Biblio

Found 19604 results

2017-10-27
Waseem Abbas, Aron Laszka, Yevgeniy Vorobeychik, Xenofon Koutsoukos.  2017.  Improving Network Connectivity Using Trusted Nodes and Edges. American Control Conference (ACC 2017).

Network connectivity is a primary attribute and a characteristic phenomenon of any networked system. A high connectivity is often desired within networks; for instance to increase robustness to failures, and resilience against attacks. A typical approach to increasing network connectivity is to strategically add links; however, adding links is not always the most suitable option. In this paper, we propose an alternative approach to improving network connectivity, that is by making a small subset of nodes and edges “trusted,” which means that such nodes and edges remain intact at all times and are insusceptible to failures. We then show that by controlling the number of trusted nodes and edges, any desired level of network connectivity can be obtained. Along with characterizing network connectivity with trusted nodes and edges, we present heuristics to compute a small number of such nodes and edges. Finally, we illustrate our results on various networks.

2017-12-12
Yousefi, A., Jameii, S. M..  2017.  Improving the security of internet of things using encryption algorithms. 2017 International Conference on IoT and Application (ICIOT). :1–5.

Internet of things (IOT) is a kind of advanced information technology which has drawn societies' attention. Sensors and stimulators are usually recognized as smart devices of our environment. Simultaneously IOT security brings up new issues. Internet connection and possibility of interaction with smart devices cause those devices to involve more in human life. Therefore, safety is a fundamental requirement in designing IOT. IOT has three remarkable features: overall perception, reliable transmission and intelligent processing. Because of IOT span, security of conveying data is an essential factor for system security. Hybrid encryption technique is a new model that can be used in IOT. This type of encryption generates strong security and low computation. In this paper, we have proposed a hybrid encryption algorithm which has been conducted in order to reduce safety risks and enhancing encryption's speed and less computational complexity. The purpose of this hybrid algorithm is information integrity, confidentiality, non-repudiation in data exchange for IOT. Eventually suggested encryption algorithm has been simulated by MATLAB software and its speed and safety efficiency were evaluated in comparison with conventional encryption algorithm.

2018-10-26
Subramani, K. S., Antonopoulos, A., Abotabl, A. A., Nosratinia, A., Makris, Y..  2017.  INFECT: INconspicuous FEC-based Trojan: A hardware attack on an 802.11a/g wireless network. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :90–94.

We discuss the threat that hardware Trojans (HTs) impose on wireless networks, along with possible remedies for mitigating the risk. We first present an HT attack on an 802.11a/g transmitter (TX), which exploits Forward Error Correction (FEC) encoding. While FEC seeks to protect the transmitted signal against channel noise, it often offers more protection than needed by the actual channel. This margin is precisely where our HT finds room to stage an attack. We, then, introduce a Trojan-agnostic method which can be applied at the receiver (RX) to detect such attacks. This method monitors the noise distribution, to identify systematic inconsistencies which may be caused by an HT. Lastly, we describe a Wireless open-Access Research Platform (WARP) based experimental setup to investigate the feasibility and effectiveness of the proposed attack and defense. More specifically, we evaluate (i) the ability of a rogue RX to extract the leaked information, while an unsuspecting, legitimate RX accurately recovers the original message and remains oblivious to the attack, and (ii) the ability of channel noise profiling to detect the presence of the HT.

2018-11-14
Kustov, V. N., Yakovlev, V. V., Stankevich, T. L..  2017.  The Information Security System Synthesis Using the Graphs Theory. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). :148–151.
Timely prevention information security threats, provided by specialized software and hardware, is the effective business foundation, allowing to reduce reputational and financial risks for the company. At the same time, protection must be implemented in all detractors' possible attacks areas. If we turn to the Russian Federation leISSlation, then the FSTEC order No31 of March 14, 2014 may be adopted as the basis for ``isolating'' the protection vectors, according to which the basic measures for protection should be provided at the following levels: access subjects identification and authentication, access delineation, software restriction, computer storage media protection, etc. (There are 21 of them). On the hardware and software complex basis that implement protection at each of these levels, an enterprise information security system is created. To select the most appropriate software and hardware information security, and, therefore, to build an optimal enterprise information protection system, one can turn to graph theory. In this case, the problem is reduced to the ranked descending graph construction and the optimality problem solution, i.e. critical (maximal) path of this graph calculation. Each graph level corresponds to a specific subsystem of the information security system, while the subsystems are located in the alleged overcoming order protection by the attacker; tops - the considered information security tools; the graph is weighted, the each its arcs weight corresponds to the expert evaluation of the preference for using a particular tool.
2017-12-20
Luangmaneerote, S., Zaluska, E., Carr, L..  2017.  Inhibiting Browser Fingerprinting and Tracking. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :63–68.
This paper discusses possible approaches to address the loss of user privacy when browsing the web and being tracked by websites which compute a browser fingerprint identifying the user computer. The key problem is that the current fingerprinting countermeasures are insufficient to prevent fingerprinting tracking and also frequently produce side-effects on the web browser. The advantages and disadvantages of possible countermeasures are discussed in the context of improving resistance against browser fingerprinting. Finally, using a new browser extension is proposed as the best way to inhibit fingerprinting as it could probably inhibit some of the fingerprinting techniques used and also diminish the side-effects on the user browser experience, compared with existing techniques.
2018-05-09
Mahajan, V., Peddoju, S. K..  2017.  Integration of Network Intrusion Detection Systems and Honeypot Networks for Cloud Security. 2017 International Conference on Computing, Communication and Automation (ICCCA). :829–834.

With an aim of provisioning fast, reliable and low cost services to the users, the cloud-computing technology has progressed leaps and bounds. But, adjacent to its development is ever increasing ability of malicious users to compromise its security from outside as well as inside. The Network Intrusion Detection System (NIDS) techniques has gone a long way in detection of known and unknown attacks. The methods of detection of intrusion and deployment of NIDS in cloud environment are dependent on the type of services being rendered by the cloud. It is also important that the cloud administrator is able to determine the malicious intensions of the attackers and various methods of attack. In this paper, we carry out the integration of NIDS module and Honeypot Networks in Cloud environment with objective to mitigate the known and unknown attacks. We also propose method to generate and update signatures from information derived from the proposed integrated model. Using sandboxing environment, we perform dynamic malware analysis of binaries to derive conclusive evidence of malicious attacks.

2018-01-10
Wang, P., Safavi-Naini, R..  2017.  Interactive message transmission over adversarial wiretap channel II. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

In Wyner wiretap II model of communication, Alice and Bob are connected by a channel that can be eavesdropped by an adversary with unlimited computation who can select a fraction of communication to view, and the goal is to provide perfect information theoretic security. Information theoretic security is increasingly important because of the threat of quantum computers that can effectively break algorithms and protocols that are used in today's public key infrastructure. We consider interactive protocols for wiretap II channel with active adversary who can eavesdrop and add adversarial noise to the eavesdropped part of the codeword. These channels capture wireless setting where malicious eavesdroppers at reception distance of the transmitter can eavesdrop the communication and introduce jamming signal to the channel. We derive a new upperbound R ≤ 1 - ρ for the rate of interactive protocols over two-way wiretap II channel with active adversaries, and construct a perfectly secure protocol family with achievable rate 1 - 2ρ + ρ2. This is strictly higher than the rate of the best one round protocol which is 1 - 2ρ, hence showing that interaction improves rate. We also prove that even with interaction, reliable communication is possible only if ρ \textbackslashtextless; 1/2. An interesting aspect of this work is that our bounds will also hold in network setting when two nodes are connected by n paths, a ρ of which is corrupted by the adversary. We discuss our results, give their relations to the other works, and propose directions for future work.

2018-05-15
James Kollmer, Robert Irwin, Saroj Biswas,, Li Bai.  2017.  An Investigation of Cyberattacks on a Power System. 12th Intelligent Ship Symposium.

Philadelphia, PA

2018-11-19
Jiang, Y., Hui, Q..  2017.  Kalman Filter with Diffusion Strategies for Detecting Power Grid False Data Injection Attacks. 2017 IEEE International Conference on Electro Information Technology (EIT). :254–259.

Electronic power grid is a distributed network used for transferring electricity and power from power plants to consumers. Based on sensor readings and control system signals, power grid states are measured and estimated. As a result, most conventional attacks, such as denial-of-service attacks and random attacks, could be found by using the Kalman filter. However, false data injection attacks are designed against state estimation models. Currently, distributed Kalman filtering is proved effective in sensor networks for detection and estimation problems. Since meters are distributed in smart power grids, distributed estimation models can be used. Thus in this paper, we propose a diffusion Kalman filter for the power grid to have a good performance in estimating models and to effectively detect false data injection attacks.

2018-01-23
McDuff, D., Soleymani, M..  2017.  Large-scale Affective Content Analysis: Combining Media Content Features and Facial Reactions. 2017 12th IEEE International Conference on Automatic Face Gesture Recognition (FG 2017). :339–345.

We present a novel multimodal fusion model for affective content analysis, combining visual, audio and deep visual-sentiment descriptors from the media content with automated facial action measurements from naturalistic responses to the media. We collected a dataset of 48,867 facial responses to 384 media clips and extracted a rich feature set from the facial responses and media content. The stimulus videos were validated to be informative, inspiring, persuasive, sentimental or amusing. By combining the features, we were able to obtain a classification accuracy of 63% (weighted F1-score: 0.62) for a five-class task. This was a significant improvement over using the media content features alone. By analyzing the feature sets independently, we found that states of informed and persuaded were difficult to differentiate from facial responses alone due to the presence of similar sets of action units in each state (AU 2 occurring frequently in both cases). Facial actions were beneficial in differentiating between amused and informed states whereas media content features alone performed less well due to similarities in the visual and audio make up of the content. We highlight examples of content and reactions from each class. This is the first affective content analysis based on reactions of 10,000s of people.

2018-02-28
Kaelbling, L. P., Lozano-Pérez, T..  2017.  Learning composable models of parameterized skills. 2017 IEEE International Conference on Robotics and Automation (ICRA). :886–893.

There has been a great deal of work on learning new robot skills, but very little consideration of how these newly acquired skills can be integrated into an overall intelligent system. A key aspect of such a system is compositionality: newly learned abilities have to be characterized in a form that will allow them to be flexibly combined with existing abilities, affording a (good!) combinatorial explosion in the robot's abilities. In this paper, we focus on learning models of the preconditions and effects of new parameterized skills, in a form that allows those actions to be combined with existing abilities by a generative planning and execution system.

2018-05-11
2018-02-15
Dong, H., Ma, T., He, B., Zheng, J., Liu, G..  2017.  Multiple-fault diagnosis of analog circuit with fault tolerance. 2017 6th Data Driven Control and Learning Systems (DDCLS). :292–296.

A novel method, consisting of fault detection, rough set generation, element isolation and parameter estimation is presented for multiple-fault diagnosis on analog circuit with tolerance. Firstly, a linear-programming concept is developed to transform fault detection of circuit with limited accessible terminals into measurement to check existence of a feasible solution under tolerance constraints. Secondly, fault characteristic equation is deduced to generate a fault rough set. It is proved that the node voltages of nominal circuit can be used in fault characteristic equation with fault tolerance. Lastly, fault detection of circuit with revised deviation restriction for suspected fault elements is proceeded to locate faulty elements and estimate their parameters. The diagnosis accuracy and parameter identification precision of the method are verified by simulation results.

2018-04-02
Alom, M. Z., Taha, T. M..  2017.  Network Intrusion Detection for Cyber Security on Neuromorphic Computing System. 2017 International Joint Conference on Neural Networks (IJCNN). :3830–3837.

In the paper, we demonstrate a neuromorphic cognitive computing approach for Network Intrusion Detection System (IDS) for cyber security using Deep Learning (DL). The algorithmic power of DL has been merged with fast and extremely power efficient neuromorphic processors for cyber security. In this implementation, the data has been numerical encoded to train with un-supervised deep learning techniques called Auto Encoder (AE) in the training phase. The generated weights of AE are used as initial weights for the supervised training phase using neural networks. The final weights are converted to discrete values using Discrete Vector Factorization (DVF) for generating crossbar weight, synaptic weights, and thresholds for neurons. Finally, the generated crossbar weights, synaptic weights, threshold, and leak values are mapped to crossbars and neurons. In the testing phase, the encoded test samples are converted to spiking form by using hybrid encoding technique. The model has been deployed and tested on the IBM Neurosynaptic Core Simulator (NSCS) and on actual IBM TrueNorth neurosynaptic chip. The experimental results show around 90.12% accuracy for network intrusion detection for cyber security on the physical neuromorphic chip. Furthermore, we have investigated the proposed system not only for detection of malicious packets but also for classifying specific types of attacks and achieved 81.31% recognition accuracy. The neuromorphic implementation provides incredible detection and classification accuracy for network intrusion detection with extremely low power.

2018-05-11
2018-05-17
Kim, E., Wu, C.-J., Horowitz, R., Arcak, M..  2017.  Offset optimization of signalized intersections via the Burer-Monteiro method. Proceedings of the 2017 American Control Conference. :3554-3559.
2018-02-06
Camenisch, J., Chen, L., Drijvers, M., Lehmann, A., Novick, D., Urian, R..  2017.  One TPM to Bind Them All: Fixing TPM 2.0 for Provably Secure Anonymous Attestation. 2017 IEEE Symposium on Security and Privacy (SP). :901–920.

The Trusted Platform Module (TPM) is an international standard for a security chip that can be used for the management of cryptographic keys and for remote attestation. The specification of the most recent TPM 2.0 interfaces for direct anonymous attestation unfortunately has a number of severe shortcomings. First of all, they do not allow for security proofs (indeed, the published proofs are incorrect). Second, they provide a Diffie-Hellman oracle w.r.t. the secret key of the TPM, weakening the security and preventing forward anonymity of attestations. Fixes to these problems have been proposed, but they create new issues: they enable a fraudulent TPM to encode information into an attestation signature, which could be used to break anonymity or to leak the secret key. Furthermore, all proposed ways to remove the Diffie-Hellman oracle either strongly limit the functionality of the TPM or would require significant changes to the TPM 2.0 interfaces. In this paper we provide a better specification of the TPM 2.0 interfaces that addresses these problems and requires only minimal changes to the current TPM 2.0 commands. We then show how to use the revised interfaces to build q-SDH-and LRSW-based anonymous attestation schemes, and prove their security. We finally discuss how to obtain other schemes addressing different use cases such as key-binding for U-Prove and e-cash.

2018-09-05
Gai, K., Qiu, M..  2017.  An Optimal Fully Homomorphic Encryption Scheme. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :101–106.

The expeditious expansion of the networking technologies have remarkably driven the usage of the distributedcomputing as well as services, such as task offloading to the cloud. However, security and privacy concerns are restricting the implementations of cloud computing because of the threats from both outsiders and insiders. The primary alternative of protecting users' data is developing a Fully Homomorphic Encryption (FHE) scheme, which can cover both data protections and data processing in the cloud. Despite many previous attempts addressing this approach, none of the proposed work can simultaneously satisfy two requirements that include the non-noise accuracy and an efficiency execution. This paper focuses on the issue of FHE design and proposes a novel FHE scheme, which is called Optimal Fully Homomorphic Encryption (O-FHE). Our approach utilizes the properties of the Kronecker Product (KP) and designs a mechanism of achieving FHE, which consider both accuracy and efficiency. We have assessed our scheme in both theoretical proofing and experimental evaluations with the confirmed and exceptional results.

2018-05-14
G. Bloom, G. Cena, I. C. Bertolotti, T. Hu, A. Valenzano.  2017.  Optimized event notification in CAN through in-frame replies and Bloom filters. 2017 IEEE 13th International Workshop on Factory Communication Systems (WFCS). :1-10.
2018-02-21
Zheng, H., Zhang, X..  2017.  Optimizing Task Assignment with Minimum Cost on Heterogeneous Embedded Multicore Systems Considering Time Constraint. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :225–230.
Time and cost are the most critical performance metrics for computer systems including embedded system, especially for the battery-based embedded systems, such as PC, mainframe computer, and smart phone. Most of the previous work focuses on saving energy in a deterministic way by taking the average or worst scenario into account. However, such deterministic approaches usually are inappropriate in modeling energy consumption because of uncertainties in conditional instructions on processors and time-varying external environments. Through studying the relationship between energy consumption, execution time and completion probability of tasks on heterogeneous multi-core architectures this paper proposes an optimal energy efficiency and system performance model and the OTHAP (Optimizing Task Heterogeneous Assignment with Probability) algorithm to address the Processor and Voltage Assignment with Probability (PVAP) problem of data-dependent aperiodic tasks in real-time embedded systems, ensuring that all the tasks can be done under the time constraint with areal-time embedded systems guaranteed probability. We adopt a task DAG (Directed Acyclic Graph) to model the PVAP problem. We first use a processor scheduling algorithm to map the task DAG onto a set of voltage-variable processors, and then use our dynamic programming algorithm to assign a proper voltage to each task and The experimental results demonstrate our approach outperforms state-of-the-art algorithms in this field (maximum improvement of 24.6%).
2018-01-16
Sagisi, J., Tront, J., Bradley, R. M..  2017.  Platform agnostic, scalable, and unobtrusive FPGA network processor design of moving target defense over IPv6 (MT6D) over IEEE 802.3 Ethernet. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :165–165.

This work presents the proof of concept implementation for the first hardware-based design of Moving Target Defense over IPv6 (MT6D) in full Register Transfer Level (RTL) logic, with future sights on an embedded Application-Specified Integrated Circuit (ASIC) implementation. Contributions are an IEEE 802.3 Ethernet stream-based in-line network packet processor with a specialized Complex Instruction Set Computer (CISC) instruction set architecture, RTL-based Network Time Protocol v4 synchronization, and a modular crypto engine. Traditional static network addressing allows attackers the incredible advantage of taking time to plan and execute attacks against a network. To counter, MT6D provides a network host obfuscation technique that offers network-based keyed access to specific hosts without altering existing network infrastructure and is an excellent technique for protecting the Internet of Things, IPv6 over Low Power Wireless Personal Area Networks, and high value globally routable IPv6 interfaces. This is done by crypto-graphically altering IPv6 network addresses every few seconds in a synchronous manner at all endpoints. A border gateway device can be used to intercept select packets to unobtrusively perform this action. Software driven implementations have posed many challenges, namely, constant code maintenance to remain compliant with all library and kernel dependencies, the need for a host computing platform, and less than optimal throughput. This work seeks to overcome these challenges in a lightweight system to be developed for practical wide deployment.

2018-02-06
Nojoumian, M., Golchubian, A., Saputro, N., Akkaya, K..  2017.  Preventing Collusion between SDN Defenders Anc Attackers Using a Game Theoretical Approach. 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :802–807.

In this paper, a game-theoretical solution concept is utilized to tackle the collusion attack in a SDN-based framework. In our proposed setting, the defenders (i.e., switches) are incentivized not to collude with the attackers in a repeated-game setting that utilizes a reputation system. We first illustrate our model and its components. We then use a socio-rational approach to provide a new anti-collusion solution that shows cooperation with the SDN controller is always Nash Equilibrium due to the existence of a long-term utility function in our model.

2018-01-23
Wang, B., Song, W., Lou, W., Hou, Y. T..  2017.  Privacy-preserving pattern matching over encrypted genetic data in cloud computing. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Personalized medicine performs diagnoses and treatments according to the DNA information of the patients. The new paradigm will change the health care model in the future. A doctor will perform the DNA sequence matching instead of the regular clinical laboratory tests to diagnose and medicate the diseases. Additionally, with the help of the affordable personal genomics services such as 23andMe, personalized medicine will be applied to a great population. Cloud computing will be the perfect computing model as the volume of the DNA data and the computation over it are often immense. However, due to the sensitivity, the DNA data should be encrypted before being outsourced into the cloud. In this paper, we start from a practical system model of the personalize medicine and present a solution for the secure DNA sequence matching problem in cloud computing. Comparing with the existing solutions, our scheme protects the DNA data privacy as well as the search pattern to provide a better privacy guarantee. We have proved that our scheme is secure under the well-defined cryptographic assumption, i.e., the sub-group decision assumption over a bilinear group. Unlike the existing interactive schemes, our scheme requires only one round of communication, which is critical in practical application scenarios. We also carry out a simulation study using the real-world DNA data to evaluate the performance of our scheme. The simulation results show that the computation overhead for real world problems is practical, and the communication cost is small. Furthermore, our scheme is not limited to the genome matching problem but it applies to general privacy preserving pattern matching problems which is widely used in real world.

2018-05-25
S. Han, U. Topcu, G. J. Pappas.  2017.  Quantification on the efficiency gain of automated ridesharing services. 2017 American Control Conference (ACC). :3560-3566.
2018-10-26
Pfister, J., Gomes, M. A. C., Vilela, J. P., Harrison, W. K..  2017.  Quantifying equivocation for finite blocklength wiretap codes. 2017 IEEE International Conference on Communications (ICC). :1–6.

This paper presents a new technique for providing the analysis and comparison of wiretap codes in the small blocklength regime over the binary erasure wiretap channel. A major result is the development of Monte Carlo strategies for quantifying a code's equivocation, which mirrors techniques used to analyze forward error correcting codes. For this paper, we limit our analysis to coset-based wiretap codes, and give preferred strategies for calculating and/or estimating the equivocation in order of preference. We also make several comparisons of different code families. Our results indicate that there are security advantages to using algebraic codes for applications that require small to medium blocklengths.