Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2020-12-01
Shahriar, M. R., Sunny, S. M. N. A., Liu, X., Leu, M. C., Hu, L., Nguyen, N..  2018.  MTComm Based Virtualization and Integration of Physical Machine Operations with Digital-Twins in Cyber-Physical Manufacturing Cloud. 2018 5th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/2018 4th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). :46—51.

Digital-Twins simulate physical world objects by creating 'as-is' virtual images in a cyberspace. In order to create a well synchronized digital-twin simulator in manufacturing, information and activities of a physical machine need to be virtualized. Many existing digital-twins stream read-only data of machine sensors and do not incorporate operations of manufacturing machines through Internet. In this paper, a new method of virtualization is proposed to integrate machining data and operations into the digital-twins using Internet scale machine tool communication method. A fully functional digital-twin is implemented in CPMC testbed using MTComm and several manufacturing application scenarios are developed to evaluate the proposed method and system. Performance analysis shows that it is capable of providing data-driven visual monitoring of a manufacturing process and performing manufacturing operations through digital twins over the Internet. Results of the experiments also shows that the MTComm based digital twins have an excellent efficiency.

2019-03-28
Costantino, G., Marra, A. La, Martinelli, F., Mori, P., Saracino, A..  2018.  Privacy Preserving Distributed Computation of Private Attributes for Collaborative Privacy Aware Usage Control Systems. 2018 IEEE International Conference on Smart Computing (SMARTCOMP). :315-320.

Collaborative smart services provide functionalities which exploit data collected from different sources to provide benefits to a community of users. Such data, however, might be privacy sensitive and their disclosure has to be avoided. In this paper, we present a distributed multi-tier framework intended for smart-environment management, based on usage control for policy evaluation and enforcement on devices belonging to different collaborating entities. The proposed framework exploits secure multi-party computation to evaluate policy conditions without disclosing actual value of evaluated attributes, to preserve privacy. As reference example, a smart-grid use case is presented.

2020-07-16
Bovo, Cristian, Ilea, Valentin, Rolandi, Claudio.  2018.  A Security-Constrained Islanding Feasibility Optimization Model in the Presence of Renewable Energy Sources. 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). :1—6.

The massive integration of Renewable Energy Sources (RES) into power systems is a major challenge but it also provides new opportunities for network operation. For example, with a large amount of RES available at HV subtransmission level, it is possible to exploit them as controlling resources in islanding conditions. Thus, a procedure for off-line evaluation of islanded operation feasibility in the presence of RES is proposed. The method finds which generators and loads remain connected after islanding to balance the island's real power maximizing the amount of supplied load and assuring the network's long-term security. For each possible islanding event, the set of optimal control actions (load/generation shedding) to apply in case of actual islanding, is found. The procedure is formulated as a Mixed Integer Non-Linear Problem (MINLP) and is solved using Genetic Algorithms (GAs). Results, including dynamic simulations, are shown for a representative HV subtransmission grid.

2019-03-06
Calo, Seraphin, Verma, Dinesh, Chakraborty, Supriyo, Bertino, Elisa, Lupu, Emil, Cirincione, Gregory.  2018.  Self-Generation of Access Control Policies. Proceedings of the 23Nd ACM on Symposium on Access Control Models and Technologies. :39-47.

Access control for information has primarily focused on access statically granted to subjects by administrators usually in the context of a specific system. Even if mechanisms are available for access revocation, revocations must still be executed manually by an administrator. However, as physical devices become increasingly embedded and interconnected, access control needs to become an integral part of the resource being protected and be generated dynamically by resources depending on the context in which the resource is being used. In this paper, we discuss a set of scenarios for access control needed in current and future systems and use that to argue that an approach for resources to generate and manage their access control policies dynamically on their own is needed. We discuss some approaches for generating such access control policies that may address the requirements of the scenarios.

2020-05-11
Üzüm, İbrahim, Can, Özgü.  2018.  An anomaly detection approach for enterprise file integration. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–4.
An information system based on real-time file integrations has an important role in today's organizations' work process management. By connecting to the network, file flow and integration between corporate systems have gained a great significance. In addition, network and security issues have emerged depending on the file structure and transfer processes. Thus, there has become a need for an effective and self-learning anomaly detection module for file transfer processes in order to provide the persistence of integration channels, accountability of transfer logs and data integrity. This paper proposes a novel anomaly detection approach that focuses on file size and integration duration of file transfers between enterprise systems. For this purpose, size and time anomalies on transferring files will be detected by a machine learning-based structure. Later, an alarm system is going to be developed in order to inform the authenticated individuals about the anomalies.
2019-01-16
Shi, T., Shi, W., Wang, C., Wang, Z..  2018.  Compressed Sensing based Intrusion Detection System for Hybrid Wireless Mesh Networks. 2018 International Conference on Computing, Networking and Communications (ICNC). :11–15.
As wireless mesh networks (WMNs) develop rapidly, security issue becomes increasingly important. Intrusion Detection System (IDS) is one of the crucial ways to detect attacks. However, IDS in wireless networks including WMNs brings high detection overhead, which degrades network performance. In this paper, we apply compressed sensing (CS) theory to IDS and propose a CS based IDS for hybrid WMNs. Since CS can reconstruct a sparse signal with compressive sampling, we process the detected data and construct sparse original signals. Through reconstruction algorithm, the compressive sampled data can be reconstructed and used for detecting intrusions, which reduces the detection overhead. We also propose Active State Metric (ASM) as an attack metric for recognizing attacks, which measures the activity in PHY layer and energy consumption of each node. Through intensive simulations, the results show that under 50% attack density, our proposed IDS can ensure 95% detection rate while reducing about 40% detection overhead on average.
2019-03-04
Laverdière, M., Merlo, E..  2018.  Detection of protection-impacting changes during software evolution. 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering (SANER). :434–444.

Role-Based Access Control (RBAC) is often used in web applications to restrict operations and protect security sensitive information and resources. Web applications regularly undergo maintenance and evolution and their security may be affected by source code changes between releases. To prevent security regression and vulnerabilities, developers have to take re-validation actions before deploying new releases. This may become a significant undertaking, especially when quick and repeated releases are sought. We define protection-impacting changes as those changed statements during evolution that alter privilege protection of some code. We propose an automated method that identifies protection-impacting changes within all changed statements between two versions. The proposed approach compares statically computed security protection models and repository information corresponding to different releases of a system to identify protection-impacting changes. Results of experiments present the occurrence of protection-impacting changes over 210 release pairs of WordPress, a PHP content management web application. First, we show that only 41% of the release pairs present protection-impacting changes. Second, for these affected release pairs, protection-impacting changes can be identified and represent a median of 47.00 lines of code, that is 27.41% of the total changed lines of code. Over all investigated releases in WordPress, protection-impacting changes amounted to 10.89% of changed lines of code. Conversely, an average of about 89% of changed source code have no impact on RBAC security and thus need no re-validation nor investigation. The proposed method reduces the amount of candidate causes of protection changes that developers need to investigate. This information could help developers re-validate application security, identify causes of negative security changes, and perform repairs in a more effective way.

2019-03-11
Siddiqui, F., Hagan, M., Sezer, S..  2018.  Embedded policing and policy enforcement approach for future secure IoT technologies. Living in the Internet of Things: Cybersecurity of the IoT - 2018. :1–10.

The Internet of Things (IoT) holds great potential for productivity, quality control, supply chain efficiencies and overall business operations. However, with this broader connectivity, new vulnerabilities and attack vectors are being introduced, increasing opportunities for systems to be compromised by hackers and targeted attacks. These vulnerabilities pose severe threats to a myriad of IoT applications within areas such as manufacturing, healthcare, power and energy grids, transportation and commercial building management. While embedded OEMs offer technologies, such as hardware Trusted Platform Module (TPM), that deploy strong chain-of-trust and authentication mechanisms, still they struggle to protect against vulnerabilities introduced by vendors and end users, as well as additional threats posed by potential technical vulnerabilities and zero-day attacks. This paper proposes a pro-active policy-based approach, enforcing the principle of least privilege, through hardware Security Policy Engine (SPE) that actively monitors communication of applications and system resources on the system communication bus (ARM AMBA-AXI4). Upon detecting a policy violation, for example, a malicious application accessing protected storage, it counteracts with predefined mitigations to limit the attack. The proposed SPE approach widely complements existing embedded hardware and software security technologies, targeting the mitigation of risks imposed by unknown vulnerabilities of embedded applications and protocols.

2019-02-13
Carpent, X., Tsudik, G., Rattanavipanon, N..  2018.  ERASMUS: Efficient remote attestation via self-measurement for unattended settings. 2018 Design, Automation Test in Europe Conference Exhibition (DATE). :1191–1194.
Remote attestation (RA) is a popular means of detecting malware in embedded and IoT devices. RA is usually realized as a protocol via which a trusted verifier measures software integrity of an untrusted remote device called prover. All prior RA techniques require on-demand operation. We identify two drawbacks of this approach in the context of unattended devices: First, it fails to detect mobile malware that enters and leaves the prover between successive RA instances. Second, it requires the prover to engage in a potentially expensive computation, which can negatively impact safety-critical or real-time devices. To this end, we introduce the concept of self-measurement whereby a prover periodically (and securely) measures and records its own software state. A verifier then collects and verifies these measurements. We demonstrate a concrete technique called ERASMUS, justify its features, and evaluate its performance. We show that ERASMUS is well-suited for safety-critical applications. We also define a new metric - Quality of Attestation (QoA).
2019-02-21
Xie, S., Wang, G..  2018.  Optimization of parallel turnings using particle swarm intelligence. 2018 Tenth International Conference on Advanced Computational Intelligence (ICACI). :230–234.
Machining process parameters optimization is of concern in machining fields considering machining cost factor. In order to solve the optimization problem of machining process parameters in parallel turning operations, which aims to reduce the machining cost, two PSO-based optimization approaches are proposed in this paper. According to the divide-and-conquer idea, the problem is divided into some similar sub-problems. A particle swarm optimization then is derived to conquer each sub-problem to find the optimal results. Simulations show that, comparing to other optimization approaches proposed previously, the proposed two PSO-based approaches can get optimal machining parameters to reduce both the machining cost (UC) and the computation time.
2019-10-08
Arslan, B., Ulker, M., Akleylek, S., Sagiroglu, S..  2018.  A Study on the Use of Quantum Computers, Risk Assessment and Security Problems. 2018 6th International Symposium on Digital Forensic and Security (ISDFS). :1–6.

In the computer based solutions of the problems in today's world; if the problem has a high complexity value, different requirements can be addressed such as necessity of simultaneous operation of many computers, the long processing times for the operation of algorithms, and computers with hardware features that can provide high performance. For this reason, it is inevitable to use a computer based on quantum physics in the near future in order to make today's cryptosystems unsafe, search the servers and other information storage centers on internet very quickly, solve optimization problems in the NP-hard category with a very wide solution space and analyze information on large-scale data processing and to process high-resolution image for artificial intelligence applications. In this study, an examination of quantum approaches and quantum computers, which will be widely used in the near future, was carried out and the areas in which such innovation can be used was evaluated. Malicious or non-malicious use of quantum computers with this capacity, the advantages and disadvantages of the high performance which it provides were examined under the head of security, the effect of this recent technology on the existing security systems was investigated.

2019-02-08
Fang, Yong, Li, Yang, Liu, Liang, Huang, Cheng.  2018.  DeepXSS: Cross Site Scripting Detection Based on Deep Learning. Proceedings of the 2018 International Conference on Computing and Artificial Intelligence. :47-51.

Nowadays, Cross Site Scripting (XSS) is one of the major threats to Web applications. Since it's known to the public, XSS vulnerability has been in the TOP 10 Web application vulnerabilities based on surveys published by the Open Web Applications Security Project (OWASP). How to effectively detect and defend XSS attacks are still one of the most important security issues. In this paper, we present a novel approach to detect XSS attacks based on deep learning (called DeepXSS). First of all, we used word2vec to extract the feature of XSS payloads which captures word order information and map each payload to a feature vector. And then, we trained and tested the detection model using Long Short Term Memory (LSTM) recurrent neural networks. Experimental results show that the proposed XSS detection model based on deep learning achieves a precision rate of 99.5% and a recall rate of 97.9% in real dataset, which means that the novel approach can effectively identify XSS attacks.

2020-12-01
Yang, R., Ouyang, X., Chen, Y., Townend, P., Xu, J..  2018.  Intelligent Resource Scheduling at Scale: A Machine Learning Perspective. 2018 IEEE Symposium on Service-Oriented System Engineering (SOSE). :132—141.

Resource scheduling in a computing system addresses the problem of packing tasks with multi-dimensional resource requirements and non-functional constraints. The exhibited heterogeneity of workload and server characteristics in Cloud-scale or Internet-scale systems is adding further complexity and new challenges to the problem. Compared with,,,, existing solutions based on ad-hoc heuristics, Machine Learning (ML) has the potential to improve further the efficiency of resource management in large-scale systems. In this paper we,,,, will describe and discuss how ML could be used to understand automatically both workloads and environments, and to help to cope with scheduling-related challenges such as consolidating co-located workloads, handling resource requests, guaranteeing application's QoSs, and mitigating tailed stragglers. We will introduce a generalized ML-based solution to large-scale resource scheduling and demonstrate its effectiveness through a case study that deals with performance-centric node classification and straggler mitigation. We believe that an MLbased method will help to achieve architectural optimization and efficiency improvement.

2020-07-16
Mace, J.C., Morisset, C., Pierce, K., Gamble, C., Maple, C., Fitzgerald, J..  2018.  A multi-modelling based approach to assessing the security of smart buildings. Living in the Internet of Things: Cybersecurity of the IoT – 2018. :1—10.

Smart buildings are controlled by multiple cyber-physical systems that provide critical services such as heating, ventilation, lighting and access control. These building systems are becoming increasingly vulnerable to both cyber and physical attacks. We introduce a multi-model methodology for assessing the security of these systems, which utilises INTO-CPS, a suite of modelling, simulation, and analysis tools for designing cyber-physical systems. Using a fan coil unit case study we show how its security can be systematically assessed when subjected to Man-in-the-Middle attacks on the data connections between system components. We suggest our methodology would enable building managers and security engineers to design attack countermeasures and refine their effectiveness.

2018-12-10
Ross, Kevin, Moh, Melody, Moh, Teng-Sheng, Yao, Jason.  2018.  Multi-source Data Analysis and Evaluation of Machine Learning Techniques for SQL Injection Detection. Proceedings of the ACMSE 2018 Conference. :1:1–1:8.

SQL Injection continues to be one of the most damaging security exploits in terms of personal information exposure as well as monetary loss. Injection attacks are the number one vulnerability in the most recent OWASP Top 10 report, and the number of these attacks continues to increase. Traditional defense strategies often involve static, signature-based IDS (Intrusion Detection System) rules which are mostly effective only against previously observed attacks but not unknown, or zero-day, attacks. Much current research involves the use of machine learning techniques, which are able to detect unknown attacks, but depending on the algorithm can be costly in terms of performance. In addition, most current intrusion detection strategies involve collection of traffic coming into the web application either from a network device or from the web application host, while other strategies collect data from the database server logs. In this project, we are collecting traffic from two points: at the web application host, and at a Datiphy appliance node located between the webapp host and the associated MySQL database server. In our analysis of these two datasets, and another dataset that is correlated between the two, we have been able to demonstrate that accuracy obtained with the correlated dataset using algorithms such as rule-based and decision tree are nearly the same as those with a neural network algorithm, but with greatly improved performance.

2019-01-16
Carlini, N., Wagner, D..  2018.  Audio Adversarial Examples: Targeted Attacks on Speech-to-Text. 2018 IEEE Security and Privacy Workshops (SPW). :1–7.
We construct targeted audio adversarial examples on automatic speech recognition. Given any audio waveform, we can produce another that is over 99.9% similar, but transcribes as any phrase we choose (recognizing up to 50 characters per second of audio). We apply our white-box iterative optimization-based attack to Mozilla's implementation DeepSpeech end-to-end, and show it has a 100% success rate. The feasibility of this attack introduce a new domain to study adversarial examples.
2019-08-05
Pan, G., He, J., Wu, Q., Fang, R., Cao, J., Liao, D..  2018.  Automatic stabilization of Zigbee network. 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD). :224–227.

We present an intelligent system that focus on how to ensure the stability of ZigBee network automatically. First, we discussed on the character of ZigBee compared with WIFI. Pointed out advantage of ZigBee resides in security, stability, low power consumption and better expandability. Second, figuring out the shortcomings of ZigBee on application is that physical limitation of the frequency band and weak ability on diffraction, especially coming across a wall or a door in the actual environment of home. The third, to put forward a method which can be used to ensure the strength of ZigBee signal. The method is to detect the strength of ZigBee relay in advance. And then, to compare it with the threshold value which had been defined in previous. The threshold value of strength of ZigBee is the minimal and tolerable value which can ensure stable transmission of ZigBee. If the detected value is out of the range of threshold, system will prompt up warning message which can be used to hint user to add ZigBee reply between the original ZigBee node and ZigBee gateway.

2019-04-01
Wang, M., Yang, Y., Zhu, M., Liu, J..  2018.  CAPTCHA Identification Based on Convolution Neural Network. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :364–368.
The CAPTCHA is an effective method commonly used in live interactive proofs on the Internet. The widely used CAPTCHAs are text-based schemes. In this paper, we document how we have broken such text-based scheme used by a website CAPTCHA. We use the sliding window to segment 1001 pieces of CAPTCHA to get 5900 images with single-character useful information, a total of 25 categories. In order to make the convolution neural network learn more image features, we augmented the data set to get 129924 pictures. The data set is trained and tested in AlexNet and GoogLeNet to get the accuracy of 87.45% and 98.92%, respectively. The experiment shows that the optimized network parameters can make the accuracy rate up to 92.7% in AlexNet and 98.96% in GoogLeNet.
Hu, Y., Chen, L., Cheng, J..  2018.  A CAPTCHA recognition technology based on deep learning. 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA). :617–620.
Completely Automated Public Turing Test to Tell Computers and Humans Apart (CAPTCHA) is an important human-machine distinction technology for website to prevent the automatic malicious program attack. CAPTCHA recognition studies can find security breaches in CAPTCHA, improve CAPTCHA technology, it can also promote the technologies of license plate recognition and handwriting recognition. This paper proposed a method based on Convolutional Neural Network (CNN) model to identify CAPTCHA and avoid the traditional image processing technology such as location and segmentation. The adaptive learning rate is introduced to accelerate the convergence rate of the model, and the problem of over-fitting and local optimal solution has been solved. The multi task joint training model is used to improve the accuracy and generalization ability of model recognition. The experimental results show that the model has a good recognition effect on CAPTCHA with background noise and character adhesion distortion.
2019-05-01
Li, P., Liu, Q., Zhao, W., Wang, D., Wang, S..  2018.  Chronic Poisoning against Machine Learning Based IDSs Using Edge Pattern Detection. 2018 IEEE International Conference on Communications (ICC). :1-7.

In big data era, machine learning is one of fundamental techniques in intrusion detection systems (IDSs). Poisoning attack, which is one of the most recognized security threats towards machine learning- based IDSs, injects some adversarial samples into the training phase, inducing data drifting of training data and a significant performance decrease of target IDSs over testing data. In this paper, we adopt the Edge Pattern Detection (EPD) algorithm to design a novel poisoning method that attack against several machine learning algorithms used in IDSs. Specifically, we propose a boundary pattern detection algorithm to efficiently generate the points that are near to abnormal data but considered to be normal ones by current classifiers. Then, we introduce a Batch-EPD Boundary Pattern (BEBP) detection algorithm to overcome the limitation of the number of edge pattern points generated by EPD and to obtain more useful adversarial samples. Based on BEBP, we further present a moderate but effective poisoning method called chronic poisoning attack. Extensive experiments on synthetic and three real network data sets demonstrate the performance of the proposed poisoning method against several well-known machine learning algorithms and a practical intrusion detection method named FMIFS-LSSVM-IDS.

2019-03-28
Llopis, S., Hingant, J., Pérez, I., Esteve, M., Carvajal, F., Mees, W., Debatty, T..  2018.  A Comparative Analysis of Visualisation Techniques to Achieve Cyber Situational Awareness in the Military. 2018 International Conference on Military Communications and Information Systems (ICMCIS). :1-7.
Starting from a common fictional scenario, simulated data sources and a set of measurements will feed two different visualization techniques with the aim to make a comparative analysis. Both visualization techniques described in this paper use the operational picture concept, deemed as the most appropriate tool for military commanders and their staff to achieve cyber situational awareness and to understand the cyber defence implications in operations. Cyber Common Operational Picture (CyCOP) is a tool developed by Universitat Politècnica de València in collaboration with the Spanish Ministry of Defence whose objective is to generate the Cyber Hybrid Situational Awareness (CyHSA). Royal Military Academy in Belgium developed a 3D Operational Picture able to display mission critical elements intuitively using a priori defined domain-knowledge. A comparative analysis will assist researchers in their way to progress solutions and implementation aspects.
2019-10-14
Koo, H., Chen, Y., Lu, L., Kemerlis, V. P., Polychronakis, M..  2018.  Compiler-Assisted Code Randomization. 2018 IEEE Symposium on Security and Privacy (SP). :461–477.

Despite decades of research on software diversification, only address space layout randomization has seen widespread adoption. Code randomization, an effective defense against return-oriented programming exploits, has remained an academic exercise mainly due to i) the lack of a transparent and streamlined deployment model that does not disrupt existing software distribution norms, and ii) the inherent incompatibility of program variants with error reporting, whitelisting, patching, and other operations that rely on code uniformity. In this work we present compiler-assisted code randomization (CCR), a hybrid approach that relies on compiler-rewriter cooperation to enable fast and robust fine-grained code randomization on end-user systems, while maintaining compatibility with existing software distribution models. The main concept behind CCR is to augment binaries with a minimal set of transformation-assisting metadata, which i) facilitate rapid fine-grained code transformation at installation or load time, and ii) form the basis for reversing any applied code transformation when needed, to maintain compatibility with existing mechanisms that rely on referencing the original code. We have implemented a prototype of this approach by extending the LLVM compiler toolchain, and developing a simple binary rewriter that leverages the embedded metadata to generate randomized variants using basic block reordering. The results of our experimental evaluation demonstrate the feasibility and practicality of CCR, as on average it incurs a modest file size increase of 11.46% and a negligible runtime overhead of 0.28%, while it is compatible with link-time optimization and control flow integrity.

2019-03-04
Krishnamurthy, R., Meinel, M., Haupt, C., Schreiber, A., Mader, P..  2018.  DLR Secure Software Engineering. 2018 IEEE/ACM 1st International Workshop on Security Awareness from Design to Deployment (SEAD). :49–50.
DLR as research organization increasingly faces the task to share its self-developed software with partners or publish openly. Hence, it is very important to harden the softwares to avoid opening attack vectors. Especially since DLR software is typically not developed by software engineering or security experts. In this paper we describe the data-oriented approach of our new found secure software engineering group to improve the software development process towards more secure software. Therefore, we have a look at the automated security evaluation of software as well as the possibilities to capture information about the development process. Our aim is to use our information sources to improve software development processes to produce high quality secure software.
2019-02-14
Xu, Z., Shi, C., Cheng, C. C., Gong, N. Z., Guan, Y..  2018.  A Dynamic Taint Analysis Tool for Android App Forensics. 2018 IEEE Security and Privacy Workshops (SPW). :160-169.

The plethora of mobile apps introduce critical challenges to digital forensics practitioners, due to the diversity and the large number (millions) of mobile apps available to download from Google play, Apple store, as well as hundreds of other online app stores. Law enforcement investigators often find themselves in a situation that on the seized mobile phone devices, there are many popular and less-popular apps with interface of different languages and functionalities. Investigators would not be able to have sufficient expert-knowledge about every single app, sometimes nor even a very basic understanding about what possible evidentiary data could be discoverable from these mobile devices being investigated. Existing literature in digital forensic field showed that most such investigations still rely on the investigator's manual analysis using mobile forensic toolkits like Cellebrite and Encase. The problem with such manual approaches is that there is no guarantee on the completeness of such evidence discovery. Our goal is to develop an automated mobile app analysis tool to analyze an app and discover what types of and where forensic evidentiary data that app generate and store locally on the mobile device or remotely on external 3rd-party server(s). With the app analysis tool, we will build a database of mobile apps, and for each app, we will create a list of app-generated evidence in terms of data types, locations (and/or sequence of locations) and data format/syntax. The outcome from this research will help digital forensic practitioners to reduce the complexity of their case investigations and provide a better completeness guarantee of evidence discovery, thereby deliver timely and more complete investigative results, and eventually reduce backlogs at crime labs. In this paper, we will present the main technical approaches for us to implement a dynamic Taint analysis tool for Android apps forensics. With the tool, we have analyzed 2,100 real-world Android apps. For each app, our tool produces the list of evidentiary data (e.g., GPS locations, device ID, contacts, browsing history, and some user inputs) that the app could have collected and stored on the devices' local storage in the forms of file or SQLite database. We have evaluated our tool using both benchmark apps and real-world apps. Our results demonstrated that the initial success of our tool in accurately discovering the evidentiary data.

2019-03-11
Xie, X. L., Xue, W. X..  2018.  An Empirical Study of Web Software Trustworthiness Measurement. 2018 2nd IEEE Advanced Information Management,Communicates,Electronic and Automation Control Conference (IMCEC). :1474–1481.

The aim of this paper is to present a fresh methodology of improved evidence synthesis for assessing software trustworthiness, which can unwind collisions stemming from proofs and these proofs' own uncertainties. To achieve this end, the paper, on the ground of ISO/IEC 9126 and web software attributes, models the indicator framework by factor analysis. Then, the paper conducts an calculation of the weight for each indicator via the technique of structural entropy and makes a fuzzy judgment matrix concerning specialists' comments. This study performs a computation of scoring and grade regarding software trustworthiness by using of the criterion concerning confidence degree discernment and comes up with countermeasures to promote trustworthiness. Relying on online accounting software, this study makes an empirical analysis to further confirm validity and robustness. This paper concludes with pointing out limitations.