Biblio

Found 5882 results

Filters: Keyword is composability  [Clear All Filters]
2023-09-20
Winahyu, R R Kartika, Somantri, Maman, Nurhayati, Oky Dwi.  2022.  Predicting Creditworthiness of Smartphone Users in Indonesia during the COVID-19 pandemic using Machine Learning. 2021 International Seminar on Machine Learning, Optimization, and Data Science (ISMODE). :223—227.
In this research work, we attempted to predict the creditworthiness of smartphone users in Indonesia during the COVID-19 pandemic using machine learning. Principal Component Analysis (PCA) and Kmeans algorithms are used for the prediction of creditworthiness with the used a dataset of 1050 respondents consisting of twelve questions to smartphone users in Indonesia during the COVID-19 pandemic. The four different classification algorithms (Logistic Regression, Support Vector Machine, Decision Tree, and Naive Bayes) were tested to classify the creditworthiness of smartphone users in Indonesia. The tests carried out included testing for accuracy, precision, recall, F1-score, and Area Under Curve Receiver Operating Characteristics (AUCROC) assesment. Logistic Regression algorithm shows the perfect performances whereas Naïve Bayes (NB) shows the least. The results of this research also provide new knowledge about the influential and non-influential variables based on the twelve questions conducted to the respondents of smartphone users in Indonesia during the COVID-19 pandemic.
2023-01-05
Umarani, S., Aruna, R., Kavitha, V..  2022.  Predicting Distributed Denial of Service Attacks in Machine Learning Field. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE). :594—597.
A persistent and serious danger to the Internet is a denial of service attack on a large scale (DDoS) attack using machine learning. Because they originate at the low layers, new Infections that use genuine hypertext transfer protocol requests to overload target resources are more untraceable than application layer-based cyberattacks. Using network flow traces to construct an access matrix, this research presents a method for detecting distributed denial of service attack machine learning assaults. Independent component analysis decreases the number of attributes utilized in detection because it is multidimensional. Independent component analysis can be used to translate features into high dimensions and then locate feature subsets. Furthermore, during the training and testing phase of the updated source support vector machine for classification, their performance it is possible to keep track of the detection rate and false alarms. Modified source support vector machine is popular for pattern classification because it produces good results when compared to other approaches, and it outperforms other methods in testing even when given less information about the dataset. To increase classification rate, modified source support Vector machine is used, which is optimized using BAT and the modified Cuckoo Search method. When compared to standard classifiers, the acquired findings indicate better performance.
2023-06-22
Xu, Yi, Wang, Chong Xiao, Song, Yang, Tay, Wee Peng.  2022.  Preserving Trajectory Privacy in Driving Data Release. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3099–3103.
Real-time data transmissions from a vehicle enhance road safety and traffic efficiency by aggregating data in a central server for data analytics. When drivers share their instantaneous vehicular information for a service provider to perform a legitimate task, a curious service provider may also infer private information it has not been authorized for. In this paper, we propose a privacy preservation framework based on the Hilbert Schmidt Independence Criterion (HSIC) to sanitize driving data to protect the vehicle’s trajectory from adversarial inference while ensuring the data is still useful for driver behavior detection. We develop a deep learning model to learn the HSIC sanitizer and demonstrate through two datasets that our approach achieves better utility-privacy trade-offs when compared to three other benchmarks.
ISSN: 2379-190X
2023-06-30
Gupta, Rishabh, Singh, Ashutosh Kumar.  2022.  Privacy-Preserving Cloud Data Model based on Differential Approach. 2022 Second International Conference on Power, Control and Computing Technologies (ICPC2T). :1–6.
With the variety of cloud services, the cloud service provider delivers the machine learning service, which is used in many applications, including risk assessment, product recommen-dation, and image recognition. The cloud service provider initiates a protocol for the classification service to enable the data owners to request an evaluation of their data. The owners may not entirely rely on the cloud environment as the third parties manage it. However, protecting data privacy while sharing it is a significant challenge. A novel privacy-preserving model is proposed, which is based on differential privacy and machine learning approaches. The proposed model allows the various data owners for storage, sharing, and utilization in the cloud environment. The experiments are conducted on Blood transfusion service center, Phoneme, and Wilt datasets to lay down the proposed model's efficiency in accuracy, precision, recall, and Fl-score terms. The results exhibit that the proposed model specifies high accuracy, precision, recall, and Fl-score up to 97.72%, 98.04%, 97.72%, and 98.80%, respectively.
2023-08-03
Colombier, Brice, Drăgoi, Vlad-Florin, Cayrel, Pierre-Louis, Grosso, Vincent.  2022.  Profiled Side-Channel Attack on Cryptosystems Based on the Binary Syndrome Decoding Problem. IEEE Transactions on Information Forensics and Security. 17:3407–3420.
The NIST standardization process for post-quantum cryptography has been drawing the attention of researchers to the submitted candidates. One direction of research consists in implementing those candidates on embedded systems and that exposes them to physical attacks in return. The Classic McEliece cryptosystem, which is among the four finalists of round 3 in the Key Encapsulation Mechanism category, builds its security on the hardness of the syndrome decoding problem, which is a classic hard problem in code-based cryptography. This cryptosystem was recently targeted by a laser fault injection attack leading to message recovery. Regrettably, the attack setting is very restrictive and it does not tolerate any error in the faulty syndrome. Moreover, it depends on the very strong attacker model of laser fault injection, and does not apply to optimised implementations of the algorithm that make optimal usage of the machine words capacity. In this article, we propose a to change the angle and perform a message-recovery attack that relies on side-channel information only. We improve on the previously published work in several key aspects. First, we show that side-channel information, obtained with power consumption analysis, is sufficient to obtain an integer syndrome, as required by the attack framework. This is done by leveraging classic machine learning techniques that recover the Hamming weight information very accurately. Second, we put forward a computationally-efficient method, based on a simple dot product and information-set decoding algorithms, to recover the message from the, possibly inaccurate, recovered integer syndrome. Finally, we present a masking countermeasure against the proposed attack.
Conference Name: IEEE Transactions on Information Forensics and Security
2023-03-17
Al-Zahrani, Basmah, Alshehri, Suhair, Cherif, Asma, Imine, Abdessamad.  2022.  Property Graph Access Control Using View-Based and Query-Rewriting Approaches. 2022 IEEE/ACS 19th International Conference on Computer Systems and Applications (AICCSA). :1–2.
Managing and storing big data is non-trivial for traditional relational databases (RDBMS). Therefore, the NoSQL (Not Only SQL) database management system emerged. It is ca-pable of handling the vast amount and the heterogeneity of data. In this research, we are interested in one of its trending types, the graph database, namely, the Directed Property Graph (DPG). This type of database is powerful in dealing with complex relationships (\$\textbackslashmathrme.\textbackslashmathrmg\$., social networks). However, its sen-sitive and private data must be protected against unauthorized access. This research proposes a security model that aims at exploiting and combining the benefits of Access Control, View-Based, and Query-Rewriting approaches. This is a novel combination for securing DPG.
ISSN: 2161-5330
2022-12-20
Levina, Alla, Kamnev, Ivan.  2022.  Protection Metric Model of White-Box Algorithms. 2022 11th Mediterranean Conference on Embedded Computing (MECO). :1–3.
Systems based on WB protection have a limited lifetime, measured in months and sometimes days. Unfortunately, to understand for how long the application will be uncompromised, if possible, only empirically. However, it is possible to make a preliminary assessment of the security of a particular implementation, depending on the methods and their number used in the implementation, it will allow reallocating resources to more effective means of protection.
2023-03-31
Moraffah, Raha, Liu, Huan.  2022.  Query-Efficient Target-Agnostic Black-Box Attack. 2022 IEEE International Conference on Data Mining (ICDM). :368–377.
Adversarial attacks have recently been proposed to scrutinize the security of deep neural networks. Most blackbox adversarial attacks, which have partial access to the target through queries, are target-specific; e.g., they require a well-trained surrogate that accurately mimics a given target. In contrast, target-agnostic black-box attacks are developed to attack any target; e.g., they learn a generalized surrogate that can adapt to any target via fine-tuning on samples queried from the target. Despite their success, current state-of-the-art target-agnostic attacks require tremendous fine-tuning steps and consequently an immense number of queries to the target to generate successful attacks. The high query complexity of these attacks makes them easily detectable and thus defendable. We propose a novel query-efficient target-agnostic attack that trains a generalized surrogate network to output the adversarial directions iv.r.t. the inputs and equip it with an effective fine-tuning strategy that only fine-tunes the surrogate when it fails to provide useful directions to generate the attacks. Particularly, we show that to effectively adapt to any target and generate successful attacks, it is sufficient to fine-tune the surrogate with informative samples that help the surrogate get out of the failure mode with additional information on the target’s local behavior. Extensive experiments on CIFAR10 and CIFAR-100 datasets demonstrate that the proposed target-agnostic approach can generate highly successful attacks for any target network with very few fine-tuning steps and thus significantly smaller number of queries (reduced by several order of magnitudes) compared to the state-of-the-art baselines.
2023-03-17
Masum, Mohammad, Hossain Faruk, Md Jobair, Shahriar, Hossain, Qian, Kai, Lo, Dan, Adnan, Muhaiminul Islam.  2022.  Ransomware Classification and Detection With Machine Learning Algorithms. 2022 IEEE 12th Annual Computing and Communication Workshop and Conference (CCWC). :0316–0322.
Malicious attacks, malware, and ransomware families pose critical security issues to cybersecurity, and it may cause catastrophic damages to computer systems, data centers, web, and mobile applications across various industries and businesses. Traditional anti-ransomware systems struggle to fight against newly created sophisticated attacks. Therefore, state-of-the-art techniques like traditional and neural network-based architectures can be immensely utilized in the development of innovative ransomware solutions. In this paper, we present a feature selection-based framework with adopting different machine learning algorithms including neural network-based architectures to classify the security level for ransomware detection and prevention. We applied multiple machine learning algorithms: Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), Logistic Regression (LR) as well as Neural Network (NN)-based classifiers on a selected number of features for ransomware classification. We performed all the experiments on one ransomware dataset to evaluate our proposed framework. The experimental results demonstrate that RF classifiers outperform other methods in terms of accuracy, F -beta, and precision scores.
Sendner, Christoph, Iffländer, Lukas, Schindler, Sebastian, Jobst, Michael, Dmitrienko, Alexandra, Kounev, Samuel.  2022.  Ransomware Detection in Databases through Dynamic Analysis of Query Sequences. 2022 IEEE Conference on Communications and Network Security (CNS). :326–334.
Ransomware is an emerging threat that imposed a \$ 5 billion loss in 2017, rose to \$ 20 billion in 2021, and is predicted to hit \$ 256 billion in 2031. While initially targeting PC (client) platforms, ransomware recently leaped over to server-side databases-starting in January 2017 with the MongoDB Apocalypse attack and continuing in 2020 with 85,000 MySQL instances ransomed. Previous research developed countermeasures against client-side ransomware. However, the problem of server-side database ransomware has received little attention so far. In our work, we aim to bridge this gap and present DIMAQS (Dynamic Identification of Malicious Query Sequences), a novel anti-ransomware solution for databases. DIMAQS performs runtime monitoring of incoming queries and pattern matching using two classification approaches (Colored Petri Nets (CPNs) and Deep Neural Networks (DNNs)) for attack detection. Our system design exhibits several novel techniques like dynamic color generation to efficiently detect malicious query sequences globally (i.e., without limiting detection to distinct user connections). Our proof-of-concept and ready-to-use implementation targets MySQL servers. The evaluation shows high efficiency without false negatives for both approaches and a false positive rate of nearly 0%. Both classifiers show very moderate performance overheads below 6%. We will publish our data sets and implementation, allowing the community to reproduce our tests and results.
Agarwal, Reshu, Chaudhary, Alka, Gupta, Deepa, Das, Devleen.  2022.  Ransomware Vulnerability used in darknet for web application attack. 2022 2nd International Conference on Emerging Frontiers in Electrical and Electronic Technologies (ICEFEET). :1–5.
Cyber security is turning into a significant angle in each industry like in banking part, force and computerization segments. Servers are basic resources in these enterprises where business basic touch information is put away. These servers frequently join web servers in them through which any business information and tasks are performed remotely. Thus, clearly for a solid activity, security of web servers is extremely basic. This paper gives another testing way to deal with defenselessness appraisal of web applications by methods for breaking down and utilizing a consolidated arrangement of apparatuses to address a wide scope of security issues.
2023-06-30
Ma, Xuebin, Yang, Ren, Zheng, Maobo.  2022.  RDP-WGAN: Image Data Privacy Protection Based on Rényi Differential Privacy. 2022 18th International Conference on Mobility, Sensing and Networking (MSN). :320–324.
In recent years, artificial intelligence technology based on image data has been widely used in various industries. Rational analysis and mining of image data can not only promote the development of the technology field but also become a new engine to drive economic development. However, the privacy leakage problem has become more and more serious. To solve the privacy leakage problem of image data, this paper proposes the RDP-WGAN privacy protection framework, which deploys the Rényi differential privacy (RDP) protection techniques in the training process of generative adversarial networks to obtain a generative model with differential privacy. This generative model is used to generate an unlimited number of synthetic datasets to complete various data analysis tasks instead of sensitive datasets. Experimental results demonstrate that the RDP-WGAN privacy protection framework provides privacy protection for sensitive image datasets while ensuring the usefulness of the synthetic datasets.
2023-02-17
Eftekhari Moghadam, Vahid, Prinetto, Paolo, Roascio, Gianluca.  2022.  Real-Time Control-Flow Integrity for Multicore Mixed-Criticality IoT Systems. 2022 IEEE European Test Symposium (ETS). :1–4.
The spread of the Internet of Things (IoT) and the use of smart control systems in many mission-critical or safety-critical applications domains, like automotive or aeronautical, make devices attractive targets for attackers. Nowadays, several of these are mixed-criticality systems, i.e., they run both high-criticality tasks (e.g., a car control system) and low-criticality ones (e.g., infotainment). High-criticality routines often employ Real-Time Operating Systems (RTOS) to enforce hard real-time requirements, while the tasks with lower constraints can be delegated to more generic-purpose operating systems (GPOS).Much of the control code for these devices is written in memory-unsafe languages such as C and C++. This makes them susceptible to powerful binary attacks, such as the famous Return-Oriented Programming (ROP). Control-Flow Integrity (CFI) is the most investigated security technique to protect against such threats. At now, CFI solutions for real-time embedded systems are not as mature as the ones for general-purpose systems, and even more, there is a lack of in-depth studies on how different operating systems with different security requirements and timing constraints can coexist on a single multicore platform.This paper aims at drawing attention to the subject, discussing the current scientific proposal, and in turn proposing a solution for an optimized asymmetric verification system for execution integrity. By using an embedded hypervisor, predefined cores could be dedicated to only high or low-criticality tasks, with the high-priority core being monitored by the lower-criticality core, relying on offline binary instrumentation and a light exchange of information and signals at runtime. The work also presents preliminary results about a possible implementation for multicore ARM platforms, running both RTOS and GPOS, both in terms of security and performance penalties.
2023-04-28
Nema, Tesu, Parsai, M. P..  2022.  Reconstruction of Incomplete Image by Radial Sampling. 2022 International Conference on Computer Communication and Informatics (ICCCI). :1–4.
Signals get sampled using Nyquist rate in conventional sampling method, but in compressive sensing the signals sampled below Nyquist rate by randomly taking the signal projections and reconstructing it out of very few estimations. But in case of recovering the image by utilizing compressive measurements with the help of multi-resolution grid where the image has certain region of interest (RoI) that is more important than the rest, it is not efficient. The conventional Cartesian sampling cannot give good result in motion image sensing recovery and is limited to stationary image sensing process. The proposed work gives improved results by using Radial sampling (a type of compression sensing). This paper discusses the approach of Radial sampling along with the application of Sparse Fourier Transform algorithms that helps in reducing acquisition cost and input/output overhead.
ISSN: 2329-7190
2023-03-17
Bátrla, Michael, Harašta, Jakub.  2022.  ‘Releasing the Hounds?’1 Disruption of the Ransomware Ecosystem Through Offensive Cyber Operations 2022 14th International Conference on Cyber Conflict: Keep Moving! (CyCon). 700:93–115.
Ransomware groups represent a significant cyber threat to Western states. Most high-end ransomware actors reside in territorial safe-haven jurisdictions and prove to be resistant to traditional law enforcement activities. This has prompted public sector and cybersecurity industry leaders to perceive ransomware as a national security threat requiring a whole-of-government approach, including cyber operations. In this paper, we investigate whether cyber operations or the threat of cyber operations influence the ransomware ecosystem. Subsequently, we assess the vectors of influence and characteristics of past operations that have disrupted the ecosystem. We describe the specifics of the ransomware-as-a-service system and provide three case studies (DarkSide/BlackMatter, REvil, Conti) highly representative of the current ecosystem and the effect cyber operations have on it. Additionally, we present initial observations about the influence of cyber operations on the system, including best practices from cyber operations against non-state groups. We conclude that even professional, highly skilled, and top-performing ransomware groups can be disrupted through cyber operations. In fact, cyber operations can even bypass some limits imposed on law enforcement operations. Even when ransomware groups rebrand or resurface after a hiatus, we suggest their infrastructure (both technical, human, and reputational) will still suffer mid-to long-term disruption. Although cyber operations are unlikely to be a silver bullet, they are an essential tool in the whole-of-government and multinational efforts and may even grow in importance in the next several years.1‘Releasing the hounds’ is a term for offensive cyber operations aimed at disrupting global ransomware gangs, especially those conducted by militaries or intelligence agencies. First use is found in Patrick Gray and Adam Boileau, ‘Feature Podcast: Releasing the Hounds with Bobby Chesney’, Risky Business, 28 May 2020, https://risky.biz/HF6/.
ISSN: 2325-5374
2023-01-05
Ma, Shiming.  2022.  Research and Design of Network Information Security Attack and Defense Practical Training Platform based on ThinkPHP Framework. 2022 2nd Asia-Pacific Conference on Communications Technology and Computer Science (ACCTCS). :27—31.
To solve the current problem of scarce information security talents, this paper proposes to design a network information security attack and defense practical training platform based on ThinkPHP framework. It provides help for areas with limited resources and also offers a communication platform for the majority of information security enthusiasts and students. The platform is deployed using ThinkPHP, and in order to meet the personalized needs of the majority of users, support vector machine algorithms are added to the platform to provide a more convenient service for users.
2023-03-17
Lv, Xiaonan, Huang, Zongwei, Sun, Liangyu, Wu, Miaomiao, Huang, Li, Li, Yehong.  2022.  Research and design of web-based capital transaction data dynamic multi-mode visual analysis tool. 2022 IEEE 7th International Conference on Smart Cloud (SmartCloud). :165–170.
For multi-source heterogeneous complex data types of data cleaning and visual display, we proposed to build dynamic multimode visualization analysis tool, according to the different types of data designed by the user in accordance with the data model, and use visualization technology tools to build and use CQRS technology to design, external interface using a RESTFul architecture, The domain model and data query are completely separated, and the underlying data store adopts Hbase, ES and relational database. Drools is adopted in the data flow engine. According to the internal algorithm, three kinds of graphs can be output, namely, transaction relationship network analysis graph, capital flow analysis graph and transaction timing analysis graph, which can reduce the difficulty of analysis and help users to analyze data in a more friendly way
2023-09-08
Huang, Junya, Liu, Zhihua, Zheng, Zhongmin, Wei, Xuan, Li, Man, Jia, Man.  2022.  Research and Development of Intelligent Protection Capabilities Against Internet Routing Hijacking and Leakage. 2022 International Conference on Artificial Intelligence, Information Processing and Cloud Computing (AIIPCC). :50–54.
With the rapid growth of the number of global network entities and interconnections, the security risks of network relationships are constantly accumulating. As the basis of network interconnection and communication, Internet routing is facing severe challenges such as insufficient online monitoring capability of large-scale routing events and lack of effective and credible verification mechanism. Major global routing security events emerge one after another, causing extensive and far-reaching impacts. To solve these problems, China Telecom studied the BGP (border gateway protocol) SDN (software defined network) controller technology to monitor the interconnection routing, constructed the global routing information database trust source integrating multi-dimensional information and developed the function of the protocol level based real-time monitoring system of Internet routing security events. Through these means, it realizes the second-level online monitoring capability of large-scale IP network Internet service routing events, forms the minute-level route leakage interception and route hijacking blocking solutions, and achieves intelligent protection capability of Internet routing security.
2023-09-01
He, Benwei, Guo, Yunfei, Liang, Hao, Wang, Qingfeng, Xie, Genlin.  2022.  Research on Defending Code Reuse Attack Based on Binary Rewriting. 2022 IEEE 8th International Conference on Computer and Communications (ICCC). :1682—1686.
At present, code reuse attacks, such as Return Oriented Programming (ROP), execute attacks through the code of the application itself, bypassing the traditional defense mechanism and seriously threatening the security of computer software. The existing two mainstream defense mechanisms, Address Space Layout Randomization (ASLR), are vulnerable to information disclosure attacks, and Control-Flow Integrity (CFI) will bring high overhead to programs. At the same time, due to the widespread use of software of unknown origin, there is no source code provided or available, so it is not always possible to secure the source code. In this paper, we propose FRCFI, an effective method based on binary rewriting to prevent code reuse attacks. FRCFI first disrupts the program's memory space layout through function shuffling and NOP insertion, then verifies the execution of the control-flow branch instruction ret and indirect call/jmp instructions to ensure that the target address is not modified by attackers. Experiment show shows that FRCFI can effectively defend against code reuse attacks. After randomization, the survival rate of gadgets is only 1.7%, and FRCFI adds on average 6.1% runtime overhead on SPEC CPU2006 benchmark programs.
2023-07-12
Tang, Muyi.  2022.  Research on Edge Network Security Technology Based on DHR. 2022 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA). :614—617.
This paper examines how the extent of the network has expanded from the traditional computer Internet to the field of edge computing based on mobile communication technology with the in-depth development of the mobile Internet and the Internet of Things. In particular, the introduction of 5G has enabled massive edge computing nodes to build a high-performance, energy-efficient and low-latency mobile edge computing architecture. Traditional network security technologies and methods are not fully applicable in this environment. The focus of this paper is on security protection for edge networks. Using virtualized networks builds a dynamic heterogeneous redundancy security model (i.e., DHR). It first designs and evaluates the DHR security model, then constructs the required virtualized heterogeneous entity set, and finally constructs a DHR-based active defense scheme. Compared with existing network security solutions, the security protection technology of the edge network studied this time has a better protective effect against the unknown security threats facing the edge network.
2023-08-25
Peng, Jianhuan.  2022.  Research on E-government Information Security Based on Cloud Computing. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:312–316.
As an important pillar of social informatization, e-government not only provides more convenient services for the public, but also effectively improves administrative efficiency. At the same time, the application of cloud computing technology also urgently requires the government to improve the level of digital construction. This paper proposes the concept of e-government based on cloud computing, analyze the possible hidden dangers that cloud computing brings to e-government in management, technology, and security, and build cloud computing e-government information security system from three aspects: cloud security management, cloud security technology, and cloud security assurance.
ISSN: 2693-2865
2023-01-05
Jiang, Xiping, Wang, Qian, Du, Mingming, Ding, Yilin, Hao, Jian, Li, Ying, Liu, Qingsong.  2022.  Research on GIS Isolating Switch Mechanical Fault Diagnosis based on Cross-Validation Parameter Optimization Support Vector Machine. 2022 IEEE International Conference on High Voltage Engineering and Applications (ICHVE). :1—4.
GIS equipment is an important component of power system, and mechanical failure often occurs in the process of equipment operation. In order to realize GIS equipment mechanical fault intelligent detection, this paper presents a mechanical fault diagnosis model for GIS equipment based on cross-validation parameter optimization support vector machine (CV-SVM). Firstly, vibration experiment of isolating switch was carried out based on true 110 kV GIS vibration simulation experiment platform. Vibration signals were sampled under three conditions: normal, plum finger angle change fault, plum finger abrasion fault. Then, the c and G parameters of SVM are optimized by cross validation method and grid search method. A CV-SVM model for mechanical fault diagnosis was established. Finally, training and verification are carried out by using the training set and test set models in different states. The results show that the optimization of cross-validation parameters can effectively improve the accuracy of SVM classification model. It can realize the accurate identification of GIS equipment mechanical fault. This method has higher diagnostic efficiency and performance stability than traditional machine learning. This study can provide reference for on-line monitoring and intelligent fault diagnosis analysis of GIS equipment mechanical vibration.
2023-04-28
Wang, Man.  2022.  Research on Network Confrontation Information Security Protection System under Computer Deep Learning. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :1442–1447.
Aiming at the single hopping strategy in the terminal information hopping active defense technology, a variety of heterogeneous hopping modes are introduced into the terminal information hopping system, the definition of the terminal information is expanded, and the adaptive adjustment of the hopping strategy is given. A network adversarial training simulation system is researched and designed, and related subsystems are discussed from the perspective of key technologies and their implementation, including interactive adversarial training simulation system, adversarial training simulation support software system, adversarial training simulation evaluation system and adversarial training Mock Repository. The system can provide a good environment for network confrontation theory research and network confrontation training simulation, which is of great significance.
2023-08-25
Wu, Bo, Chen, Lei, Zong, Qi.  2022.  Research on New Power System Network Security Guarantee System. 2022 International Conference on Informatics, Networking and Computing (ICINC). :91–94.
Based on the characteristics of the new power system with many points, wide range and unattended, this paper studies the specific Cyberspace security risks faced by the disease control side, the station side and the site side, and proposes a new power system Cyberspace security assurance system of “integration of collection, network, side, end, industry and people”. The site side security access measures, the site side civil air defense technology integration measures, the whole business endogenous security mechanism, the whole domain communication security mechanism, the integrated monitoring and early warning and emergency response mechanism are specifically adopted to form a comprehensive integrated security mechanism for the new power system, form a sustainable protection model, effectively improve the security capability, while taking into account the cost and operational complexity of specific implementation links, Provide comprehensive guarantee capability for the safe operation of the new power system.
2023-06-09
Sun, Zeyu, Zhang, Chi.  2022.  Research on Relation Extraction of Fusion Entity Enhancement and Shortest Dependency Path based on BERT. 2022 IEEE 10th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). 10:766—770.
Deep learning models rely on single word features and location features of text to achieve good results in text relation extraction tasks. However, previous studies have failed to make full use of semantic information contained in sentence dependency syntax trees, and data sparseness and noise propagation still affect classification models. The BERT(Bidirectional Encoder Representations from Transformers) pretrained language model provides a better representation of natural language processing tasks. And entity enhancement methods have been proved to be effective in relation extraction tasks. Therefore, this paper proposes a combination of the shortest dependency path and entity-enhanced BERT pre-training language model for model construction to reduce the impact of noise terms on the classification model and obtain more semantically expressive feature representation. The algorithm is tested on SemEval-2010 Task 8 English relation extraction dataset, and the F1 value of the final experiment can reach 0. 881.