligence Module. 2018 3rd International Conference on Computational Intelligence and Applications (ICCIA). :205-209.

Artificial intelligence technology such as neural network (NN) is widely used in intelligence module for Internet of Things (IoT). On the other hand, the risk of illegal attacks for IoT devices is pointed out; therefore, security countermeasures such as an authentication are very important. In the field of hardware security, the physical unclonable functions (PUFs) have been attracted attention as authentication techniques to prevent the semiconductor counterfeits. However, implementation of the dedicated hardware for both of NN and PUF increases circuit area. Therefore, this study proposes a new area constraint aware PUF for intelligence module. The proposed PUF utilizes the propagation delay time from input layer to output layer of NN. To share component for operation, the proposed PUF reduces the circuit area. Experiments using a field programmable gate array evaluate circuit area and PUF performance. In the result of circuit area, the proposed PUF was smaller than the conventional PUFs was showed. Then, in the PUF performance evaluation, for steadiness, diffuseness, and uniqueness, favorable results were obtained.

2018-12-10
Ndichu, S., Ozawa, S., Misu, T., Okada, K..  2018.  A Machine Learning Approach to Malicious JavaScript Detection using Fixed Length Vector Representation. 2018 International Joint Conference on Neural Networks (IJCNN). :1–8.

To add more functionality and enhance usability of web applications, JavaScript (JS) is frequently used. Even with many advantages and usefulness of JS, an annoying fact is that many recent cyberattacks such as drive-by-download attacks exploit vulnerability of JS codes. In general, malicious JS codes are not easy to detect, because they sneakily exploit vulnerabilities of browsers and plugin software, and attack visitors of a web site unknowingly. To protect users from such threads, the development of an accurate detection system for malicious JS is soliciting. Conventional approaches often employ signature and heuristic-based methods, which are prone to suffer from zero-day attacks, i.e., causing many false negatives and/or false positives. For this problem, this paper adopts a machine-learning approach to feature learning called Doc2Vec, which is a neural network model that can learn context information of texts. The extracted features are given to a classifier model (e.g., SVM and neural networks) and it judges the maliciousness of a JS code. In the performance evaluation, we use the D3M Dataset (Drive-by-Download Data by Marionette) for malicious JS codes and JSUPACK for benign ones for both training and test purposes. We then compare the performance to other feature learning methods. Our experimental results show that the proposed Doc2Vec features provide better accuracy and fast classification in malicious JS code detection compared to conventional approaches.

2020-04-24
Yang, Yi, Xu, Wei, Wang, Sixin, Wei, Kunlun.  2018.  Modeling and Analysis of CPS Availability Based on the Object-oriented Timed Petri Nets. 2018 37th Chinese Control Conference (CCC). :6172—6177.

Cyber-Physical Systems (CPS) is mostly deployed in security-critical applications where their failures can cause serious consequences, and therefore it is critical to evaluate its availability. In this paper, an architecture model of CPS is established from the perspective of object-oriented system. The system is a unified whole formed by various independent objects (including sensors, controllers and actuators) through communication connection. Then the paper presents the Object-oriented Timed Petri Net to model the system. The modeling method can be used to describe the whole system and the characteristics of the object. At the same time, the availability analysis of the system is carried out by using the mathematical analysis method and simulation tool of Petri net. Finally, a concrete case is given to verify the feasibility of the modeling method in CPS availability analysis.