Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2019-03-11
Broström, Tom, Zhu, John, Robucci, Ryan, Younis, Mohamed.  2018.  IoT Boot Integrity Measuring and Reporting. SIGBED Rev.. 15:14–21.
The current era can be characterized by the massive reliance on computing platforms in almost all domains, such as manufacturing, defense, healthcare, government. However, with the increased productivity, flexibility, and effectiveness that computers provide, comes the vulnerability to cyber-attacks where software, or even firmware, gets subtly modified by a hacker. The integration of a Trusted Platform Module (TPM) opts to tackle this issue by aiding in the detection of unauthorized modifications so that devices get remediation as needed. Nonetheless, the use of a TPM is impractical for resource-constrained devices due to power, space and cost limitations. With the recent proliferation of miniaturized devices along with the push towards the Internet-of Things (IoT) there is a need for a lightweight and practical alternative to the TPM. This paper proposes a cost-effective solution that incorporates modest amounts of integrated roots-of-trust logic and supports attestation of the integrity of the device's boot-up state. Our solution leverages crypto-acceleration modules found on many microprocessor and microcontroller based IoT devices nowadays, and introduces little additional overhead. The basic concepts have been validated through implementation on an SoC with an FPGA and a hard microcontroller. We report the validation results and highlight the involved tradeoffs.
2019-02-13
Dessouky, G., Abera, T., Ibrahim, A., Sadeghi, A..  2018.  LiteHAX: Lightweight Hardware-Assisted Attestation of Program Execution. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1–8.

Unlike traditional processors, embedded Internet of Things (IoT) devices lack resources to incorporate protection against modern sophisticated attacks resulting in critical consequences. Remote attestation (RA) is a security service to establish trust in the integrity of a remote device. While conventional RA is static and limited to detecting malicious modification to software binaries at load-time, recent research has made progress towards runtime attestation, such as attesting the control flow of an executing program. However, existing control-flow attestation schemes are inefficient and vulnerable to sophisticated data-oriented programming (DOP) attacks subvert these schemes and keep the control flow of the code intact. In this paper, we present LiteHAX, an efficient hardware-assisted remote attestation scheme for RISC-based embedded devices that enables detecting both control-flow attacks as well as DOP attacks. LiteHAX continuously tracks both the control-flow and data-flow events of a program executing on a remote device and reports them to a trusted verifying party. We implemented and evaluated LiteHAX on a RISC-V System-on-Chip (SoC) and show that it has minimal performance and area overhead.

2020-05-11
Chandre, Pankaj Ramchandra, Mahalle, Parikshit Narendra, Shinde, Gitanjali Rahul.  2018.  Machine Learning Based Novel Approach for Intrusion Detection and Prevention System: A Tool Based Verification. 2018 IEEE Global Conference on Wireless Computing and Networking (GCWCN). :135–140.
Now a day, Wireless Sensor Networks are widely used in military applications by its applications, it is extended to healthcare, industrial environments and many more. As we know that, there are some unique features of WSNs such as limited power supply, minimum bandwidth and limited energy. So, to secure traditional network, multiple techniques are available, but we can't use same techniques to secure WSNs. So to increase the overall security of WSNs, we required new ideas as well as new approaches. In general, intrusion prevention is the primary issue in WSNs and intrusion detection already reached to saturation. Thus, we need an efficient solution for proactive intrusion prevention towards WSNs. Thus, formal validation of protocols in WSN is an essential area of research. This research paper aims to formally verify as well as model some protocol used for intrusion detection using AVISPA tool and HLPSL language. In this research paper, the results of authentication and DoS attacks were detected is presented, but there is a need to prevent such type of attacks. In this research paper, a system is proposed in order to avoid intrusion using machine learning for the wireless sensor network. So, the proposed system will be used for intrusion prevention in a wireless sensor network.
2019-09-30
Elbidweihy, H., Arrott, A. S., Provenzano, V..  2018.  Modeling the Role of the Buildup of Magnetic Charges in Low Anisotropy Polycrystalline Materials. IEEE Transactions on Magnetics. 54:1–5.

A Stoner-Wohlfarth-type model is used to demonstrate the effect of the buildup of magnetic charges near the grain boundaries of low anisotropy polycrystalline materials, revealed by measuring the magnetization during positive-field warming after negative-field cooling. The remnant magnetization after negative-field cooling has two different contributions. The temperature-dependent component is modeled as an assembly of particles with thermal relaxation. The temperature-independent component is modeled as an assembly of particles overcoming variable phenomenological energy barriers corresponding to the change in susceptibility when the anisotropy constant changes its sign. The model is applicable to soft-magnetic materials where the buildup of the magnetic charges near the grain boundaries creates demagnetizing fields opposing, and comparable in magnitude to, the anisotropy field. The results of the model are in qualitative agreement with published data revealing the magneto-thermal characteristics of polycrystalline gadolinium.

2019-06-10
Kumar, A., Aggarwal, A., Yadav, D..  2018.  A Multi-layered Outlier Detection Model for Resource Constraint Hierarchical MANET. 2018 5th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON). :1–7.

For sharing resources using ad hoc communication MANET are quite effective and scalable medium. MANET is a distributed, decentralized, dynamic network with no fixed infrastructure, which are self- organized and self-managed. Achieving high security level is a major challenge in case of MANET. Layered architecture is one of the ways for handling security challenges, which enables collection and analysis of data from different security dimensions. This work proposes a novel multi-layered outlier detection algorithm using hierarchical similarity metric with hierarchical categorized data. Network performance with and without the presence of outlier is evaluated for different quality-of-service parameters like percentage of APDR and AT for small (100 to 200 nodes), medium (200 to 1000 nodes) and large (1000 to 3000 nodes) scale networks. For a network with and without outliers minimum improvements observed are 9.1 % and 0.61 % for APDR and AT respectively while the maximum improvements of 22.1 % and 104.1 %.

2020-04-24
Schulz, Lukas, Schulz, Dirk.  2018.  Numerical Analysis of the Transient Behavior of the Non-Equilibrium Quantum Liouville Equation. IEEE Transactions on Nanotechnology. 17:1197—1205.

The numerical analysis of transient quantum effects in heterostructure devices with conventional numerical methods tends to pose problems. To overcome these limitations, a novel numerical scheme for the transient non-equilibrium solution of the quantum Liouville equation utilizing a finite volume discretization technique is proposed. Additionally, the solution with regard to the stationary regime, which can serve as a reference solution, is inherently included within the discretization scheme for the transient regime. Resulting in a highly oscillating interference pattern of the statistical density matrix as well in the stationary as in the transient regime, the reflecting nature of the conventional boundary conditions can be an additional source of error. Avoiding these non-physical reflections, the concept of a complex absorbing potential used for the Schrödinger equation is utilized to redefine the drift operator in order to render open boundary conditions for quantum transport equations. Furthermore, the method allows the application of the commonly used concept of inflow boundary conditions.

2020-10-05
Scott-Hayward, Sandra, Arumugam, Thianantha.  2018.  OFMTL-SEC: State-based Security for Software Defined Networks. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–7.
Dynamic network security services have been proposed exploiting the benefits of Software Defined Networking (SDN) and Network Functions Virtualization (NFV) technologies. However, many of these services rely on controller interaction, which presents a performance and scalability challenge, and a threat vector. To overcome the performance issue, stateful data-plane designs have been proposed. Unfortunately, these solutions do not offer protection from attacks that exploit the SDN implementation of network functions such as topology and path update, or services such as the Address Resolution Protocol (ARP). In this work, we propose state-based SDN security protection mechanisms. Our stateful security data plane solution, OFMTL-SEC, is designed to provide protection against attacks on SDN and traditional network services. Specifically, we present a novel data plane protection against configuration-based attacks in SDN and against ARP spoofing. OFMTL-SEC is compared with the state-of-the-art solutions and offers increased security to SDNs with negligible performance impact.
2020-06-01
Vural, Serdar, Minerva, Roberto, Carella, Giuseppe A., Medhat, Ahmed M., Tomasini, Lorenzo, Pizzimenti, Simone, Riemer, Bjoern, Stravato, Umberto.  2018.  Performance Measurements of Network Service Deployment on a Federated and Orchestrated Virtualisation Platform for 5G Experimentation. 2018 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN). :1–6.
The EU SoftFIRE project has built an experimentation platform for NFV and SDN experiments, tailored for testing and evaluating 5G network applications and solutions. The platform is a fully orchestrated virtualisation testbed consisting of multiple component testbeds across Europe. Users of the platform can deploy their virtualisation experiments via the platform's Middleware. This paper introduces the SoftFIRE testbed and its Middleware, and presents a set of KPI results for evaluation of experiment deployment performance.
2020-11-17
Wang, H., Li, J., Liu, D..  2018.  Research on Operating Data Analysis for Enterprise Intranet Information Security Risk Assessment. 2018 12th IEEE International Conference on Anti-counterfeiting, Security, and Identification (ASID). :72—76.
Operating data analysis means to analyze the operating system logs, user operation logs, various types of alarms and security relevant configurations, etc. The purpose is to find whether there is an attack event, suspicious behaviors or improper configurations. It is an important part of risk assessment for enterprise intranet. However, due to the lack of information security knowledge or relevant experience, many people do not know how to properly implement it. In this article, we provided guidance on conducting operating data analysis and how to determine the security risk with the analysis results.
2019-03-25
Ali-Tolppa, J., Kocsis, S., Schultz, B., Bodrog, L., Kajo, M..  2018.  SELF-HEALING AND RESILIENCE IN FUTURE 5G COGNITIVE AUTONOMOUS NETWORKS. 2018 ITU Kaleidoscope: Machine Learning for a 5G Future (ITU K). :1–8.
In the Self-Organizing Networks (SON) concept, self-healing functions are used to detect, diagnose and correct degraded states in the managed network functions or other resources. Such methods are increasingly important in future network deployments, since ultra-high reliability is one of the key requirements for the future 5G mobile networks, e.g. in critical machine-type communication. In this paper, we discuss the considerations for improving the resiliency of future cognitive autonomous mobile networks. In particular, we present an automated anomaly detection and diagnosis function for SON self-healing based on multi-dimensional statistical methods, case-based reasoning and active learning techniques. Insights from both the human expert and sophisticated machine learning methods are combined in an iterative way. Additionally, we present how a more holistic view on mobile network self-healing can improve its performance.
2019-03-06
Lin, Y., Liu, H., Xie, G., Zhang, Y..  2018.  Time Series Forecasting by Evolving Deep Belief Network with Negative Correlation Search. 2018 Chinese Automation Congress (CAC). :3839-3843.

The recently developed deep belief network (DBN) has been shown to be an effective methodology for solving time series forecasting problems. However, the performance of DBN is seriously depended on the reasonable setting of hyperparameters. At present, random search, grid search and Bayesian optimization are the most common methods of hyperparameters optimization. As an alternative, a state-of-the-art derivative-free optimizer-negative correlation search (NCS) is adopted in this paper to decide the sizes of DBN and learning rates during the training processes. A comparative analysis is performed between the proposed method and other popular techniques in the time series forecasting experiment based on two types of time series datasets. Experiment results statistically affirm the efficiency of the proposed model to obtain better prediction results compared with conventional neural network models.

2019-03-04
Husari, G., Niu, X., Chu, B., Al-Shaer, E..  2018.  Using Entropy and Mutual Information to Extract Threat Actions from Cyber Threat Intelligence. 2018 IEEE International Conference on Intelligence and Security Informatics (ISI). :1–6.
With the rapid growth of the cyber attacks, cyber threat intelligence (CTI) sharing becomes essential for providing advance threat notice and enabling timely response to cyber attacks. Our goal in this paper is to develop an approach to extract low-level cyber threat actions from publicly available CTI sources in an automated manner to enable timely defense decision making. Specifically, we innovatively and successfully used the metrics of entropy and mutual information from Information Theory to analyze the text in the cybersecurity domain. Combined with some basic NLP techniques, our framework, called ActionMiner has achieved higher precision and recall than the state-of-the-art Stanford typed dependency parser, which usually works well in general English but not cybersecurity texts.
2019-05-01
Naik, N., Shang, C., Shen, Q., Jenkins, P..  2018.  Vigilant Dynamic Honeypot Assisted by Dynamic Fuzzy Rule Interpolation. 2018 IEEE Symposium Series on Computational Intelligence (SSCI). :1731–1738.

Dynamic Fuzzy Rule Interpolation (D-FRI) offers a dynamic rule base for fuzzy systems which is especially useful for systems with changing requirements and limited prior knowledge. This suggests a possible application of D-FRI in the area of network security due to the volatility of the traffic. A honeypot is a valuable tool in the field of network security for baiting attackers and collecting their information. However, typically designed with fewer resources they are not considered as a primary security tool for use in network security. Consequently, such honeypots can be vulnerable to many security attacks. One such attack is a spoofing attack which can cause severe damage to the honeypot, making it inefficient. This paper presents a vigilant dynamic honeypot based on the D-FRI approach for use in predicting and alerting of spoofing attacks on the honeypot. First, it proposes a technique for spoofing attack identification based on the analysis of simulated attack data. Then, the paper employs the identification technique to develop a D-FRI based vigilant dynamic honeypot, allowing the honeypot to predict and alert that a spoofing attack is taking place in the absence of matching rules. The resulting system is capable of learning and maintaining a dynamic rule base for more accurate identification of potential spoofing attacks with respect to the changing traffic conditions of the network.

2020-11-02
Ajay, K, Bharath, B, Akhil, M V, Akanksh, R, Hemavathi, P.  2018.  Intellectual Property Management Using Blockchain. 2018 3rd International Conference on Inventive Computation Technologies (ICICT). :428—430.

With the advent of blockchain technology, multiple avenues of use are being explored. The immutability and security afforded by blockchain are the key aspects of exploitation. Extending this to legal contracts involving digital intellectual properties provides a way to overcome the use of antiquated paperwork to handle digital assets.

2020-07-30
Patnaik, Satwik, Ashraf, Mohammed, Sinanoglu, Ozgur, Knechtel, Johann.  2018.  Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

With the globalization of manufacturing and supply chains, ensuring the security and trustworthiness of ICs has become an urgent challenge. Split manufacturing (SM) and layout camouflaging (LC) are promising techniques to protect the intellectual property (IP) of ICs from malicious entities during and after manufacturing (i.e., from untrusted foundries and reverse-engineering by end-users). In this paper, we strive for “the best of both worlds,” that is of SM and LC. To do so, we extend both techniques towards 3D integration, an up-and-coming design and manufacturing paradigm based on stacking and interconnecting of multiple chips/dies/tiers. Initially, we review prior art and their limitations. We also put forward a novel, practical threat model of IP piracy which is in line with the business models of present-day design houses. Next, we discuss how 3D integration is a naturally strong match to combine SM and LC. We propose a security-driven CAD and manufacturing flow for face-to-face (F2F) 3D ICs, along with obfuscation of interconnects. Based on this CAD flow, we conduct comprehensive experiments on DRC-clean layouts. Strengthened by an extensive security analysis (also based on a novel attack to recover obfuscated F2F interconnects), we argue that entering the next, third dimension is eminent for effective and efficient IP protection.

Cammarota, Rosario, Banerjee, Indranil, Rosenberg, Ofer.  2018.  Machine Learning IP Protection. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—3.

Machine learning, specifically deep learning is becoming a key technology component in application domains such as identity management, finance, automotive, and healthcare, to name a few. Proprietary machine learning models - Machine Learning IP - are developed and deployed at the network edge, end devices and in the cloud, to maximize user experience. With the proliferation of applications embedding Machine Learning IPs, machine learning models and hyper-parameters become attractive to attackers, and require protection. Major players in the semiconductor industry provide mechanisms on device to protect the IP at rest and during execution from being copied, altered, reverse engineered, and abused by attackers. In this work we explore system security architecture mechanisms and their applications to Machine Learning IP protection.

2019-03-06
Xing, Z., Liu, L., Li, S., Liu, Y..  2018.  Analysis of Radiation Effects for Monitoring Circuit Based on Deep Belief Network and Support Vector Method. 2018 Prognostics and System Health Management Conference (PHM-Chongqing). :511-516.

The monitoring circuit is widely applied in radiation environment and it is of significance to study the circuit reliability with the radiation effects. In this paper, an intelligent analysis method based on Deep Belief Network (DBN) and Support Vector Method is proposed according to the radiation experiments analysis of the monitoring circuit. The Total Ionizing Dose (TID) of the monitoring circuit is used to identify the circuit degradation trend. Firstly, the output waveforms of the monitoring circuit are obtained by radiating with the different TID. Subsequently, the Deep Belief Network Model is trained to extract the features of the circuit signal. Finally, the Support Vector Machine (SVM) and Support Vector Regression (SVR) are applied to classify and predict the remaining useful life (RUL) of the monitoring circuit. According to the experimental results, the performance of DBN-SVM exceeds DBN method for feature extraction and classification, and SVR is effective for predicting the degradation.

2019-02-21
Feng, W., Chen, Z., Fu, Y..  2018.  Autoencoder Classification Algorithm Based on Swam Intelligence Optimization. 2018 17th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES). :238–241.
BP algorithm used by autoencoder classification algorithm. But the BP algorithm is not only complicated and inefficient, but sometimes falls into local optimum. This makes autoencoder classification algorithm are not very good. So in this paper we combie Quantum Particle Swarm Optimization (QPSO) and autoencoder classification algorithm. QPSO used to optimize the weight of autoencoder neural network and the parameter of softmax. This method has been tested on some database, and the experimental result shows that this method has got good results.
2019-09-26
Pant, S., Kumar, V..  2018.  BitTrusty: A BitCoin Incentivized Peer-to-Peer File Sharing System. 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). :148-155.

Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.

2019-03-25
Ferres, E., Immler, V., Utz, A., Stanitzki, A., Lerch, R., Kokozinski, R..  2018.  Capacitive Multi-Channel Security Sensor IC for Tamper-Resistant Enclosures. 2018 IEEE SENSORS. :1–4.
Physical attacks are a serious threat for embedded devices. Since these attacks are based on physical interaction, sensing technology is a key aspect in detecting them. For highest security levels devices in need of protection are placed into tamper-resistant enclosures. In this paper we present a capacitive multi-channel security sensor IC in a 350 nm CMOS technology. This IC measures more than 128 capacitive sensor nodes of such an enclosure with an SNR of 94.6 dB across a 16×16 electrode matrix in just 19.7 ms. The theoretical sensitivity is 35 aF which is practically limited by noise to 460 aF. While this is similar to capacitive touch technology, it outperforms available solutions of this domain with respect to precision and speed.
2019-11-25
Abdulwahab, Walled Khalid, Abdulrahman Kadhim, Abdulkareem.  2018.  Comparative Study of Channel Coding Schemes for 5G. 2018 International Conference on Advanced Science and Engineering (ICOASE). :239–243.
In this paper we look into 5G requirements for channel coding and review candidate channel coding schemes for 5G. A comparative study is presented for possible channel coding candidates of 5G covering Convolutional, Turbo, Low Density Parity Check (LDPC), and Polar codes. It seems that polar code with Successive Cancellation List (SCL) decoding using small list length (such as 8) is a promising choice for short message lengths (≤128 bits) due to its error performance and relatively low complexity. Also adopting non-binary LDPC can provide good performance on the expense of increased complexity but with better spectral efficiency. Considering the implementation, polar code with decoding algorithms based on SCL required small area and low power consumption when compared to LDPC codes. For larger message lengths (≥256 bits) turbo code can provide better performance at low coding rates (\textbackslashtextless;1/2).
2019-03-04
Zhu, Z., Jiang, R., Jia, Y., Xu, J., Li, A..  2018.  Cyber Security Knowledge Graph Based Cyber Attack Attribution Framework for Space-ground Integration Information Network. 2018 IEEE 18th International Conference on Communication Technology (ICCT). :870–874.
Comparing with the traditional Internet, the space-ground integration information network has more complicated topology, wider coverage area and is more difficult to find the source of attacks. In this paper, a cyber attack attribution framework is proposed to trace the attack source in space-ground integration information network. First, we constructs a cyber security knowledge graph for space-ground integration information network. An automated attributing framework for cyber-attack is proposed. It attributes the source of the attack by querying the cyber security knowledge graph we constructed. Experiments show that the proposed framework can attribute network attacks simply, effectively, and automatically.
2019-02-14
Sharaieh, A., Edinat, A., AlFarraji, S..  2018.  An Enhanced Polyalphabetic Algorithm on Vigenerecipher with DNA-Based Cryptography. 2018 IEEE/ACS 15th International Conference on Computer Systems and Applications (AICCSA). :1-6.

Several algorithms were introduced in data encryption and decryptionsto protect threats and intruders from stealing and destroying data. A DNA cryptography is a new concept that has attracted great interest in the information security. In this paper, we propose a new enhanced polyalphabetic cipher algorithm (EPCA) as enhanced algorithm for the Vigenere cipher to avoid the limitations and the weakness of Vigenere cipher. A DNA technology is used to convert binary data to DNA strand. We compared the EPCA with Vigenere cipher in terms of memory space and run time. The EPCA has theoretical run time of O(N), at worst case. The EPCA shows better performance in average memory space and closed results in average running time, for the tested data.

2019-07-01
Urias, V. E., Stout, M. S. William, Leeuwen, B. V..  2018.  On the Feasibility of Generating Deception Environments for Industrial Control Systems. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–6.

The cyber threat landscape is a constantly morphing surface; the need for cyber defenders to develop and create proactive threat intelligence is on the rise, especially on critical infrastructure environments. It is commonly voiced that Supervisory Control and Data Acquisition (SCADA) systems and Industrial Control Systems (ICS) are vulnerable to the same classes of threats as other networked computer systems. However, cyber defense in operational ICS is difficult, often introducing unacceptable risks of disruption to critical physical processes. This is exacerbated by the notion that hardware used in ICS is often expensive, making full-scale mock-up systems for testing and/or cyber defense impractical. New paradigms in cyber security have focused heavily on using deception to not only protect assets, but also gather insight into adversary motives and tools. Much of the work that we see in today's literature is focused on creating deception environments for traditional IT enterprise networks; however, leveraging our prior work in the domain, we explore the opportunities, challenges and feasibility of doing deception in ICS networks.

2019-03-25
Janczewski, R., Pilarski, G..  2018.  The Information Processing in the Cybernetic Environment of Signals Intelligence. 2018 New Trends in Signal Processing (NTSP). :1–7.
The area of military operations is presently a peculiar, heterogenic environment providing the decision-makers with varied data and information on the potential or the real enemy. However the vast number and diversity of the available information does not facilitate the decision process. The achievement of information advantage in line with the rule: the first to notice, the first to understand and the first to act depends among other things on the proper information processing. In the theory of Electronic Warfare, the processing of information about the electronic objects of the enemy emitting electromagnetic energy is realized by Signals Intelligence. The fastest processing of information in the information system of Signals Intelligence is presently provided by cybernetic environment. The construction of an information processing system in the cybernetic environment of Signals Intelligence is thus a very complex task. The article presents theoretical basis of information processing in cybernetic environment of Signals Intelligence based on research carried out by the authors. The article can be described as the added value since it presents and clarifies a complex concept of cybernetic environment of Signal Intelligence. Moreover, it provides a new definition of information process as a system of operations on intelligence information and data. It also presents the stages of information process as well as the structure of information processing process. In the further part it shows the factors and elements of the cybernetic environment of Signals Intelligence isolated in the process of research. The document provides a perspective for the processing of information in the cybernetic environment of Signals Intelligence, it fills the gap in research on information processing in the cybernetic environment of Signals Intelligence as well as assures strong theoretical basis and provides an incentive for further research on the information processing in the cybernetic environment of Signals Intelligence.