Visible to the public Biblio

Found 2775 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2023-05-19
Wejin, John S., Badejo, Joke A., Jonathan, Oluranti, Dahunsi, Folasade.  2022.  A Brief Survey on the Experimental Application of MPQUIC Protocol in Data Communication. 2022 5th Information Technology for Education and Development (ITED). :1—8.
Since its inception, the Internet has experienced tremendous speed and functionality improvements. Among these developments are innovative approaches such as the design and deployment of Internet Protocol version six (IPv6) and the continuous modification of TCP. New transport protocols like Stream Communication Transport Protocol (SCTP) and Multipath TCP (MPTCP), which can use multiple data paths, have been developed to overcome the IP-coupled challenge in TCP. However, given the difficulties of packet modifiers over the Internet that prevent the deployment of newly proposed protocols, e.g., SCTP, a UDP innovative approach with QUIC (Quick UDP Internet Connection) has been put forward as an alternative. QUIC reduces the connection establishment complexity in TCP and its variants, high security, stream multiplexing, and pluggable congestion control. Motivated by the gains and acceptability of MPTCP, Multipath QUIC has been developed to enable multipath transmission in QUIC. While several researchers have reviewed the progress of improvement and application of MPTCP, the review on MPQUIC improvement is limited. To breach the gap, this paper provides a brief survey on the practical application and progress of MPQUIC in data communication. We first review the fundamentals of multipath transport protocols. We then provide details on the design of QUIC and MPQUIC. Based on the articles reviewed, we looked at the various applications of MPQUIC, identifying the application domain, tools used, and evaluation parameters. Finally, we highlighted the open research issues and directions for further investigations.
Soosahabi, Reza, Bayoumi, Magdy.  2022.  On Securing MAC Layer Broadcast Signals Against Covert Channel Exploitation in 5G, 6G & Beyond. 2022 IEEE Future Networks World Forum (FNWF). :486—493.
In this work, we propose a novel framework to identify and mitigate a recently disclosed covert channel scheme exploiting unprotected broadcast messages in cellular MAC layer protocols. Examples of covert channel are used in data exfiltration, remote command-and-control (CnC) and espionage. Responsibly disclosed to GSMA (CVD-2021-0045), the SPAR-ROW covert channel scheme exploits the downlink power of LTE/5G base-stations that broadcast contention resolution identity (CRI) from any anonymous device according to the 3GPP standards. Thus, the SPARROW devices can covertly relay short messages across long-distance which can be potentially harmful to critical infrastructure. The SPARROW schemes can also complement the solutions for long-range M2M applications. This work investigates the security vs. performance trade-off in CRI-based contention resolution mechanisms. Then it offers a rig-orously designed method to randomly obfuscate CRI broadcast in future 5G/6G standards. Compared to CRI length reduction, the proposed method achieves considerable protection against SPARROW exploitation with less impact on the random-access performance as shown in the numerical results.
Aljohani, Nader, Bretas, Arturo, Bretas, Newton G.  2022.  Two-Stage Optimization Framework for Detecting and Correcting Parameter Cyber-Attacks in Power System State Estimation. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
One major tool of Energy Management Systems for monitoring the status of the power grid is State Estimation (SE). Since the results of state estimation are used within the energy management system, the security of the power system state estimation tool is most important. The research in this area is targeting detection of False Data Injection attacks on measurements. Though this aspect is crucial, SE also depends on database that are used to describe the relationship between measurements and systems' states. This paper presents a two-stage optimization framework to not only detect, but also correct cyber-attacks pertaining the measurements' model parameters used by the SE routine. In the first stage, an estimate of the line parameters ratios are obtained. In the second stage, the estimated ratios from stage I are used in a Bi-Level model for obtaining a final estimate of the measurements' model parameters. Hence, the presented framework does not only unify the detection and correction in a single optimization run, but also provide a monitoring scheme for the SE database that is typically considered static. In addition, in the two stages, linear programming framework is preserved. For validation, the IEEE 118 bus system is used for implementation. The results illustrate the effectiveness of the proposed model for detecting attacks in the database used in the state estimation process.
Vega-Martinez, Valeria, Cooper, Austin, Vera, Brandon, Aljohani, Nader, Bretas, Arturo.  2022.  Hybrid Data-Driven Physics-Based Model Framework Implementation: Towards a Secure Cyber-Physical Operation of the Smart Grid. 2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe). :1—5.
False data injection cyber-attack detection models on smart grid operation have been much explored recently, considering analytical physics-based and data-driven solutions. Recently, a hybrid data-driven physics-based model framework for monitoring the smart grid is developed. However, the framework has not been implemented in real-time environment yet. In this paper, the framework of the hybrid model is developed within a real-time simulation environment. OPAL-RT real-time simulator is used to enable Hardware-in-the-Loop testing of the framework. IEEE 9-bus system is considered as a testing grid for gaining insight. The process of building the framework and the challenges faced during development are presented. The performance of the framework is investigated under various false data injection attacks.
Neema, Himanshu, Roth, Thomas, Wang, Chenli, Guo, Wenqi Wendy, Bhattacharjee, Anirban.  2022.  Integrating Multiple HLA Federations for Effective Simulation-Based Evaluations of CPS. 2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—26.
Cyber-Physical Systems (CPS) are complex systems of computational, physical, and human components integrated to achieve some function over one or more networks. The use of distributed simulation, or co-simulation, is one method often used to analyze the behavior and properties of these systems. High-Level Architecture (HLA) is an IEEE co-simulation standard that supports the development and orchestration of distributed simulations. However, a simple HLA federation constructed with the component simulations (i.e., federates) does not satisfy several requirements that arise in real-world use cases such as the shared use of limited physical and computational resources, the need to selectively hide information from participating federates, the creation of reusable federates and federations for supporting configurable shared services, achieving performant distributed simulations, organizing federations across different model types or application concerns, and coordinating federations across organizations with different information technology policies. This paper describes these core requirements that necessitate the use of multiple HLA federations and presents various mechanisms for constructing such integrated HLA federations. An example use case is implemented using a model-based rapid simulation integration framework called the Universal CPS Environment for Federation (UCEF) to illustrate these requirements and demonstrate techniques for integrating multiple HLA federations.
Yarava, Rokesh Kumar, Rao, G.Rama Chandra, Garapati, Yugandhar, Babu, G.Charles, Prasad, Srisailapu D Vara.  2022.  Analysis on the Development of Cloud Security using Privacy Attribute Data Sharing. 2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). :1—5.
The data sharing is a helpful and financial assistance provided by CC. Information substance security also rises out of it since the information is moved to some cloud workers. To ensure the sensitive and important data; different procedures are utilized to improve access manage on collective information. Here strategies, Cipher text-policyattribute based encryption (CP-ABE) might create it very helpful and safe. The conventionalCP-ABE concentrates on information privacy only; whereas client's personal security protection is a significant problem as of now. CP-ABE byhidden access (HA) strategy makes sure information privacy and ensures that client's protection isn't exposed also. Nevertheless, the vast majority of the current plans are ineffectivein correspondence overhead and calculation cost. In addition, the vast majority of thismechanism takes no thought regardingabilityauthenticationor issue of security spillescapein abilityverificationstage. To handle the issues referenced over, a security protectsCP-ABE methodby proficient influenceauthenticationis presented in this manuscript. Furthermore, its privacy keys accomplish consistent size. In the meantime, the suggestedplan accomplishes the specific safetyin decisional n-BDHE issue and decisional direct presumption. The computational outcomes affirm the benefits of introduced method.
2023-05-12
Bo, Lili, Meng, Xing, Sun, Xiaobing, Xia, Jingli, Wu, Xiaoxue.  2022.  A Comprehensive Analysis of NVD Concurrency Vulnerabilities. 2022 IEEE 22nd International Conference on Software Quality, Reliability and Security (QRS). :9–18.

Concurrency vulnerabilities caused by synchronization problems will occur in the execution of multi-threaded programs, and the emergence of concurrency vulnerabilities often cause great threats to the system. Once the concurrency vulnerabilities are exploited, the system will suffer various attacks, seriously affecting its availability, confidentiality and security. In this paper, we extract 839 concurrency vulnerabilities from Common Vulnerabilities and Exposures (CVE), and conduct a comprehensive analysis of the trend, classifications, causes, severity, and impact. Finally, we obtained some findings: 1) From 1999 to 2021, the number of concurrency vulnerabilities disclosures show an overall upward trend. 2) In the distribution of concurrency vulnerability, race condition accounts for the largest proportion. 3) The overall severity of concurrency vulnerabilities is medium risk. 4) The number of concurrency vulnerabilities that can be exploited for local access and network access is almost equal, and nearly half of the concurrency vulnerabilities (377/839) can be accessed remotely. 5) The access complexity of 571 concurrency vulnerabilities is medium, and the number of concurrency vulnerabilities with high or low access complexity is almost equal. The results obtained through the empirical study can provide more support and guidance for research in the field of concurrency vulnerabilities.

ISSN: 2693-9177

Power, Conor, Staszewski, Robert Bogdan, Blokhina, Elena.  2022.  Cryogenic Transistor Confinement Well Simulation through Material and Carrier Transport Decoupling. 2022 29th IEEE International Conference on Electronics, Circuits and Systems (ICECS). :1–2.
We propose a methodology for the simulation of electrostatic confinement wells in transistors at cryogenic temperatures. This is considered in the context of 22-nm fully depleted silicon-on-insulator transistors due to their potential for imple-menting quantum bits in scalable quantum computing systems. To overcome thermal fluctuations and improve decoherence times in most quantum bit implementations, they must be operated at cryogenic temperatures. We review the dominant sources of electric field at these low temperatures, including material interface work function differences and trapped interface charges. Intrinsic generation and dopant ionisation are shown to be negligible at cryogenic temperatures when using a mode of operation suitable for confinement. We propose studying cryogenic electrostatic confinement wells in transistors using a finite-element model simulation, and decoupling carrier transport generated fields.
Carroll, E. G., Bracamontes, G., Piston, K., James, G. F., Provencher, C. M., Javedani, J., Stygar, W. A., Povilus, A. P., Vonhof, S., Yanagisawa, D. K. et al..  2022.  A New Pulsed Power System for Generating Up To 40t Magnetic Seeds Fields for Cryogenic Inertial Confinement Fusion Experiments on The National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
A new pulse power system is being developed with the goal of generating up to 40T seed magnetic fields for increasing the fusion yield of indirect drive inertial confinement fusion (ICF) experiments on the National Ignition Facility. This pulser is located outside of the target chamber and delivers a current pulse to the target through a coaxial cable bundle and custom flex-circuit strip-lines integrated into a cryogenic target positioner. At the target, the current passes through a multi-turn solenoid wrapped around the outside of a hohlraum and is insulated with Kapton coating. A 11.33 uF capacitor, charged up to 40 kV and switched by spark-gap, drives up to 40 kA of current before the coil disassembles. A custom Python design optimization code was written to maximize peak magnetic field strength while balancing competing pulser, load and facility constraints. Additionally, using an institutional multi-physics code, ALE3D, simulations that include coil dynamics such as temperature dependent resistance, coil forces and motion, and magnetic diffusion were conducted for detailed analysis of target coils. First experiments are reported as well as comparisons with current modelling efforts.
ISSN: 2576-7208
Chen, C., Becker, J. R., Farrell, J. J..  2022.  Energy Confinement Time in a Magnetically Confined Thermonuclear Fusion Reactor. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
The single most important scientific question in fusion research may be confinement in a fusion plasma [1] . A recently-developed theoretical model [2] is reviewed for the confinement time of ion kinetic energy in a material where fusion reactions occur. In the theoretical model where ion stopping was considered as a key mechanism for ion kinetic energy loss, an estimate was obtained for the confinement time of ion kinetic energy in a D-T plasma - and found to be orders of magnitude lower than required in the Lawson criterion. As ions transfer their kinetic energies to electrons via ion stopping and thermalization between the ions and the electrons takes place, spontaneous electron cyclotron radiation is identified as a key mechanism for electron kinetic energy loss in a magnetically confined plasma. The energy confinement time is obtained and found in agreement with measurements from TFTR [1] and Wendelstein 7-X [3] . An advanced Lawson criterion is obtained for a magnetically confined thermonuclear fusion reactor.
ISSN: 2576-7208
Gao, Lin, Battistelli, Giorgio, Chisci, Luigi.  2022.  Resilience of multi-object density fusion against cyber-attacks. 2022 11th International Conference on Control, Automation and Information Sciences (ICCAIS). :7–12.
Recently, it has been proposed to deal with fusion of multi-object densities exploiting the minimum information loss (MIL) rule, which has shown its superiority over generalized covariance intersection (GCI) fusion whenever sensor nodes have low detection probability. On the contrary, GCI shows better performance than MIL when dense clutter is involved in the measurements. In this paper, we are going to study the behavior of multi-object fusion with MIL and, respectively, GCI rules in the situation wherein the sensor network is exposed to cyber-attacks. Both theoretical and numerical analyses demonstrate that MIL is more robust than GCI fusion when the multi-sensor system is subject to a packet substitution attack.
ISSN: 2475-7896
Ornik, Melkior, Bouvier, Jean-Baptiste.  2022.  Assured System-Level Resilience for Guaranteed Disaster Response. 2022 IEEE International Smart Cities Conference (ISC2). :1–4.
Resilience of urban infrastructure to sudden, system-wide, potentially catastrophic events is a critical need across domains. The growing connectivity of infrastructure, including its cyber-physical components which can be controlled in real time, offers an attractive path towards rapid adaptation to adverse events and adjustment of system objectives. However, existing work in the field often offers disjoint approaches that respond to particular scenarios. On the other hand, abstract work on control of complex systems focuses on attempting to adapt to the changes in the system dynamics or environment, but without understanding that the system may simply not be able to perform its original task after an adverse event. To address this challenge, this programmatic paper proposes a vision for a new paradigm of infrastructure resilience. Such a framework treats infrastructure across domains through a unified theory of controlled dynamical systems, but remains cognizant of the lack of knowledge about the system following a widespread adverse event and aims to identify the system's fundamental limits. As a result, it will enable the infrastructure operator to assess and assure system performance following an adverse event, even if the exact nature of the event is not yet known. Building off ongoing work on assured resilience of control systems, in this paper we identify promising early results, challenges that motivate the development of resilience theory for infrastructure system, and possible paths forward for the proposed effort.
ISSN: 2687-8860
Bouvier, Jean-Baptiste, Ornik, Melkior.  2022.  Quantitative Resilience of Linear Systems. 2022 European Control Conference (ECC). :485–490.
Actuator malfunctions may have disastrous con-sequences for systems not designed to mitigate them. We focus on the loss of control authority over actuators, where some actuators are uncontrolled but remain fully capable. To counter-act the undesirable outputs of these malfunctioning actuators, we use real-time measurements and redundant actuators. In this setting, a system that can still reach its target is deemed resilient. To quantify the resilience of a system, we compare the shortest time for the undamaged system to reach the target with the worst-case shortest time for the malfunctioning system to reach the same target, i.e., when the malfunction makes that time the longest. Contrary to prior work on driftless linear systems, the absence of analytical expression for time-optimal controls of general linear systems prevents an exact calculation of quantitative resilience. Instead, relying on Lyapunov theory we derive analytical bounds on the nominal and malfunctioning reach times in order to bound quantitative resilience. We illustrate our work on a temperature control system.
Belmouhoub, Amina, Bouzid, Yasser, Medjmadj, Slimane, Derrouaoui, Saddam Hocine, Guiatni, Mohamed.  2022.  Advanced Backstepping Control: Application on a Foldable Quadrotor. 2022 19th International Multi-Conference on Systems, Signals & Devices (SSD). :609–615.
This paper deals with the implementation of robust control, based on the finite time Lyapunov stability theory, to solve the trajectory tracking problem of an unconventional quadrotor with rotating arms (also known as foldable drone). First, the model of this Unmanned Aerial Vehicle (UAV) taking into consideration the variation of the inertia, the Center of Gravity (CoG) and the control matrix is presented. The theoretical foundations of backstepping control enhanced by a Super-Twisting (ST) algorithm are then discussed. Numerical simulations are performed to demonstrate the effectiveness of the proposed control strategy. Finally, a qualitative and quantitative comparative study is made between the proposed controller and the classical backstepping controller. Overall, the results obtained show that the proposed control approach provides better performance in terms of accuracy and resilience.
ISSN: 2474-0446
Buscemi, Alessio, Turcanu, Ion, Castignani, German, Engel, Thomas.  2022.  On Frame Fingerprinting and Controller Area Networks Security in Connected Vehicles. 2022 IEEE 19th Annual Consumer Communications & Networking Conference (CCNC). :821–826.
Modern connected vehicles are equipped with a large number of sensors, which enable a wide range of services that can improve overall traffic safety and efficiency. However, remote access to connected vehicles also introduces new security issues affecting both inter and intra-vehicle communications. In fact, existing intra-vehicle communication systems, such as Controller Area Network (CAN), lack security features, such as encryption and secure authentication for Electronic Control Units (ECUs). Instead, Original Equipment Manufacturers (OEMs) seek security through obscurity by keeping secret the proprietary format with which they encode the information. Recently, it has been shown that the reuse of CAN frame IDs can be exploited to perform CAN bus reverse engineering without physical access to the vehicle, thus raising further security concerns in a connected environment. This work investigates whether anonymizing the frames of each newly released vehicle is sufficient to prevent CAN bus reverse engineering based on frame ID matching. The results show that, by adopting Machine Learning techniques, anonymized CAN frames can still be fingerprinted and identified in an unknown vehicle with an accuracy of up to 80 %.
ISSN: 2331-9860
Borg, Markus, Bengtsson, Johan, Österling, Harald, Hagelborn, Alexander, Gagner, Isabella, Tomaszewski, Piotr.  2022.  Quality Assurance of Generative Dialog Models in an Evolving Conversational Agent Used for Swedish Language Practice. 2022 IEEE/ACM 1st International Conference on AI Engineering – Software Engineering for AI (CAIN). :22–32.
Due to the migration megatrend, efficient and effective second-language acquisition is vital. One proposed solution involves AI-enabled conversational agents for person-centered interactive language practice. We present results from ongoing action research targeting quality assurance of proprietary generative dialog models trained for virtual job interviews. The action team elicited a set of 38 requirements for which we designed corresponding automated test cases for 15 of particular interest to the evolving solution. Our results show that six of the test case designs can detect meaningful differences between candidate models. While quality assurance of natural language processing applications is complex, we provide initial steps toward an automated framework for machine learning model selection in the context of an evolving conversational agent. Future work will focus on model selection in an MLOps setting.
2023-05-11
Zhang, Zhi Jin, Bloch, Matthieu, Saeedifard, Maryam.  2022.  Load Redistribution Attacks in Multi-Terminal DC Grids. 2022 IEEE Energy Conversion Congress and Exposition (ECCE). :1–7.
The modernization of legacy power grids relies on the prevalence of information technology (IT). While the benefits are multi-fold and include increased reliability, more accurate monitoring, etc., the reliance on IT increases the attack surface of power grids by making them vulnerable to cyber-attacks. One of the modernization paths is the emergence of multi-terminal dc systems that offer numerous advantages over traditional ac systems. Therefore, cyber-security issues surrounding dc networks need to be investigated. Contributing to this effort, a class of false data injection attacks, called load redistribution (LR) attacks, that targets dc grids is proposed. These attacks aim to compromise the system load data and lead the system operator to dispatch incorrect power flow commands that lead to adverse consequences. Although similar attacks have been recently studied for ac systems, their feasibility in the converter-based dc grids has yet to be demonstrated. Such an attack assessment is necessary because the dc grids have a much smaller control timescale and are more dependent on IT than their traditional ac counterparts. Hence, this work formulates and evaluates dc grid LR attacks by incorporating voltage-sourced converter (VSC) control strategies that appropriately delineate dc system operations. The proposed attack strategy is solved with Gurobi, and the results show that both control and system conditions can affect the success of an LR attack.
ISSN: 2329-3748
Teo, Jia Wei, Gunawan, Sean, Biswas, Partha P., Mashima, Daisuke.  2022.  Evaluating Synthetic Datasets for Training Machine Learning Models to Detect Malicious Commands. 2022 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm). :315–321.
Electrical substations in power grid act as the critical interface points for the transmission and distribution networks. Over the years, digital technology has been integrated into the substations for remote control and automation. As a result, substations are more prone to cyber attacks and exposed to digital vulnerabilities. One of the notable cyber attack vectors is the malicious command injection, which can lead to shutting down of substations and subsequently power outages as demonstrated in Ukraine Power Plant Attack in 2015. Prevailing measures based on cyber rules (e.g., firewalls and intrusion detection systems) are often inadequate to detect advanced and stealthy attacks that use legitimate-looking measurements or control messages to cause physical damage. Additionally, defenses that use physics-based approaches (e.g., power flow simulation, state estimation, etc.) to detect malicious commands suffer from high latency. Machine learning serves as a potential solution in detecting command injection attacks with high accuracy and low latency. However, sufficient datasets are not readily available to train and evaluate the machine learning models. In this paper, focusing on this particular challenge, we discuss various approaches for the generation of synthetic data that can be used to train the machine learning models. Further, we evaluate the models trained with the synthetic data against attack datasets that simulates malicious commands injections with different levels of sophistication. Our findings show that synthetic data generated with some level of power grid domain knowledge helps train robust machine learning models against different types of attacks.
2023-04-28
Baksi, Rudra Prasad.  2022.  Pay or Not Pay? A Game-Theoretical Analysis of Ransomware Interactions Considering a Defender’s Deception Architecture 2022 52nd Annual IEEE/IFIP International Conference on Dependable Systems and Networks - Supplemental Volume (DSN-S). :53–54.
Malware created by the Advanced Persistent Threat (APT) groups do not typically carry out the attacks in a single stage. The “Cyber Kill Chain” framework developed by Lockheed Martin describes an APT through a seven stage life cycle [5] . APT groups are generally nation state actors [1] . They perform highly targeted attacks and do not stop until the goal is achieved [7] . Researchers are always working toward developing a system and a process to create an environment safe from APT type attacks [2] . In this paper, the threat considered is ransomware which are developed by APT groups. WannaCry is an example of a highly sophisticated ransomware created by the Lazurus group of North Korea and its level of sophistication is evident from the existence of a contingency plan of attack upon being discovered [3] [6] . The major contribution of this research is the analysis of APT type ransomware using game theory to present optimal strategies for the defender through the development of equilibrium solutions when faced with APT type ransomware attack. The goal of the equilibrium solutions is to help the defender in preparedness before the attack and in minimization of losses during and after the attack.
Dutta, Ashutosh, Hammad, Eman, Enright, Michael, Behmann, Fawzi, Chorti, Arsenia, Cheema, Ahmad, Kadio, Kassi, Urbina-Pineda, Julia, Alam, Khaled, Limam, Ahmed et al..  2022.  Security and Privacy. 2022 IEEE Future Networks World Forum (FNWF). :1–71.
The digital transformation brought on by 5G is redefining current models of end-to-end (E2E) connectivity and service reliability to include security-by-design principles necessary to enable 5G to achieve its promise. 5G trustworthiness highlights the importance of embedding security capabilities from the very beginning while the 5G architecture is being defined and standardized. Security requirements need to overlay and permeate through the different layers of 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture within a risk-management framework that takes into account the evolving security-threats landscape. 5G presents a typical use-case of wireless communication and computer networking convergence, where 5G fundamental building blocks include components such as Software Defined Networks (SDN), Network Functions Virtualization (NFV) and the edge cloud. This convergence extends many of the security challenges and opportunities applicable to SDN/NFV and cloud to 5G networks. Thus, 5G security needs to consider additional security requirements (compared to previous generations) such as SDN controller security, hypervisor security, orchestrator security, cloud security, edge security, etc. At the same time, 5G networks offer security improvement opportunities that should be considered. Here, 5G architectural flexibility, programmability and complexity can be harnessed to improve resilience and reliability. The working group scope fundamentally addresses the following: •5G security considerations need to overlay and permeate through the different layers of the 5G systems (physical, network, and application) as well as different parts of an E2E 5G architecture including a risk management framework that takes into account the evolving security threats landscape. •5G exemplifies a use-case of heterogeneous access and computer networking convergence, which extends a unique set of security challenges and opportunities (e.g., related to SDN/NFV and edge cloud, etc.) to 5G networks. Similarly, 5G networks by design offer potential security benefits and opportunities through harnessing the architecture flexibility, programmability and complexity to improve its resilience and reliability. •The IEEE FNI security WG's roadmap framework follows a taxonomic structure, differentiating the 5G functional pillars and corresponding cybersecurity risks. As part of cross collaboration, the security working group will also look into the security issues associated with other roadmap working groups within the IEEE Future Network Initiative.
ISSN: 2770-7679
Bálint, Krisztián.  2022.  Data Security Structure of a Students’ Attendance Register Based on Security Cameras and Blockchain Technology. 2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo). :000185–000190.
The latest, modern security camera systems record numerous data at once. With the utilization of artificial intelligence, these systems can even compose an online attendance register of students present during the lectures. Data is primarily recorded on the hard disk of the NVR (Network Video Recorder), and in the long term, it is recommended to save the data in the blockchain. The purpose of the research is to demonstrate how university security cameras can be securely connected to the blockchain. This would be important for universities as this is sensitive student data that needs to be protected from unauthorized access. In my research, as part of the practical implementation, I therefore also use encryption methods and data fragmentation, which are saved at the nodes of the blockchain. Thus, even a DDoS (Distributed Denial of Service) type attack may be easily repelled, as data is not concentrated on a single, central server. To further increase security, it is useful to constitute a blockchain capable of its own data storage at the faculty itself, rather than renting data storage space, so we, ourselves may regulate the conditions of operation, and the policy of data protection. As a practical part of my research, therefore, I created a blockchain called UEDSC (Universities Data Storage Chain) where I saved the student's data.
ISSN: 2471-9269
Nicholls, D., Robinson, A., Wells, J., Moshtaghpour, A., Bahri, M., Kirkland, A., Browning, N..  2022.  Compressive Scanning Transmission Electron Microscopy. ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :1586–1590.
Scanning Transmission Electron Microscopy (STEM) offers high-resolution images that are used to quantify the nanoscale atomic structure and composition of materials and biological specimens. In many cases, however, the resolution is limited by the electron beam damage, since in traditional STEM, a focused electron beam scans every location of the sample in a raster fashion. In this paper, we propose a scanning method based on the theory of Compressive Sensing (CS) and subsampling the electron probe locations using a line hop sampling scheme that significantly reduces the electron beam damage. We experimentally validate the feasibility of the proposed method by acquiring real CS-STEM data, and recovering images using a Bayesian dictionary learning approach. We support the proposed method by applying a series of masks to fully-sampled STEM data to simulate the expectation of real CS-STEM. Finally, we perform the real data experimental series using a constrained-dose budget to limit the impact of electron dose upon the results, by ensuring that the total electron count remains constant for each image.
ISSN: 2379-190X
Barac, Petar, Bajor, Matthew, Kinget, Peter R..  2022.  Compressive-Sampling Spectrum Scanning with a Beamforming Receiver for Rapid, Directional, Wideband Signal Detection. 2022 IEEE 95th Vehicular Technology Conference: (VTC2022-Spring). :1–5.
Communication systems across a variety of applications are increasingly using the angular domain to improve spectrum management. They require new sensing architectures to perform energy-efficient measurements of the electromagnetic environment that can be deployed in a variety of use cases. This paper presents the Directional Spectrum Sensor (DSS), a compressive sampling (CS) based analog-to-information converter (CS-AIC) that performs spectrum scanning in a focused beam. The DSS offers increased spectrum sensing sensitivity and interferer tolerance compared to omnidirectional sensors. The DSS implementation uses a multi-antenna beamforming architecture with local oscillators that are modulated with pseudo random waveforms to obtain CS measurements. The overall operation, limitations, and the influence of wideband angular effects on the spectrum scanning performance are discussed. Measurements on an experimental prototype are presented and highlight improvements over single antenna, omnidirectional sensing systems.
ISSN: 2577-2465
Lotfollahi, Mahsa, Tran, Nguyen, Gajjela, Chalapathi, Berisha, Sebastian, Han, Zhu, Mayerich, David, Reddy, Rohith.  2022.  Adaptive Compressive Sampling for Mid-Infrared Spectroscopic Imaging. 2022 IEEE International Conference on Image Processing (ICIP). :2336–2340.
Mid-infrared spectroscopic imaging (MIRSI) is an emerging class of label-free, biochemically quantitative technologies targeting digital histopathology. Conventional histopathology relies on chemical stains that alter tissue color. This approach is qualitative, often making histopathologic examination subjective and difficult to quantify. MIRSI addresses these challenges through quantitative and repeatable imaging that leverages native molecular contrast. Fourier transform infrared (FTIR) imaging, the best-known MIRSI technology, has two challenges that have hindered its widespread adoption: data collection speed and spatial resolution. Recent technological breakthroughs, such as photothermal MIRSI, provide an order of magnitude improvement in spatial resolution. However, this comes at the cost of acquisition speed, which is impractical for clinical tissue samples. This paper introduces an adaptive compressive sampling technique to reduce hyperspectral data acquisition time by an order of magnitude by leveraging spectral and spatial sparsity. This method identifies the most informative spatial and spectral features, integrates a fast tensor completion algorithm to reconstruct megapixel-scale images, and demonstrates speed advantages over FTIR imaging while providing spatial resolutions comparable to new photothermal approaches.
ISSN: 2381-8549
'Ammar, Muhammad Amirul, Purnamasari, Rita, Budiman, Gelar.  2022.  Compressive Sampling on Weather Radar Application via Discrete Cosine Transform (DCT). 2022 IEEE Symposium on Future Telecommunication Technologies (SOFTT). :83–89.
A weather radar is expected to provide information about weather conditions in real time and valid. To obtain these results, weather radar takes a lot of data samples, so a large amount of data is obtained. Therefore, the weather radar equipment must provide bandwidth for a large capacity for transmission and storage media. To reduce the burden of data volume by performing compression techniques at the time of data acquisition. Compressive Sampling (CS) is a new data acquisition method that allows the sampling and compression processes to be carried out simultaneously to speed up computing time, reduce bandwidth when passed on transmission media, and save storage media. There are three stages in the CS method, namely: sparsity transformation using the Discrete Cosine Transform (DCT) algorithm, sampling using a measurement matrix, and reconstruction using the Orthogonal Matching Pursuit (OMP) algorithm. The sparsity transformation aims to convert the representation of the radar signal into a sparse form. Sampling is used to extract important information from the radar signal, and reconstruction is used to get the radar signal back. The data used in this study is the real data of the IDRA beat signal. Based on the CS simulation that has been done, the best PSNR and RMSE values are obtained when using a CR value of two times, while the shortest computation time is obtained when using a CR value of 32 times. CS simulation in a sector via DCT using the CR value two times produces a PSNR value of 20.838 dB and an RMSE value of 0.091. CS simulation in a sector via DCT using the CR value 32 times requires a computation time of 10.574 seconds.