Biblio

Found 19604 results

2018-05-16
2018-02-02
Yan, Y., Antsaklis, P., Gupta, V..  2017.  A resilient design for cyber physical systems under attack. 2017 American Control Conference (ACC). :4418–4423.

One challenge for engineered cyber physical systems (CPSs) is the possibility for a malicious intruder to change the data transmitted across the cyber channel as a means to degrade the performance of the physical system. In this paper, we consider a data injection attack on a cyber physical system. We propose a hybrid framework for detecting the presence of an attack and operating the plant in spite of the attack. Our method uses an observer-based detection mechanism and a passivity balance defense framework in the hybrid architecture. By switching the controller, passivity and exponential stability are established under the proposed framework.

2018-03-19
Alzubaidi, M., Anbar, M., Al-Saleem, S., Al-Sarawi, S., Alieyan, K..  2017.  Review on Mechanisms for Detecting Sinkhole Attacks on RPLs. 2017 8th International Conference on Information Technology (ICIT). :369–374.

Internet Protocol version 6 (IPv6) over Low power Wireless Personal Area Networks (6LoWPAN) is extensively used in wireless sensor networks (WSNs) due to its ability to transmit IPv6 packet with low bandwidth and limited resources. 6LoWPAN has several operations in each layer. Most existing security challenges are focused on the network layer, which is represented by its routing protocol for low-power and lossy network (RPL). RPL components include WSN nodes that have constrained resources. Therefore, the exposure of RPL to various attacks may lead to network damage. A sinkhole attack is a routing attack that could affect the network topology. This paper aims to investigate the existing detection mechanisms used in detecting sinkhole attack on RPL-based networks. This work categorizes and presents each mechanism according to certain aspects. Then, their advantages and drawbacks with regard to resource consumption and false positive rate are discussed and compared.

2017-09-06
C. Theisen, K. Herzig, B. Murphy, L. Williams.  2017.  Risk-based attack surface approximation: how much data is enough? 2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). :273-282.

Proactive security reviews and test efforts are a necessary component of the software development lifecycle. Resource limitations often preclude reviewing the entire code base. Making informed decisions on what code to review can improve a team's ability to find and remove vulnerabilities. Risk-based attack surface approximation (RASA) is a technique that uses crash dump stack traces to predict what code may contain exploitable vulnerabilities. The goal of this research is to help software development teams prioritize security efforts by the efficient development of a risk-based attack surface approximation. We explore the use of RASA using Mozilla Firefox and Microsoft Windows stack traces from crash dumps. We create RASA at the file level for Firefox, in which the 15.8% of the files that were part of the approximation contained 73.6% of the vulnerabilities seen for the product. We also explore the effect of random sampling of crashes on the approximation, as it may be impractical for organizations to store and process every crash received. We find that 10-fold random sampling of crashes at a rate of 10% resulted in 3% less vulnerabilities identified than using the entire set of stack traces for Mozilla Firefox. Sampling crashes in Windows 8.1 at a rate of 40% resulted in insignificant differences in vulnerability and file coverage as compared to a rate of 100%.

2018-05-15
D. Pickem, P. Glotfelter, L. Wang, M. Mote, A. Ames, E. Feron, M. Egerstedt.  2017.  The Robotarium: A Remotely Accessible Swarm Robotics Research Testbed. {IEEE} International Conference on Robotics and Automation.
L. Wang, A. Ames, M. Egerstedt.  2017.  Safe Certificate-Based Maneuvers for Teams of Quadrotors Using Differential Flatness. {IEEE} International Conference on Robotics and Automation.
S. Mayya, M. Egerstedt.  2017.  Safe Open-Loop Strategies for Handling Intermittent Communications in Multi-Robot Systems. {IEEE} International Conference on Robotics and Automation.
2018-03-19
Qiu, Y., Ma, M..  2017.  A Secure PMIPv6-Based Group Mobility Scheme for 6L0WPAN Networks. 2017 IEEE International Conference on Communications (ICC). :1–6.

The Internet Protocol version 6 (IPv6) over Low Power Wireless Personal Area Networks (6LoWPAN), which is a promising technology to promote the development of the Internet of Things (IoT), has been proposed to connect millions of IP-based sensing devices over the open Internet. To support the mobility of these resource constrained sensing nodes, the Proxy Mobile IPv6 (PMIPv6) has been proposed as the standard. Although the standard has specified some issues of security and mobility in 6LoWPANs, the issues of supporting secure group handovers have not been addressed much by the current existing solutions. In this paper, to reduce the handover latency and signaling cost, an efficient and secure group mobility scheme is designed to support seamless handovers for a group of resource constrained 6LoWPAN devices. With the consideration of the devices holding limited energy capacities, only simple hash and symmetric encryption method is used. The security analysis and the performance evaluation results show that the proposed 6LoWPAN group handover scheme could not only enhance the security functionalities but also support fast authentication for handovers.

2018-01-23
Ulz, T., Pieber, T., Steger, C., Lesjak, C., Bock, H., Matischek, R..  2017.  SECURECONFIG: NFC and QR-code based hybrid approach for smart sensor configuration. 2017 IEEE International Conference on RFID (RFID). :41–46.

In smart factories and smart homes, devices such as smart sensors are connected to the Internet. Independent of the context in which such a smart sensor is deployed, the possibility to change its configuration parameters in a secure way is essential. Existing solutions do provide only minimal security or do not allow to transfer arbitrary configuration data. In this paper, we present an NFC- and QR-code based configuration interface for smart sensors which improves the security and practicability of the configuration altering process while introducing as little overhead as possible. We present a protocol for configuration as well as a hardware extension including a dedicated security controller (SC) for smart sensors. For customers, no additional hardware other than a commercially available smartphone will be necessary which makes the proposed approach highly applicable for smart factory and smart home contexts alike.

2018-11-19
Lebeck, K., Ruth, K., Kohno, T., Roesner, F..  2017.  Securing Augmented Reality Output. 2017 IEEE Symposium on Security and Privacy (SP). :320–337.

Augmented reality (AR) technologies, such as Microsoft's HoloLens head-mounted display and AR-enabled car windshields, are rapidly emerging. AR applications provide users with immersive virtual experiences by capturing input from a user's surroundings and overlaying virtual output on the user's perception of the real world. These applications enable users to interact with and perceive virtual content in fundamentally new ways. However, the immersive nature of AR applications raises serious security and privacy concerns. Prior work has focused primarily on input privacy risks stemming from applications with unrestricted access to sensor data. However, the risks associated with malicious or buggy AR output remain largely unexplored. For example, an AR windshield application could intentionally or accidentally obscure oncoming vehicles or safety-critical output of other AR applications. In this work, we address the fundamental challenge of securing AR output in the face of malicious or buggy applications. We design, prototype, and evaluate Arya, an AR platform that controls application output according to policies specified in a constrained yet expressive policy framework. In doing so, we identify and overcome numerous challenges in securing AR output.

2018-02-14
Naik, N., Jenkins, P..  2017.  Securing digital identities in the cloud by selecting an apposite Federated Identity Management from SAML, OAuth and OpenID Connect. 2017 11th International Conference on Research Challenges in Information Science (RCIS). :163–174.
Access to computer systems and the information held on them, be it commercially or personally sensitive, is naturally, strictly controlled by both legal and technical security measures. One such method is digital identity, which is used to authenticate and authorize users to provide access to IT infrastructure to perform official, financial or sensitive operations within organisations. However, transmitting and sharing this sensitive information with other organisations over insecure channels always poses a significant security and privacy risk. An example of an effective solution to this problem is the Federated Identity Management (FIdM) standard adopted in the cloud environment. The FIdM standard is used to authenticate and authorize users across multiple organisations to obtain access to their networks and resources without transmitting sensitive information to other organisations. Using the same authentication and authorization details among multiple organisations in one federated group, it protects the identities and credentials of users in the group. This protection is a balance, mitigating security risk whilst maintaining a positive experience for users. Three of the most popular FIdM standards are Security Assertion Markup Language (SAML), Open Authentication (OAuth), and OpenID Connect (OIDC). This paper presents an assessment of these standards considering their architectural design, working, security strength and security vulnerability, to cognise and ascertain effective usages to protect digital identities and credentials. Firstly, it explains the architectural design and working of these standards. Secondly, it proposes several assessment criteria and compares functionalities of these standards based on the proposed criteria. Finally, it presents a comprehensive analysis of their security vulnerabilities to aid in selecting an apposite FIdM. This analysis of security vulnerabilities is of great significance because their improper or erroneous deployme- t may be exploited for attacks.
2018-05-24
Tosh, D. K., Shetty, S., Liang, X., Kamhoua, C. A., Kwiat, K. A., Njilla, L..  2017.  Security Implications of Blockchain Cloud with Analysis of Block Withholding Attack. 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGRID). :458–467.

The blockchain technology has emerged as an attractive solution to address performance and security issues in distributed systems. Blockchain's public and distributed peer-to-peer ledger capability benefits cloud computing services which require functions such as, assured data provenance, auditing, management of digital assets, and distributed consensus. Blockchain's underlying consensus mechanism allows to build a tamper-proof environment, where transactions on any digital assets are verified by set of authentic participants or miners. With use of strong cryptographic methods, blocks of transactions are chained together to enable immutability on the records. However, achieving consensus demands computational power from the miners in exchange of handsome reward. Therefore, greedy miners always try to exploit the system by augmenting their mining power. In this paper, we first discuss blockchain's capability in providing assured data provenance in cloud and present vulnerabilities in blockchain cloud. We model the block withholding (BWH) attack in a blockchain cloud considering distinct pool reward mechanisms. BWH attack provides rogue miner ample resources in the blockchain cloud for disrupting honest miners' mining efforts, which was verified through simulations.

2018-08-23
Jinan, S., Kefeng, P., Xuefeng, C., Junfu, Z..  2017.  Security Patterns from Intelligent Data: A Map of Software Vulnerability Analysis. 2017 ieee 3rd international conference on big data security on cloud (bigdatasecurity), ieee international conference on high performance and smart computing (hpsc), and ieee international conference on intelligent data and security (ids). :18–25.

A significant milestone is reached when the field of software vulnerability research matures to a point warranting related security patterns represented by intelligent data. A substantial research material of empirical findings, distinctive taxonomy, theoretical models, and a set of novel or adapted detection methods justify a unifying research map. The growth interest in software vulnerability is evident from a large number of works done during the last several decades. This article briefly reviews research works in vulnerability enumeration, taxonomy, models and detection methods from the perspective of intelligent data processing and analysis. This article also draws the map which associated with specific characteristics and challenges of vulnerability research, such as vulnerability patterns representation and problem-solving strategies.

2018-05-25
2018-01-16
Feng, X., Zheng, Z., Cansever, D., Swami, A., Mohapatra, P..  2017.  A signaling game model for moving target defense. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Incentive-driven advanced attacks have become a major concern to cyber-security. Traditional defense techniques that adopt a passive and static approach by assuming a fixed attack type are insufficient in the face of highly adaptive and stealthy attacks. In particular, a passive defense approach often creates information asymmetry where the attacker knows more about the defender. To this end, moving target defense (MTD) has emerged as a promising way to reverse this information asymmetry. The main idea of MTD is to (continuously) change certain aspects of the system under control to increase the attacker's uncertainty, which in turn increases attack cost/complexity and reduces the chance of a successful exploit in a given amount of time. In this paper, we go one step beyond and show that MTD can be further improved when combined with information disclosure. In particular, we consider that the defender adopts a MTD strategy to protect a critical resource across a network of nodes, and propose a Bayesian Stackelberg game model with the defender as the leader and the attacker as the follower. After fully characterizing the defender's optimal migration strategies, we show that the defender can design a signaling scheme to exploit the uncertainty created by MTD to further affect the attacker's behavior for its own advantage. We obtain conditions under which signaling is useful, and show that strategic information disclosure can be a promising way to further reverse the information asymmetry and achieve more efficient active defense.

2017-12-20
Ishio, T., Sakaguchi, Y., Ito, K., Inoue, K..  2017.  Source File Set Search for Clone-and-Own Reuse Analysis. 2017 IEEE/ACM 14th International Conference on Mining Software Repositories (MSR). :257–268.
Clone-and-own approach is a natural way of source code reuse for software developers. To assess how known bugs and security vulnerabilities of a cloned component affect an application, developers and security analysts need to identify an original version of the component and understand how the cloned component is different from the original one. Although developers may record the original version information in a version control system and/or directory names, such information is often either unavailable or incomplete. In this research, we propose a code search method that takes as input a set of source files and extracts all the components including similar files from a software ecosystem (i.e., a collection of existing versions of software packages). Our method employs an efficient file similarity computation using b-bit minwise hashing technique. We use an aggregated file similarity for ranking components. To evaluate the effectiveness of this tool, we analyzed 75 cloned components in Firefox and Android source code. The tool took about two hours to report the original components from 10 million files in Debian GNU/Linux packages. Recall of the top-five components in the extracted lists is 0.907, while recall of a baseline using SHA-1 file hash is 0.773, according to the ground truth recorded in the source code repositories.
2018-05-09
Bobda, C., Whitaker, T. J. L., Kamhoua, C., Kwiat, K., Njilla, L..  2017.  Synthesis of Hardware Sandboxes for Trojan Mitigation in Systems on Chip. 2017 IEEE International Symposium on Hardware Oriented Security and Trust (HOST). :172–172.

In this work, we propose a design flow for automatic generation of hardware sandboxes purposed for IP security in trusted system-on-chips (SoCs). Our tool CAPSL, the Component Authentication Process for Sandboxed Layouts, is capable of detecting trojan activation and nullifying possible damage to a system at run-time, avoiding complex pre-fabrication and pre-deployment testing for trojans. Our approach captures the behavioral properties of non-trusted IPs, typically from a third-party or components off the shelf (COTS), with the formalism of interface automata and the Property Specification Language's sequential extended regular expressions (SERE). Using the concept of hardware sandboxing, we translate the property specifications to checker automata and partition an untrusted sector of the system, with included virtualized resources and controllers, to isolate sandbox-system interactions upon deviation from the behavioral checkers. Our design flow is verified with benchmarks from Trust-Hub.org, which show 100% trojan detection with reduced checker overhead compared to other run-time verification techniques.

2017-12-04
Farinholt, B., Rezaeirad, M., Pearce, P., Dharmdasani, H., Yin, H., Blond, S. L., McCoy, D., Levchenko, K..  2017.  To Catch a Ratter: Monitoring the Behavior of Amateur DarkComet RAT Operators in the Wild. 2017 IEEE Symposium on Security and Privacy (SP). :770–787.

Remote Access Trojans (RATs) give remote attackers interactive control over a compromised machine. Unlike large-scale malware such as botnets, a RAT is controlled individually by a human operator interacting with the compromised machine remotely. The versatility of RATs makes them attractive to actors of all levels of sophistication: they've been used for espionage, information theft, voyeurism and extortion. Despite their increasing use, there are still major gaps in our understanding of RATs and their operators, including motives, intentions, procedures, and weak points where defenses might be most effective. In this work we study the use of DarkComet, a popular commercial RAT. We collected 19,109 samples of DarkComet malware found in the wild, and in the course of two, several-week-long experiments, ran as many samples as possible in our honeypot environment. By monitoring a sample's behavior in our system, we are able to reconstruct the sequence of operator actions, giving us a unique view into operator behavior. We report on the results of 2,747 interactive sessions captured in the course of the experiment. During these sessions operators frequently attempted to interact with victims via remote desktop, to capture video, audio, and keystrokes, and to exfiltrate files and credentials. To our knowledge, we are the first large-scale systematic study of RAT use.

2018-02-21
Marksteiner, S., Vallant, H..  2017.  Towards a secure smart grid storage communications gateway. 2017 Smart City Symposium Prague (SCSP). :1–6.

This research in progress paper describes the role of cyber security measures undertaken in an ICT system for integrating electric storage technologies into the grid. To do so, it defines security requirements for a communications gateway and gives detailed information and hands-on configuration advice on node and communication line security, data storage, coping with backend M2M communications protocols and examines privacy issues. The presented research paves the road for developing secure smart energy communications devices that allow enhancing energy efficiency. The described measures are implemented in an actual gateway device within the HORIZON 2020 project STORY, which aims at developing new ways to use storage and demonstrating these on six different demonstration sites.

2018-11-14
Krishna, M. B., Rodrigues, J. J. P. C..  2017.  Two-Phase Incentive-Based Secure Key System for Data Management in Internet of Things. 2017 IEEE International Conference on Communications (ICC). :1–6.

Internet of Things (IoT) distributed secure data management system is characterized by authentication, privacy policies to preserve data integrity. Multi-phase security and privacy policies ensure confidentiality and trust between the users and service providers. In this regard, we present a novel Two-phase Incentive-based Secure Key (TISK) system for distributed data management in IoT. The proposed system classifies the IoT user nodes and assigns low-level, high-level security keys for data transactions. Low-level secure keys are generic light-weight keys used by the data collector nodes and data aggregator nodes for trusted transactions. TISK phase-I Generic Service Manager (GSM-C) module verifies the IoT devices based on self-trust incentive and server-trust incentive levels. High-level secure keys are dedicated special purpose keys utilized by data manager nodes and data expert nodes for authorized transactions. TISK phase-II Dedicated Service Manager (DSM-C) module verifies the certificates issued by GSM-C module. DSM-C module further issues high-level secure keys to data manager nodes and data expert nodes for specific purpose transactions. Simulation results indicate that the proposed TISK system reduces the key complexity and key cost to ensure distributed secure data management in IoT network.

2017-12-20
Le, T. A., Baydin, A. G., Zinkov, R., Wood, F..  2017.  Using synthetic data to train neural networks is model-based reasoning. 2017 International Joint Conference on Neural Networks (IJCNN). :3514–3521.
We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a proposal distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.
2018-07-26
2017-09-01
Dong Jin, Illinois Institute of Technology, Zhiyi Li, Illinois Institute of Technology, Christopher Hannon, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory, Mohammad Shahidehpour, Illinois Institute of Technology, Cheol Won Lee, National Research Institute, South Korea.  2017.  Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE Transactions on Smart Grid. 8(5)

To build a resilient and secure microgrid in the face of growing cyber-attacks and cyber-mistakes, we present a software-defined networking (SDN)-based communication network architecture for microgrid operations. We leverage the global visibility, direct networking controllability, and programmability offered by SDN to investigate multiple security applications, including self-healing communication network management, real-time and uncertainty-aware communication network verification, and specification-based intrusion detection. We also expand a novel cyber-physical testing and evaluation platform that combines a power distribution system simulator (for microgrid energy services) and an SDN emulator with a distributed control environment (for microgrid communications). Experimental results demonstrate that the SDN-based communication architecture and applications can significantly enhance the resilience and security of microgrid operations against the realization of various cyber threats.

2018-10-26
Vorobiev, E. G., Petrenko, S. A., Kovaleva, I. V., Abrosimov, I. K..  2017.  Analysis of computer security incidents using fuzzy logic. 2017 XX IEEE International Conference on Soft Computing and Measurements (SCM). :369–371.

The work proposes and justifies a processing algorithm of computer security incidents based on the author's signatures of cyberattacks. Attention is also paid to the design pattern SOPKA based on the Russian ViPNet technology. Recommendations are made regarding the establishment of the corporate segment SOPKA, which meets the requirements of Presidential Decree of January 15, 2013 number 31c “On the establishment of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” and “Concept of the state system of detection, prevention and elimination of the consequences of cyber-attacks on information resources of the Russian Federation” approved by the President of the Russian Federation on December 12, 2014, No K 1274.

2017-12-27
Kar, N., Aman, M. A. A. A., Mandal, K., Bhattacharya, B..  2017.  Chaos-based video steganography. 2017 8th International Conference on Information Technology (ICIT). :482–487.

In this paper a novel data hiding method has been proposed which is based on Non-Linear Feedback Shift Register and Tinkerbell 2D chaotic map. So far, the major work in Steganography using chaotic map has been confined to image steganography where significant restrictions are there to increase payload. In our work, 2D chaotic map and NLFSR are used to developed a video steganography mechanism where data will be embedded in the segregated frames. This will increase the data hiding limit exponentially. Also, embedding position of each frame will be different from others frames which will increase the overall security of the proposed mechanism. We have achieved this randomized data hiding points by using a chaotic map. Basically, Chaotic theory which is non-linear dynamics physics is using in this era in the field of Cryptography and Steganography and because of this theory, little bit changes in initial condition makes the output totally different. So, it is very hard to get embedding position of data without knowing the initial value of the chaotic map.