Biblio

Found 534 results

Filters: First Letter Of Title is B  [Clear All Filters]
2020-07-16
Guirguis, Mina, Tahsini, Alireza, Siddique, Khan, Novoa, Clara, Moore, Justin, Julien, Christine, Dunstatter, Noah.  2018.  BLOC: A Game-Theoretic Approach to Orchestrate CPS against Cyber Attacks. 2018 IEEE Conference on Communications and Network Security (CNS). :1—9.

Securing Cyber-Physical Systems (CPS) against cyber-attacks is challenging due to the wide range of possible attacks - from stealthy ones that seek to manipulate/drop/delay control and measurement signals to malware that infects host machines that control the physical process. This has prompted the research community to address this problem through developing targeted methods that protect and check the run-time operation of the CPS. Since protecting signals and checking for errors result in performance penalties, they must be performed within the delay bounds dictated by the control loop. Due to the large number of potential checks that can be performed, coupled with various degrees of their effectiveness to detect a wide range of attacks, strategic assignment of these checks in the control loop is a critical endeavor. To that end, this paper presents a coherent runtime framework - which we coin BLOC - for orchestrating the CPS with check blocks to secure them against cyber attacks. BLOC capitalizes on game theoretical techniques to enable the defender to find an optimal randomized use of check blocks to secure the CPS while respecting the control-loop constraints. We develop a Stackelberg game model for stateless blocks and a Markov game model for stateful ones and derive optimal policies that minimize the worst-case damage from rational adversaries. We validate our models through extensive simulations as well as a real implementation for a HVAC system.

2019-05-20
[Anonymous].  2018.  Breaking the Circuit-Size Barrier in Secret Sharing. STOC 2018.

{We study secret sharing schemes for general (non-threshold) access structures. A general secret sharing scheme for n parties is associated to a monotone function F:\0,1\n$\rightarrowłbrace$0,1\}. In such a scheme, a dealer distributes shares of a secret s among n parties. Any subset of parties T {$\subseteq$} [n] should be able to put together their shares and reconstruct the secret s if F(T)=1, and should have no information about s if F(T)=0. One of the major long-standing questions in information-theoretic cryptography is to minimize the (total) size of the shares in a secret-sharing scheme for arbitrary monotone functions F. There is a large gap between lower and upper bounds for secret sharing. The best known scheme for general F has shares of size 2n-o(n), but the best lower bound is {$Ømega$}(n2/logn). Indeed, the exponential share size is a direct result of the fact that in all known secret-sharing schemes, the share size grows with the size of a circuit (or formula, or monotone span program) for F. Indeed, several researchers have suggested the existence of a representation size barrier which implies that the right answer is closer to the upper bound, namely, 2n-o(n). In this work, we overcome this barrier by constructing a secret sharing scheme for any access structure with shares of size 20.994n and a linear secret sharing scheme for any access structure with shares of size 20.999n. As a contribution of independent interest, we also construct a secret sharing scheme with shares of size 2Õ({$\surd$}n) for 2n n/2 monotone access structures, out of a total of 2n n/2{$\cdot$} (1+O(logn/n)) of them. Our construction builds on recent works that construct better protocols for the conditional disclosure of secrets (CDS) problem.

2019-05-01
Pillutla, H., Arjunan, A..  2018.  A Brief Review of Fuzzy Logic and Its Usage Towards Counter-Security Issues. 2018 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET). :1-6.

Nowadays, most of the world's population has become much dependent on computers for banking, healthcare, shopping, and telecommunication. Security has now become a basic norm for computers and its resources since it has become inherently insecure. Security issues like Denial of Service attacks, TCP SYN Flooding attacks, Packet Dropping attacks and Distributed Denial of Service attacks are some of the methods by which unauthorized users make the resource unavailable to authorized users. There are several security mechanisms like Intrusion Detection System, Anomaly detection and Trust model by which we can be able to identify and counter the abuse of computer resources by unauthorized users. This paper presents a survey of several security mechanisms which have been implemented using Fuzzy logic. Fuzzy logic is one of the rapidly developing technologies, which is used in a sophisticated control system. Fuzzy logic deals with the degree of truth rather than the Boolean logic, which carries the values of either true or false. So instead of providing only two values, we will be able to define intermediate values.

2019-05-08
Moore, A. P., Cassidy, T. M., Theis, M. C., Bauer, D., Rousseau, D. M., Moore, S. B..  2018.  Balancing Organizational Incentives to Counter Insider Threat. 2018 IEEE Security and Privacy Workshops (SPW). :237–246.

Traditional security practices focus on negative incentives that attempt to force compliance through constraints, monitoring, and punishment. This paper describes a missing dimension of most organizations' insider threat defense-one that explicitly considers positive incentives for attracting individuals to act in the interests of the organization. Positive incentives focus on properties of the organizational context of workforce management practices - including those relating to organizational supportiveness, coworker connectedness, and job engagement. Without due attention to the organizational context in which insider threats occur, insider misbehaviors may simply reoccur as a natural response to counterproductive or dysfunctional management practices. A balanced combination of positive and negative incentives can improve employees' relationships with the organization and provide a means for employees to better cope with personal and professional stressors. An insider threat program that balances organizational incentives can become an advocate for the workforce and a means for improving employee work life - a welcome message to employees who feel threatened by programs focused on discovering insider wrongdoing.

2020-07-27
Dangiwa, Bello Ahmed, Kumar, Smitha S.  2018.  A Business Card Reader Application for iOS devices based on Tesseract. 2018 International Conference on Signal Processing and Information Security (ICSPIS). :1–4.
As the accessibility of high-resolution smartphone camera has increased and an improved computational speed, it is now convenient to build Business Card Readers on mobile phones. The project aims to design and develop a Business Card Reader (BCR) Application for iOS devices, using an open-source OCR Engine - Tesseract. The system accuracy was tested and evaluated using a dataset of 55 digital business cards obtained from an online repository. The accuracy result of the system was up to 74% in terms of both text recognition and data detection. A comparative analysis was carried out against a commercial business card reader application and our application performed vastly reasonable.
2020-07-30
Patnaik, Satwik, Ashraf, Mohammed, Sinanoglu, Ozgur, Knechtel, Johann.  2018.  Best of Both Worlds: Integration of Split Manufacturing and Camouflaging into a Security-Driven CAD Flow for 3D ICs. 2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). :1—8.

With the globalization of manufacturing and supply chains, ensuring the security and trustworthiness of ICs has become an urgent challenge. Split manufacturing (SM) and layout camouflaging (LC) are promising techniques to protect the intellectual property (IP) of ICs from malicious entities during and after manufacturing (i.e., from untrusted foundries and reverse-engineering by end-users). In this paper, we strive for “the best of both worlds,” that is of SM and LC. To do so, we extend both techniques towards 3D integration, an up-and-coming design and manufacturing paradigm based on stacking and interconnecting of multiple chips/dies/tiers. Initially, we review prior art and their limitations. We also put forward a novel, practical threat model of IP piracy which is in line with the business models of present-day design houses. Next, we discuss how 3D integration is a naturally strong match to combine SM and LC. We propose a security-driven CAD and manufacturing flow for face-to-face (F2F) 3D ICs, along with obfuscation of interconnects. Based on this CAD flow, we conduct comprehensive experiments on DRC-clean layouts. Strengthened by an extensive security analysis (also based on a novel attack to recover obfuscated F2F interconnects), we argue that entering the next, third dimension is eminent for effective and efficient IP protection.

2019-04-01
Xu, L., Chen, L., Gao, Z., Chang, Y., Iakovou, E., Shi, W..  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1–5.

Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.

2021-10-21
Xu, Lei, Chen, Lin, Gao, Zhimin, Chang, Yanling, Iakovou, Eleftherios, Shi, Weidong.  2018.  Binding the Physical and Cyber Worlds: A Blockchain Approach for Cargo Supply Chain Security Enhancement. 2018 IEEE International Symposium on Technologies for Homeland Security (HST). :1-5.
Maritime transportation plays a critical role for the U.S. and global economies, and has evolved into a complex system that involves a plethora of supply chain stakeholders spread around the globe. The inherent complexity brings huge security challenges including cargo loss and high burdens in cargo inspection against illicit activities and potential terrorist attacks. The emerging blockchain technology provides a promising tool to build a unified maritime cargo tracking system critical for cargo security. However, most existing efforts focus on transportation data itself, while ignoring how to bind the physical cargo movements and information managed by the system consistently. This can severely undermine the effectiveness of securing cargo transportation. To fulfill this gap, we propose a binding scheme leveraging a novel digital identity management mechanism. The digital identity management mechanism maps the best practice in the physical world to the cyber world and can be seamlessly integrated with a blockchain-based cargo management system.
2019-09-26
Pant, S., Kumar, V..  2018.  BitTrusty: A BitCoin Incentivized Peer-to-Peer File Sharing System. 2018 IEEE 3rd International Conference on Computing, Communication and Security (ICCCS). :148-155.

Among the various challenges faced by the P2P file sharing systems like BitTorrent, the most common attack on the basic foundation of such systems is: Free-riding. Generally, free-riders are the users in the file sharing network who avoid contributing any resources but tend to consume the resources unethically from the P2P network whereas white-washers are more specific category of free-riders that voluntarily leave the system in a frequent fashion and appearing again and again with different identities to escape from the penal actions imposed by the network. BitTorrent being a collaborative distributed platform requires techniques for discouraging and punishing such user behavior. In this paper, we propose that ``Instead of punishing, we may focus more on rewarding the honest peers''. This approach could be presented as an alternative to other mechanisms of rewarding the peers like tit-for-tat [10], reciprocity based etc., built for the BitTorrent platform. The prime objective of BitTrusty is: providing incentives to the cooperative peers by rewarding in terms of cryptocoins based on blockchain. We have anticipated three ways of achieving the above defined objective. We are further investigating on how to integrate these two technologies of distributed systems viz. P2P file sharing systems and blockchain, and with this new paradigm, interesting research areas can be further developed, both in the field of P2P cryptocurrency networks and also when these networks are combined with other distributed scenarios.

2019-06-10
Alsulami, B., Mancoridis, S..  2018.  Behavioral Malware Classification Using Convolutional Recurrent Neural Networks. 2018 13th International Conference on Malicious and Unwanted Software (MALWARE). :103-111.

Behavioral malware detection aims to improve on the performance of static signature-based techniques used by anti-virus systems, which are less effective against modern polymorphic and metamorphic malware. Behavioral malware classification aims to go beyond the detection of malware by also identifying a malware's family according to a naming scheme such as the ones used by anti-virus vendors. Behavioral malware classification techniques use run-time features, such as file system or network activities, to capture the behavioral characteristic of running processes. The increasing volume of malware samples, diversity of malware families, and the variety of naming schemes given to malware samples by anti-virus vendors present challenges to behavioral malware classifiers. We describe a behavioral classifier that uses a Convolutional Recurrent Neural Network and data from Microsoft Windows Prefetch files. We demonstrate the model's improvement on the state-of-the-art using a large dataset of malware families and four major anti-virus vendor naming schemes. The model is effective in classifying malware samples that belong to common and rare malware families and can incrementally accommodate the introduction of new malware samples and families.

2019-09-26
Liu, Y., Zhang, J., Gao, Q..  2018.  A Blockchain-Based Secure Cloud Files Sharing Scheme with Fine-Grained Access Control. 2018 International Conference on Networking and Network Applications (NaNA). :277-283.

As cloud services greatly facilitate file sharing online, there's been a growing awareness of the security challenges brought by outsourcing data to a third party. Traditionally, the centralized management of cloud service provider brings about safety issues because the third party is only semi-trusted by clients. Besides, it causes trouble for sharing online data conveniently. In this paper, the blockchain technology is utilized for decentralized safety administration and provide more user-friendly service. Apart from that, Ciphertext-Policy Attribute Based Encryption is introduced as an effective tool to realize fine-grained data access control of the stored files. Meanwhile, the security analysis proves the confidentiality and integrity of the data stored in the cloud server. Finally, we evaluate the performance of computation overhead of our system.

2020-11-17
Tosh, D. K., Shetty, S., Foytik, P., Njilla, L., Kamhoua, C. A..  2018.  Blockchain-Empowered Secure Internet -of- Battlefield Things (IoBT) Architecture. MILCOM 2018 - 2018 IEEE Military Communications Conference (MILCOM). :593—598.

Internet of Things (IoT) technology is emerging to advance the modern defense and warfare applications because the battlefield things, such as combat equipment, warfighters, and vehicles, can sense and disseminate information from the battlefield to enable real-time decision making on military operations and enhance autonomy in the battlefield. Since this Internet-of-Battlefield Things (IoBT) environment is highly heterogeneous in terms of devices, network standards, platforms, connectivity, and so on, it introduces trust, security, and privacy challenges when battlefield entities exchange information with each other. To address these issues, we propose a Blockchain-empowered auditable platform for IoBT and describe its architectural components, such as battlefield-sensing layer, network layer, and consensus and service layer, in depth. In addition to the proposed layered architecture, this paper also presents several open research challenges involved in each layer to realize the Blockchain-enabled IoBT platform.

2018-08-23
Dong, Changyu, Wang, Yilei, Aldweesh, Amjad, McCorry, Patrick, van Moorsel, Aad.  2017.  Betrayal, Distrust, and Rationality: Smart Counter-Collusion Contracts for Verifiable Cloud Computing. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :211–227.
Cloud computing has become an irreversible trend. Together comes the pressing need for verifiability, to assure the client the correctness of computation outsourced to the cloud. Existing verifiable computation techniques all have a high overhead, thus if being deployed in the clouds, would render cloud computing more expensive than the on-premises counterpart. To achieve verifiability at a reasonable cost, we leverage game theory and propose a smart contract based solution. In a nutshell, a client lets two clouds compute the same task, and uses smart contracts to stimulate tension, betrayal and distrust between the clouds, so that rational clouds will not collude and cheat. In the absence of collusion, verification of correctness can be done easily by crosschecking the results from the two clouds. We provide a formal analysis of the games induced by the contracts, and prove that the contracts will be effective under certain reasonable assumptions. By resorting to game theory and smart contracts, we are able to avoid heavy cryptographic protocols. The client only needs to pay two clouds to compute in the clear, and a small transaction fee to use the smart contracts. We also conducted a feasibility study that involves implementing the contracts in Solidity and running them on the official Ethereum network.
2018-09-28
Alshboul, Yazan, Streff, Kevin.  2017.  Beyond Cybersecurity Awareness: Antecedents and Satisfaction. Proceedings of the 2017 International Conference on Software and e-Business. :85–91.
Organizations develop technical and procedural measures to protect information systems. Relying only on technical based security solutions is not enough. Organizations must consider technical security solutions along with social, human, and organizational factors. The human element represents the employees (insiders) who use the information systems and other technology resources in their day-to-day operations. ISP awareness is essential to protect organizational information systems. This study adapts the Innovation Diffusion Theory to examine the antecedents of ISP awareness and its impact on the satisfaction with ISP and security practices. A sample of 236 employees in universities in the United States is collected to evaluate the research model. Results indicated that ISP quality, self-efficacy, and technology security awareness significantly impact ISP awareness. The current study presents significant contributions toward understanding the antecedents of ISP awareness and provides a starting point toward including satisfaction aspect in information security behavioral domain.
2018-08-23
Svetinovic, Davor.  2017.  Blockchain Engineering for the Internet of Things: Systems Security Perspective. Proceedings of the 3rd ACM International Workshop on IoT Privacy, Trust, and Security. :1–1.
The Internet of Things (IoT) technology has a potential to bring the benefits of intelligently interconnecting not just computers and humans, but most of everyday things. IoT has a promise of opening significant business process improvement opportunities leading to economic growth and cost reductions. However, there are many challenges facing IoT, including significant scalability and security challenges due to the integration of potentially huge number of things into the network. Many of scalability and security issues stem from a centralized, primarily client/server, architecture of IoT systems and frameworks. Blockchain technology, as a relativelly new approach to decentralized computation and assets management and transfer, has a potential to help solve a number of scalability and security issues that IoT is facing, primarilly through the removal of centralized points of failure for such systems. As such, blockchain technology and IoT integration provides a promising direction and it has recently generated significant research interest, e.g., [4]. In this talk, we present our experiences based on our recent project in enhancing security and privacy in decentralized energy trading in smart grids using blockchain, multi-signatures and anonymous messaging streams [1], that has built upon our previous work on Bitcoin-based decentralized carbon emissions trading infrastructure model [2]. In particular, we present the blockchain systems security issues within the context of IoT security and privacy requirements [3]. This is done with the intention of producing an early integrated security model for blockchain-powered IoT systems [5]. The presentation is constrained to the discussion of the architecture-level requirements [6]. Finally, we will present the main opportunity loss if the integration ignores the full realization of the real-world asset transaction paradigm.
2018-06-11
Moskewicz, Matthew W., Jannesari, Ali, Keutzer, Kurt.  2017.  Boda: A Holistic Approach for Implementing Neural Network Computations. Proceedings of the Computing Frontiers Conference. :53–62.
Neural networks (NNs) are currently a very popular topic in machine learning for both research and practice. GPUs are the dominant computing platform for research efforts and are also gaining popularity as a deployment platform for applications such as autonomous vehicles. As a result, GPU vendors such as NVIDIA have spent enormous effort to write special-purpose NN libraries. On other hardware targets, especially mobile GPUs, such vendor libraries are not generally available. Thus, the development of portable, open, high-performance, energy-efficient GPU code for NN operations would enable broader deployment of NN-based algorithms. A root problem is that high efficiency GPU programming suffers from high complexity, low productivity, and low portability. To address this, this work presents a framework to enable productive, high-efficiency GPU programming for NN computations across hardware platforms and programming models. In particular, the framework provides specific support for metaprogramming and autotuning of operations over ND-Arrays. To show the correctness and value of our framework and approach, we implement a selection of NN operations, covering the core operations needed for deploying three common image-processing neural networks. We target three different hardware platforms: NVIDIA, AMD, and Qualcomm GPUs. On NVIDIA GPUs, we show both portability between OpenCL and CUDA as well competitive performance compared to the vendor library. On Qualcomm GPUs, we show that our framework enables productive development of target-specific optimizations, and achieves reasonable absolute performance. Finally, On AMD GPUs, we show initial results that indicate our framework can yield reasonable performance on a new platform with minimal effort.
2018-02-15
Green, Matthew, Miers, Ian.  2017.  Bolt: Anonymous Payment Channels for Decentralized Currencies. Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security. :473–489.
Bitcoin owes its success to the fact that transactions are transparently recorded in the blockchain, a global public ledger that removes the need for trusted parties. Unfortunately, recording every transaction in the blockchain causes privacy, latency, and scalability issues. Building on recent proposals for "micropayment channels" — two party associations that use the ledger only for dispute resolution — we introduce techniques for constructing anonymous payment channels. Our proposals allow for secure, instantaneous and private payments that substantially reduce the storage burden on the payment network. Specifically, we introduce three channel proposals, including a technique that allows payments via untrusted intermediaries. We build a concrete implementation of our scheme and show that it can be deployed via a soft fork to existing anonymous currencies such as ZCash.
2018-06-07
Cha, Seunghun, Kwag, Sungsu, Kim, Hyoungshick, Huh, Jun Ho.  2017.  Boosting the Guessing Attack Performance on Android Lock Patterns with Smudge Attacks. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. :313–326.
Android allows 20 consecutive fail attempts on unlocking a device. This makes it difficult for pure guessing attacks to crack user patterns on a stolen device before it permanently locks itself. We investigate the effectiveness of combining Markov model-based guessing attacks with smudge attacks on unlocking Android devices within 20 attempts. Detected smudges are used to pre-compute all the possible segments and patterns, significantly reducing the pattern space that needs to be brute-forced. Our Markov-model was trained using 70% of a real-world pattern dataset that consists of 312 patterns. We recruited 12 participants to draw the remaining 30% on Samsung Galaxy S4, and used smudges they left behind to analyze the performance of the combined attack. Our results show that this combined method can significantly improve the performance of pure guessing attacks, cracking 74.17% of patterns compared to just 13.33% when the Markov model-based guessing attack was performed alone—those results were collected from a naive usage scenario where the participants were merely asked to unlock a given device. Even under a more complex scenario that asked the participants to use the Facebook app for a few minutes—obscuring smudges were added as a result—our combined attack, at 31.94%, still outperformed the pure guessing attack at 13.33%. Obscuring smudges can significantly affect the performance of smudge-based attacks. Based on this finding, we recommend that a mitigation technique should be designed to help users add obscurity, e.g., by asking users to draw a second random pattern upon unlocking a device.
2018-12-10
Pewny, Jannik, Koppe, Philipp, Davi, Lucas, Holz, Thorsten.  2017.  Breaking and Fixing Destructive Code Read Defenses. Proceedings of the 33rd Annual Computer Security Applications Conference. :55–67.
Just-in-time return-oriented programming (JIT-ROP) is a powerful memory corruption attack that bypasses various forms of code randomization. Execute-only memory (XOM) can potentially prevent these attacks, but requires source code. In contrast, destructive code reads (DCR) provide a trade-off between security and legacy compatibility. The common belief is that DCR provides strong protection if combined with a high-entropy code randomization. The contribution of this paper is twofold: first, we demonstrate that DCR can be bypassed regardless of the underlying code randomization scheme. To this end, we show novel, generic attacks that infer the code layout for highly randomized program code. Second, we present the design and implementation of BGDX (Byte-Granular DCR and XOM), a novel mitigation technique that protects legacy binaries against code inference attacks. BGDX enforces memory permissions on a byte-granular level allowing us to combine DCR and XOM for legacy, off-the-shelf binaries. Our evaluation shows that BGDX is not only effective, but highly efficient, imposing only a geometric mean performance overhead of 3.95 % on SPEC.
2018-08-23
Kolias, Constantinos, Copi, Lucas, Zhang, Fengwei, Stavrou, Angelos.  2017.  Breaking BLE Beacons For Fun But Mostly Profit. Proceedings of the 10th European Workshop on Systems Security. :4:1–4:6.
Bluetooth Low Energy (BLE) Beacons introduced a novel technology that enables devices to advertise their presence in an area by constantly broadcasting a static unique identifier. The aim was to enhance services with location and context awareness. Although the hardware components of typical BLE Beacons systems are able to support adequate cryptography, the design and implementation of most publicly available BLE Beacon protocols appears to render them vulnerable to a plethora of attacks. Indeed, in this paper, we were able to perform user tracking, user behavior monitoring, spoofing as well as denial of service (DoS) of many supported services. Our aim is to show that these attacks stem from design flaws of the underlying protocols and assumptions made for the BLE beacons protocols. Using a clearly defined threat model, we provide a formal analysis of the adversarial capabilities and requirements and the attack impact on security and privacy for the end-user. Contrary to popular belief, BLE technology can be exploited even by low-skilled adversaries leading to exposure of user information. To demonstrate our attacks in practice, we selected Apple's iBeacon technology, as a case study. However, our analysis can be easily generalized to other BLE Beacon technologies.
2018-05-09
Williams, Laurie.  2017.  Building Forensics in: Supporting the Investigation of Digital Criminal Activities (Invited Talk). Proceedings of the 1st ACM SIGSOFT International Workshop on Software Engineering and Digital Forensics. :1–1.
Logging mechanisms that capture detailed traces of user activity, including creating, reading, updating, and deleting (CRUD) data, facilitate meaningful forensic analysis following a security or privacy breach. However, software requirements often inadequately and inconsistently state “what” user actions should be logged, thus hindering meaningful forensic analysis. In this talk, we will explore a variety of techniques for building a software system that supports forensic analysis. We will discuss systematic heuristics-driven and patterns-driven processes for identifying log events that must be logged based on user actions and potential accidental and malicious use, as described in natural language software artifacts. We then discuss systematic process for creating a black-box test suite for verifying the identified log events are logged. Using the results of executing the black-box test suite, we propose and evaluate a security metric for measuring the forensic-ability of user activity logs.
2018-06-07
Jha, Sagar, Behrens, Jonathan, Gkountouvas, Theo, Milano, Matthew, Song, Weijia, Tremel, Edward, Zink, Sydney, Birman, Ken, van Renesse, Robbert.  2017.  Building Smart Memories and High-speed Cloud Services for the Internet of Things with Derecho. Proceedings of the 2017 Symposium on Cloud Computing. :632–632.
The coming generation of Internet-of-Things (IoT) applications will process massive amounts of incoming data while supporting data mining and online learning. In cases with demanding real-time requirements, such systems behave as smart memories: a high-bandwidth service that captures sensor input, processes it using machine-learning tools, replicates and stores "interesting" data (discarding uninteresting content), updates knowledge models, and triggers urgently-needed responses. Derecho is a high-throughput library for building smart memories and similar services. At its core Derecho implements atomic multicast (Vertical Paxos) and state machine replication (the classic durable Paxos). Derecho's replicated\textbackslashtextlessT\textbackslashtextgreater template defines a replicated type; the corresponding objects are associated with subgroups, which can be sharded into key-value structures. The persistent\textbackslashtextlessT\textbackslashtextgreater and volatile\textbackslashtextlessT\textbackslashtextgreater storage templates implement version vectors with optional NVM persistence. These support time-indexed access, offering lock-free snapshot isolation that blends temporal precision and causal consistency. Derecho automates application management, supporting multigroup structures and providing consistent knowledge of the current membership mapping. A query can access data from many shards or subgroups, and consistency is guaranteed without any form of distributed locking. Whereas many systems run consensus on the critical path, Derecho requires consensus only when updating membership. By leveraging an RDMA data plane and NVM storage, and adopting a novel receiver-side batching technique, Derecho can saturate a 12.5GB RDMA network, sending millions of events per second in each subgroup or shard. In a single subgroup with 2–16 members, through-put peaks at 16 GB/s for large (100MB or more) objects. While key-value subgroups would typically use 2 or 3-member shards, unsharded subgroups could be large. In tests with a 128-member group, Derecho's multicast and Paxos protocols were just 3–5x slower than for a small group, depending on the traffic pattern. With network contention, slow members, or overlapping groups that generate concurrent traffic, Derecho's protocols remain stable and adapt to the available bandwidth.
2018-03-19
Portnoff, Rebecca S., Huang, Danny Yuxing, Doerfler, Periwinkle, Afroz, Sadia, McCoy, Damon.  2017.  Backpage and Bitcoin: Uncovering Human Traffickers. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. :1595–1604.

Sites for online classified ads selling sex are widely used by human traffickers to support their pernicious business. The sheer quantity of ads makes manual exploration and analysis unscalable. In addition, discerning whether an ad is advertising a trafficked victim or an independent sex worker is a very difficult task. Very little concrete ground truth (i.e., ads definitively known to be posted by a trafficker) exists in this space. In this work, we develop tools and techniques that can be used separately and in conjunction to group sex ads by their true owner (and not the claimed author in the ad). Specifically, we develop a machine learning classifier that uses stylometry to distinguish between ads posted by the same vs. different authors with 90% TPR and 1% FPR. We also design a linking technique that takes advantage of leakages from the Bitcoin mempool, blockchain and sex ad site, to link a subset of sex ads to Bitcoin public wallets and transactions. Finally, we demonstrate via a 4-week proof of concept using Backpage as the sex ad site, how an analyst can use these automated approaches to potentially find human traffickers.

2017-12-20
Matsuzaki, H., Osaki, T., Kawaguchi, K., Takagi, S., Ichiyanagi, M., Unga, J., Suzuki, R., Maruyama, K., Azuma, T..  2017.  Behavior of the oscillating microbubble clusters trapped in focused ultrasound field. 2017 IEEE International Ultrasonics Symposium (IUS). :1–4.

Summary form only given. Strong light-matter coupling has been recently successfully explored in the GHz and THz [1] range with on-chip platforms. New and intriguing quantum optical phenomena have been predicted in the ultrastrong coupling regime [2], when the coupling strength Ω becomes comparable to the unperturbed frequency of the system ω. We recently proposed a new experimental platform where we couple the inter-Landau level transition of an high-mobility 2DEG to the highly subwavelength photonic mode of an LC meta-atom [3] showing very large Ω/ωc = 0.87. Our system benefits from the collective enhancement of the light-matter coupling which comes from the scaling of the coupling Ω ∝ √n, were n is the number of optically active electrons. In our previous experiments [3] and in literature [4] this number varies from 104-103 electrons per meta-atom. We now engineer a new cavity, resonant at 290 GHz, with an extremely reduced effective mode surface Seff = 4 × 10-14 m2 (FE simulations, CST), yielding large field enhancements above 1500 and allowing to enter the few ({\textbackslash}textless;100) electron regime. It consist of a complementary metasurface with two very sharp metallic tips separated by a 60 nm gap (Fig.1(a, b)) on top of a single triangular quantum well. THz-TDS transmission experiments as a function of the applied magnetic field reveal strong anticrossing of the cavity mode with linear cyclotron dispersion. Measurements for arrays of only 12 cavities are reported in Fig.1(c). On the top horizontal axis we report the number of electrons occupying the topmost Landau level as a function of the magnetic field. At the anticrossing field of B=0.73 T we measure approximately 60 electrons ultra strongly coupled (Ω/ω- {\textbackslash}textbar{\textbackslash}textbar

2018-04-11
Khalid, F., Hasan, S. R., Hasan, O., Awwadl, F..  2017.  Behavior Profiling of Power Distribution Networks for Runtime Hardware Trojan Detection. 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS). :1316–1319.

Runtime hardware Trojan detection techniques are required in third party IP based SoCs as a last line of defense. Traditional techniques rely on golden data model or exotic signal processing techniques such as utilizing Choas theory or machine learning. Due to cumbersome implementation of such techniques, it is highly impractical to embed them on the hardware, which is a requirement in some mission critical applications. In this paper, we propose a methodology that generates a digital power profile during the manufacturing test phase of the circuit under test. A simple processing mechanism, which requires minimal computation of measured power signals, is proposed. For the proof of concept, we have applied the proposed methodology on a classical Advanced Encryption Standard circuit with 21 available Trojans. The experimental results show that the proposed methodology is able to detect 75% of the intrusions with the potential of implementing the detection mechanism on-chip with minimal overhead compared to the state-of-the-art techniques.