Biblio
In recent years, new and devastating cyber attacks amplify the need for robust cybersecurity practices. Preventing novel cyber attacks requires the invention of Intrusion Detection Systems (IDSs), which can identify previously unseen attacks. Many researchers have attempted to produce anomaly - based IDSs, however they are not yet able to detect malicious network traffic consistently enough to warrant implementation in real networks. Obviously, it remains a challenge for the security community to produce IDSs that are suitable for implementation in the real world. In this paper, we propose a new approach using a Deep Belief Network with a combination of supervised and unsupervised machine learning methods for port scanning attacks detection - the task of probing enterprise networks or Internet wide services, searching for vulnerabilities or ways to infiltrate IT assets. Our proposed approach will be tested with network security datasets and compared with previously existing methods.
In big data environments with big number of users and high volume of data, we need to manage the corresponding huge number of security policies. Due to the distributed management of these policies, they may contain several anomalies, such as conflicts and redundancies, which may lead to both safety and availability problems. The distributed systems guided by such security policies produce a huge number of access logs. Due to potential security breaches, the access logs may show the presence of non-allowed accesses. This may also be a consequence of conflicting rules in the security policies. In this paper, we present an ongoing work on developing an environment for verifying and correcting security policies. To make the approach efficient, an access log is used as input to determine suspicious parts of the policy that should be considered. The approach is also made efficient by clustering the policy and the access log and considering separately the obtained clusters. The clustering technique and the use of access log significantly reduces the complexity of the suggested approach, making it scalable for large amounts of data.
The integration of modern information technologies with industrial control systems has created an enormous interest in the security of industrial control, however, given the cost, variety, and industry practices, it is hard for researchers to test and deploy security solutions in real-world systems. Industrial control testbeds can be used as tools to test security solutions before they are deployed, and in this paper we extend our previous work to develop open-source virtual industrial control testbeds where computing and networking components are emulated and virtualized, and the physical system is simulated through differential equations. In particular, we implement a nonlinear control system emulating a three-water tank with the associated sensors, PLCs, and actuators that communicate through an emulated network. In addition, we design unknown input observers (UIO) to not only detect that an attack is occurring, but also to identify the source of the malicious false data injections and mitigate its impact. Our system is available through Github to the academic community.
Virtual Machine Introspection (VMI) is an emerging family of techniques for extracting data from virtual machines without the use of active monitoring probes within the target machines themselves. In VMI based systems, the data is collected at the hypervisor-level by analyzing the state of virtual machines. This has the benefit of making collection harder to detect and block by malware as there is nothing in the machine indicating that monitoring is taking place. In this paper we present Nitro Web, a web-based monitoring system for virtual machines that uses virtual machine introspection for data collection. The platform is capable of detecting and visualizing system call activity taking place within virtual machines in real-time. The secondary purpose of this paper is to offer an introduction to Nitro virtual machine introspection framework that we have been involved in developing. In this paper, we reflect on how Nitro Framework can be used for building applications making use of VMI data.
Although virtual reality hardware is now widely available, the uptake of real walking is hindered by the fact that it requires often impractically large amounts of physical space. To address this, we present VirtualSpace, a novel system that allows overloading multiple users immersed in different VR experiences into the same physical space. VirtualSpace accomplishes this by containing each user in a subset of the physical space at all times, which we call tiles; app-invoked maneuvers then shuffle tiles and users across the entire physical space. This allows apps to move their users to where their narrative requires them to be while hiding from users that they are confined to a tile. We show how this enables VirtualSpace to pack four users into 16m2. In our study we found that VirtualSpace allowed participants to use more space and to feel less confined than in a control condition with static, pre-allocated space.
The diagnosis of performance issues in cloud environments is a challenging problem, due to the different levels of virtualization, the diversity of applications and their interactions on the same physical host. Moreover, because of privacy, security, ease of deployment and execution overhead, an agent-less method, which limits its data collection to the physical host level, is often the only acceptable solution. In this paper, a precise host-based method, to recover wait state for the processes inside a given Virtual Machine (VM), is proposed. The virtual Process State Detection (vPSD) algorithm computes the state of processes through host kernel tracing. The state of a virtual Process (vProcess) is displayed in an interactive trace viewer (Trace Compass) for further inspection. Our proposed VM trace analysis algorithm has been open-sourced for further enhancements and for the benefit of other developers. Experimental evaluations were conducted using a mix of workload types (CPU, Disk, and Network), with different applications like Hadoop, MySQL, and Apache. vPSD, being based on host hypervisor tracing, brings a lower overhead (around 0.03%) as compared to other approaches.
Nowadays, most vendors apply the same open source code to their products, which is dangerous. In addition, when manufacturers release patches, they generally hide the exact location of the vulnerabilities. So, identifying vulnerabilities in binaries is crucial. However, just searching source program has a lower identifying accuracy of vulnerability, which requires operators further to differentiate searched results. Under this context, we propose VMPBL to enhance identifying the accuracy of vulnerability with the help of patch files. VMPBL, compared with other proposed schemes, uses patched functions according to its vulnerable functions in patch file to further distinguish results. We establish a prototype of VMPBL, which can effectively identify vulnerable function types and get rid of safe functions from results. Firstly, we get the potential vulnerable-patched functions by binary comparison technique based on K-Trace algorithm. Then we combine the functions with vulnerability and patch knowledge database to classify these function pairs and identify the possible vulnerable functions and the vulnerability types. Finally, we test some programs containing real-world CWE vulnerabilities, and one of the experimental results about CWE415 shows that the results returned from only searching source program are about twice as much as the results from VMPBL. We can see that using VMPBL can significantly reduce the false positive rate of discovering vulnerabilities compared with analyzing source files alone.
The intelligent power grid is composed of a large number of industrial control equipment, and most of the industrial control equipment has security holes, which are vulnerable to malicious attacks and affect the normal operation of the power grid. By analyzing the security vulnerability of the firmware of industrial control equipment, the vulnerability can be detected in advance and the power grid's ability to resist attack can be improved. In this paper, a kind of industrial control device firmware protocol vulnerabilities associated technology, through the technology of information extraction from the mass grid device firmware device attributes and extract the industrial control system, the characteristics of the construction of industrial control system device firmware and published vulnerability information correlation, faster in the industrial control equipment safety inspection found vulnerabilities.
The detection of bugs in software systems has been divided into two research areas: static code analysis and statistical modeling of historical data. Static analysis indicates precise problems on line numbers but has the disadvantage of suggesting many warning which are often false positives. In contrast, statistical models use the history of the system to suggest which files or commits are likely to contain bugs. These course-grained predictions do not indicate to the developer the precise reasons for the bug prediction. We combine static analysis with statistical bug models to limit the number of warnings and provide specific warnings information at the line level. Previous research was able to process only a limited number of releases, our tool, WarningsGuru, can analyze all commits in a source code repository and we currently have processed thousands of commits and warnings. Since we process every commit, we present developers with more precise information about when a warning is introduced allowing us to show recent warnings that are introduced in statistically risky commits. Results from two OSS projects show that CommitGuru's statistical model flags 25% and 29% of all commits as risky. When we combine this with static analysis in WarningsGuru the number of risky commits with warnings is 20% for both projects and the number commits with new warnings is only 3% and 6%. We can drastically reduce the number of commits and warnings developers have to examine. The tool, source code, and demo is available at https://github.com/louisq/warningsguru.
Mobile Ad Hoc Network (MANET) is pretty vulnerable to attacks because of its broad distribution and open nodes. Hence, an effective Intrusion Detection System (IDS) is vital in MANET to deter unwanted malicious attacks. An IDS has been proposed in this paper based on watchdog and pathrater method as well as evaluation of its performance has been presented using Dynamic Source Routing (DSR) and Ad-hoc On-demand Distance Vector (AODV) routing protocols with and without considering the effect of the sinkhole attack. The results obtained justify that the proposed IDS is capable of detecting suspicious activities and identifying the malicious nodes. Moreover, it replaces the fake route with a real one in the routing table in order to mitigate the security risks. The performance appraisal also suggests that the AODV protocol has a capacity of sending more packets than DSR and yields more throughput.
The increasing adoption of 3D printing in many safety and mission critical applications exposes 3D printers to a variety of cyber attacks that may result in catastrophic consequences if the printing process is compromised. For example, the mechanical properties (e.g., physical strength, thermal resistance, dimensional stability) of 3D printed objects could be significantly affected and degraded if a simple printing setting is maliciously changed. To address this challenge, this study proposes a model-free real-time online process monitoring approach that is capable of detecting and defending against the cyber-physical attacks on the firmwares of 3D printers. Specifically, we explore the potential attacks and consequences of four key printing attributes (including infill path, printing speed, layer thickness, and fan speed) and then formulate the attack models. Based on the intrinsic relation between the printing attributes and the physical observations, our defense model is established by systematically analyzing the multi-faceted, real-time measurement collected from the accelerometer, magnetometer and camera. The Kalman filter and Canny filter are used to map and estimate three aforementioned critical toolpath information that might affect the printing quality. Mel-frequency Cepstrum Coefficients are used to extract features for fan speed estimation. Experimental results show that, for a complex 3D printed design, our method can achieve 4% Hausdorff distance compared with the model dimension for infill path estimate, 6.07% Mean Absolute Percentage Error (MAPE) for speed estimate, 9.57% MAPE for layer thickness estimate, and 96.8% accuracy for fan speed identification. Our study demonstrates that, this new approach can effectively defend against the cyber-physical attacks on 3D printers and 3D printing process.
Query authentication has been extensively studied to ensure the integrity of query results for outsourced databases, which are often not fully trusted. However, access control, another important security concern, is largely ignored by existing works. Notably, recent breakthroughs in cryptography have enabled fine-grained access control over outsourced data. In this paper, we take the first step toward studying the problem of authenticating relational queries with fine-grained access control. The key challenge is how to protect information confidentiality during query authentication, which is essential to many critical applications. To address this challenge, we propose a novel access-policy-preserving (APP) signature as the primitive authenticated data structure. A useful property of the APP signature is that it can be used to derive customized signatures for unauthorized users to prove the inaccessibility while achieving the zero-knowledge confidentiality. We also propose a grid-index-based tree structure that can aggregate APP signatures for efficient range and join query authentication. In addition to this, a number of optimization techniques are proposed to further improve the authentication performance. Security analysis and performance evaluation show that the proposed solutions and techniques are robust and efficient under various system settings.
This is very true for the Windows operating system (OS) used by government and private organizations. With Windows, the closed source nature of the operating system has unfortunately meant that hidden security issues are discovered very late and the fixes are not found in real time. There needs to be a reexamination of current static methods of malware detection. This paper presents an integrated system for automated and real-time monitoring and prediction of rootkit and malware threats for the Windows OS. We propose to host the target Windows machines on the widely used Xen hypervisor, and collect process behavior using virtual memory introspection (VMI). The collected data will be analyzed using state of the art machine learning techniques to quickly isolate malicious process behavior and alert system administrators about potential cyber breaches. This research has two focus areas: identifying memory data structures and developing prediction tools to detect malware. The first part of research focuses on identifying memory data structures affected by malware. This includes extracting the kernel data structures with VMI that are frequently targeted by rootkits/malware. The second part of the research will involve development of a prediction tool using machine learning techniques.
The Internet of Things (IoT) provides transparent and seamless incorporation of heterogeneous and different end systems. It has been widely used in many applications such as smart homes. However, people may resist the IOT as long as there is no public confidence that it will not cause any serious threats to their privacy. Effective secure key management for things authentication is the prerequisite of security operations. In this paper, we present an interactive key management protocol and a non-interactive key management protocol to minimize the communication cost of the things. The security analysis show that the proposed schemes are resilient to various types of attacks.
This paper presents an authentication protocol specifically tailored for IoT devices that inherently limits the number of times that an entity can authenticate itself with a given key pair. The protocol we propose is based on a stateful hash-based digital signature system called eXtended Merkle Signature Scheme (XMSS), which has increased its popularity of late due to its resistance to quantum-computer-aided attacks. We propose a 1-pass authentication protocol that can be customized according to the server capabilities to keep track of the key pair state. In addition, we present results when ported to ARM Cortex-M3 and M0 processors.
Cloud nowaday has become the backbone of the IT infrastructure. Whole of the infrastructure is now being shifted to the clouds, and as the cloud involves all of the networking schemes and the OS images, it inherits all of the vulnerabilities too. And hence securing them is one of our very prior concerns. Malwares are one of the many other problems that have ever growing and hence need to be eradicated from the system. The history of mal wares go long back in time since the advent of computers and hence a lot of techniques has also been already devised to tackle with the problem in some or other way. But most of them fall short in some or other way or are just too heavy to execute on a simple user machine. Our approach devises a 3 - phase exhaustive technique which confirms the detection of any kind of malwares from the host. It also works for the zero-day attacks that are really difficult to cover most times and can be of really high-risk at times. We have thought of a solution to keep the things light weight for the user.
Air-gap data is important for the security of computer systems. The injection of the computer virus is limited but possible, however data communication channel is necessary for the transmission of stolen data. This paper considers BFSK digital modulation applied to brightness changes of screen for unidirectional transmission of valuable data. Experimental validation and limitations of the proposed technique are provided.
Robotics and the Internet of Things (IoT) are enveloping our society at an exponential rate due to lessening costs and better availability of hardware and software. Additionally, Cloud Robotics and Robot Operating System (ROS) can offset onboard processing power. However, strong and fundamental security practices have not been applied to fully protect these systems., partially negating the benefits of IoT. Researchers are therefore tasked with finding ways of securing communications and systems. Since security and convenience are oftentimes at odds, securing many heterogeneous components without compromising performance can be daunting. Protecting systems from attacks and ensuring that connections and instructions are from approved devices, all while maintaining the performance is imperative. This paper focuses on the development of security best practices and a mesh framework with an open-source, multipoint-to-multipoint virtual private network (VPN) that can tie Linux, Windows, IOS., and Android devices into one secure fabric, with heterogeneous mobile robotic platforms running ROSPY in a secure cloud robotics infrastructure.
A Mobile ad hoc Network (MANET) is a self-configure, dynamic, and non-fixed infrastructure that consists of many nodes. These nodes communicate with each other without an administrative point. However, due to its nature MANET becomes prone to many attacks such as DoS attacks. DoS attack is a severe as it prevents legitimate users from accessing to their authorised services. Monitoring, Detection, and rehabilitation (MrDR) method is proposed to detect DoS attacks. MrDR method is based on calculating different trust values as nodes can be trusted or not. In this paper, we evaluate the MrDR method which detect DoS attacks in MANET and compare it with existing method Trust Enhanced Anonymous on-demand routing Protocol (TEAP) which is also based on trust concept. We consider two factors to compare the performance of the proposed method to TEAP method: packet delivery ratio and network overhead. The results confirm that the MrDR method performs better in network performance compared to TEAP method.
Anonymity networks provide privacy to the users by relaying their data to multiple destinations in order to reach the final destination anonymously. Multilayer of encryption is used to protect the users' privacy from attacks or even from the operators of the stations. In this research, we showed how flow analysis could be used to identify encrypted anonymity network traffic under four scenarios: (i) Identifying anonymity networks compared to normal background traffic; (ii) Identifying the type of applications used on the anonymity networks; (iii) Identifying traffic flow behaviors of the anonymity network users; and (iv) Identifying / profiling the users on an anonymity network based on the traffic flow behavior. In order to study these, we employ a machine learning based flow analysis approach and explore how far we can push such an approach.