Visible to the public Biblio

Found 2775 results

Filters: First Letter Of Last Name is B  [Clear All Filters]
2023-04-14
Garcia, Ailen B., Bongo, Shaina Mae C..  2022.  A Cyber Security Cognizance among College Teachers and Students in Embracing Online Education. 2022 8th International Conference on Information Management (ICIM). :116—119.
Cyber security is everybody's responsibility. It is the capability of the person to protect or secure the use of cyberspace from cyber-attacks. Cyber security awareness is the combination of both knowing and doing to safeguard one's personal information or assets. Online threats continue to rise in the Philippines which is the focus of this study, to identify the level of cyber security awareness among the students and teachers of Occidental Mindoro State College (OMSC) Philippines. Results shows that the level of cyber security awareness in terms of Knowledge, majority of the students and teachers got the passing score and above however there are almost fifty percent got below the passing score. In terms of Practices, both the teachers and the students need to strengthen the awareness of system and browser updates to boost the security level of the devices used. More than half of the IT students are aware of the basic cyber security protocol but there is a big percentage in the Non-IT students which is to be considered. Majority of the teachers are aware of the basic cyber security protocols however the remaining number must be looked into. There is a need to intensity the awareness of the students in the proper etiquette in using the social media. Boost the basic cyber security awareness training to all students and teachers to avoid cybercrime victims.
Li, Da, Guo, Qinglei, Bai, Desheng, Zhang, Wei.  2022.  Research and Implementation on the Operation and Transaction System Based on Blockchain Technology for Virtual Power Plant. 2022 International Conference on Blockchain Technology and Information Security (ICBCTIS). :165–170.
Virtual power plants are among the promising ways that variable generation and flexible demand may be optimally balanced in the future. The virtual power plant is an important branch of the energy internet, and it plays an important role in the aggregation of distributed power generation resources and the establishment of virtual power resource transactions. However, in the existing virtual power plant model, the following problems are becoming increasingly prominent, such as safeguard, credit rating system, privacy protection, benefit distribution. Firstly, the operation and transaction mechanism of the virtual power plant was introduced. Then, the blockchain technology is introduced into the virtual power plant transaction to make it more conducive to the information transparent, stable dispatch system, data security, and storage security. Finally, the operation and transaction system based on blockchain technology for the virtual power plant was design.
Qian, Jun, Gan, Zijie, Zhang, Jie, Bhunia, Suman.  2022.  Analyzing SocialArks Data Leak - A Brute Force Web Login Attack. 2022 4th International Conference on Computer Communication and the Internet (ICCCI). :21–27.
In this work, we discuss data breaches based on the “2012 SocialArks data breach” case study. Data leakage refers to the security violations of unauthorized individuals copying, transmitting, viewing, stealing, or using sensitive, protected, or confidential data. Data leakage is becoming more and more serious, for those traditional information security protection methods like anti-virus software, intrusion detection, and firewalls have been becoming more and more challenging to deal with independently. Nevertheless, fortunately, new IT technologies are rapidly changing and challenging traditional security laws and provide new opportunities to develop the information security market. The SocialArks data breach was caused by a misconfiguration of ElasticSearch Database owned by SocialArks, owned by “Tencent.” The attack methodology is classic, and five common Elasticsearch mistakes discussed the possibilities of those leakages. The defense solution focuses on how to optimize the Elasticsearch server. Furthermore, the ElasticSearch database’s open-source identity also causes many ethical problems, which means that anyone can download and install it for free, and they can install it almost anywhere. Some companies download it and install it on their internal servers, while others download and install it in the cloud (on any provider they want). There are also cloud service companies that provide hosted versions of Elasticsearch, which means they host and manage Elasticsearch clusters for their customers, such as Company Tencent.
Faircloth, Christopher, Hartzell, Gavin, Callahan, Nathan, Bhunia, Suman.  2022.  A Study on Brute Force Attack on T-Mobile Leading to SIM-Hijacking and Identity-Theft. 2022 IEEE World AI IoT Congress (AIIoT). :501–507.
The 2021 T-Mobile breach conducted by John Erin Binns resulted in the theft of 54 million customers' personal data. The attacker gained entry into T-Mobile's systems through an unprotected router and used brute force techniques to access the sensitive information stored on the internal servers. The data stolen included names, addresses, Social Security Numbers, birthdays, driver's license numbers, ID information, IMEIs, and IMSIs. We analyze the data breach and how it opens the door to identity theft and many other forms of hacking such as SIM Hijacking. SIM Hijacking is a form of hacking in which bad actors can take control of a victim's phone number allowing them means to bypass additional safety measures currently in place to prevent fraud. This paper thoroughly reviews the attack methodology, impact, and attempts to provide an understanding of important measures and possible defense solutions against future attacks. We also detail other social engineering attacks that can be incurred from releasing the leaked data.
Tahmasbi, Maryam, Boostani, Reza, Aljaidi, Mohammad, Attar, Hani.  2022.  Improving Organizations Security Using Visual Cryptography Based on XOR and Chaotic-Based Key. 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). :1–6.
Since data security is an important branch of the wide concept of security, using simple and interpretable data security methods is deemed necessary. A considerable volume of data that is transferred through the internet is in the form of image. Therefore, several methods have focused on encrypting and decrypting images but some of the conventional algorithms are complex and time consuming. On the other hand, denial method or steganography has attracted the researchers' attention leading to more security for transferring images. This is because attackers are not aware of encryption on images and therefore they do not try to decrypt them. Here, one of the most effective and simplest operators (XOR) is employed. The received shares in destination only with XOR operation can recover original images. Users are not necessary to be familiar with computer programing, data coding and the execution time is lesser compared to chaos-based methods or coding table. Nevertheless, for designing the key when we have messy images, we use chaotic functions. Here, in addition to use the XOR operation, eliminating the pixel expansion and meaningfulness of the shared images is of interest. This method is simple and efficient and use both encryption and steganography; therefore, it can guarantee the security of transferred images.
Rao Varre, Durga Naga Malleswara, Bayana, Jayanag.  2022.  A Secured Botnet Prevention Mechanism for HTTP Flooding Based DDoS Attack. 2022 3rd International Conference for Emerging Technology (INCET). :1–5.
HTTP flood DDoS (Distributed Denial of Service) attacks send illegitimate HTTP requests to the targeted site or server. These kinds of attacks corrupt the networks with the help of massive attacking nodes thus blocking incoming traffic. Computer network connected devices are the major source to distributed denial of service attacks (or) botnet attacks. The computer manufacturers rapidly increase the network devices as per the requirement increases in the different environmental needs. Generally the manufacturers cannot ship computer network products with high level security. Those network products require additional security to prevent the DDoS attacks. The present technology is filled with 4G that will impact DDoS attacks. The million DDoS attacks had experienced in every year by companies or individuals. DDoS attack in a network would lead to loss of assets, data and other resources. Purchasing the new equipment and repair of the DDoS attacked network is financially becomes high in the value. The prevention mechanisms like CAPTCHA are now outdated to the bots and which are solved easily by the advanced bots. In the proposed work a secured botnet prevention mechanism provides network security by prevent and mitigate the http flooding based DDoS attack and allow genuine incoming traffic to the application or server in a network environment with the help of integrating invisible challenge and Resource Request Rate algorithms to the application. It offers double security layer to handle malicious bots to prevent and mitigate.
Barakat, Ghena, Al-Duwairi, Basheer, Jarrah, Moath, Jaradat, Manar.  2022.  Modeling and Simulation of IoT Botnet Behaviors Using DEVS. 2022 13th International Conference on Information and Communication Systems (ICICS). :42–47.
The ubiquitous nature of the Internet of Things (IoT) devices and their wide-scale deployment have remarkably attracted hackers to exploit weakly-configured and vulnerable devices, allowing them to form large IoT botnets and launch unprecedented attacks. Modeling the behavior of IoT botnets leads to a better understanding of their spreading mechanisms and the state of the network at different levels of the attack. In this paper, we propose a generic model to capture the behavior of IoT botnets. The proposed model uses Markov Chains to study the botnet behavior. Discrete Event System Specifications environment is used to simulate the proposed model.
ISSN: 2573-3346
Borys, Adam, Kamruzzaman, Abu, Thakur, Hasnain Nizam, Brickley, Joseph C., Ali, Md L., Thakur, Kutub.  2022.  An Evaluation of IoT DDoS Cryptojacking Malware and Mirai Botnet. 2022 IEEE World AI IoT Congress (AIIoT). :725–729.
This paper dives into the growing world of IoT botnets that have taken the world by storm in the past five years. Though alone an IP camera cannot produce enough traffic to be considered a DDoS. But a botnet that has over 150,000 connected IP cameras can generate as much as 1 Tbps in traffic. Botnets catch many by surprise because their attacks and infections may not be as apparent as a DDoS, some other cases include using these cameras and printers for extracting information or quietly mine cryptocurrency at the IoT device owner's expense. Here we analyze damages on IoT hacking and define botnet architecture. An overview of Mirai botnet and cryptojacking provided to better understand the IoT botnets.
Raut, Yash, Pote, Shreyash, Boricha, Harshank, Gunjgur, Prathmesh.  2022.  A Robust Captcha Scheme for Web Security. 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA. :1–6.
The internet has grown increasingly important in everyone's everyday lives due to the availability of numerous web services such as email, cloud storage, video streaming, music streaming, and search engines. On the other hand, attacks by computer programmes such as bots are a common hazard to these internet services. Captcha is a computer program that helps a server-side company determine whether or not a real user is requesting access. Captcha is a security feature that prevents unauthorised access to a user's account by protecting restricted areas from automated programmes, bots, or hackers. Many websites utilise Captcha to prevent spam and other hazardous assaults when visitors log in. However, in recent years, the complexity of Captcha solving has become difficult for humans too, making it less user friendly. To solve this, we propose creating a Captcha that is both simple and engaging for people while also robust enough to protect sensitive data from bots and hackers on the internet. The suggested captcha scheme employs animated artifacts, rotation, and variable fonts as resistance techniques. The proposed captcha technique proves successful against OCR bots with less than 15% accuracy while being easier to solve for human users with more than 98% accuracy.
ISSN: 2771-1358
Kimbrough, Turhan, Tian, Pu, Liao, Weixian, Blasch, Erik, Yu, Wei.  2022.  Deep CAPTCHA Recognition Using Encapsulated Preprocessing and Heterogeneous Datasets. IEEE INFOCOM 2022 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). :1–6.
CAPTCHA (Completely Automated Public Turing test to tell Computers and Humans Apart) is an important security technique designed to deter bots from abusing software systems, which has broader applications in cyberspace. CAPTCHAs come in a variety of forms, including the deciphering of obfuscated text, transcribing of audio messages, and tracking mouse movement, among others. This paper focuses on using deep learning techniques to recognize text-based CAPTCHAs. In particular, our work focuses on generating training datasets using different CAPTCHA schemes, along with a pre-processing technique allowing for character-based recognition. We have encapsulated the CRABI (CAPTCHA Recognition with Attached Binary Images) framework to give an image multiple labels for improvement in feature extraction. Using real-world datasets, performance evaluations are conducted to validate the efficacy of our proposed approach on several neural network architectures (e.g., custom CNN architecture, VGG16, ResNet50, and MobileNet). The experimental results confirm that over 90% accuracy can be achieved on most models.
Boche, Holger, Cai, Minglai, Wiese, Moritz.  2022.  Mosaics of Combinatorial Designs for Semantic Security on Quantum Wiretap Channels. 2022 IEEE International Symposium on Information Theory (ISIT). :856–861.
We study semantic security for classical-quantum channels. Our security functions are functional forms of mosaics of combinatorial designs. We extend methods in [25] from classical channels to classical-quantum channels to demonstrate that mosaics of designs ensure semantic security for classical-quantum channels, and are also capacity achieving coding schemes. An advantage of these modular wiretap codes is that we provide explicit code constructions that can be implemented in practice for every channel, given an arbitrary public code.
ISSN: 2157-8117
2023-03-31
Grundmann, Matthias, Baumstark, Max, Hartenstein, Hannes.  2022.  On the Peer Degree Distribution of the Bitcoin P2P Network. 2022 IEEE International Conference on Blockchain and Cryptocurrency (ICBC). :1–5.
A recent spam wave of IP addresses in the Bitcoin P2P network allowed us to estimate the degree distribution of reachable peers. The resulting distribution indicates that about half of the reachable peers run with Bitcoin Core’s default setting of a maximum of 125 concurrent connections and nearly all connection slots are taken. We validate this result empirically. We use our observations of the spam wave to group IP addresses that belong to the same peer. By doing this grouping, we improve on previous measurements of the number of reachable peers and show that simply counting IP addresses overestimates the number of reachable peers by 15 %. We revalidate previous work by using our observations to estimate the number of unreachable peers.
Barbàra, Fadi, Schifanella, Claudio.  2022.  BxTB: cross-chain exchanges of bitcoins for all Bitcoin wrapped tokens. 2022 Fourth International Conference on Blockchain Computing and Applications (BCCA). :143–150.
While it is possible to exchange tokens whose smart contracts are on the same blockchain, cross-exchanging bitcoins for a Bitcoin wrapped token is still cumbersome. In particular, current methods of exchange are still custodial and perform privacy-threatening controls on the users in order to operate. To solve this problem we present BxTB: cross-chain exchanges of bitcoins for any Bitcoin wrapped tokens. BxTB lets users achieve that by bypassing the mint-and-burn paradigm of current wrapped tokens and cross-exchanging already minted tokens in a P2P way. Instead of relaying on HTLCs and the overhead of communication and slowness due to time-locks, we leverage Stateless SPVs, i.e. proof-of-inclusion of transactions in the Bitcoin chain validated through a smart contract deployed on the other blockchain. Furthermore, since this primitive has not been introduced in the academic literature yet, we formally introduce it and we prove its security.
Fan, Wenjun, Wuthier, Simeon, Hong, Hsiang-Jen, Zhou, Xiaobo, Bai, Yan, Chang, Sang-Yoon.  2022.  The Security Investigation of Ban Score and Misbehavior Tracking in Bitcoin Network. 2022 IEEE 42nd International Conference on Distributed Computing Systems (ICDCS). :191–201.
Bitcoin P2P networking is especially vulnerable to networking threats because it is permissionless and does not have the security protections based on the trust in identities, which enables the attackers to manipulate the identities for Sybil and spoofing attacks. The Bitcoin node keeps track of its peer’s networking misbehaviors through ban scores. In this paper, we investigate the security problems of the ban-score mechanism and discover that the ban score is not only ineffective against the Bitcoin Message-based DoS (BM-DoS) attacks but also vulnerable to the Defamation attack as the network adversary can exploit the ban score to defame innocent peers. To defend against these threats, we design an anomaly detection approach that is effective, lightweight, and tailored to the networking threats exploiting Bitcoin’s ban-score mechanism. We prototype our threat discoveries against a real-world Bitcoin node connected to the Bitcoin Mainnet and conduct experiments based on the prototype implementation. The experimental results show that the attacks have devastating impacts on the targeted victim while being cost-effective on the attacker side. For example, an attacker can ban a peer in two milliseconds and reduce the victim’s mining rate by hundreds of thousands of hash computations per second. Furthermore, to counter the threats, we empirically validate our detection countermeasure’s effectiveness and performances against the BM-DoS and Defamation attacks.
ISSN: 2575-8411
Bassit, Amina, Hahn, Florian, Veldhuis, Raymond, Peter, Andreas.  2022.  Multiplication-Free Biometric Recognition for Faster Processing under Encryption. 2022 IEEE International Joint Conference on Biometrics (IJCB). :1–9.

The cutting-edge biometric recognition systems extract distinctive feature vectors of biometric samples using deep neural networks to measure the amount of (dis-)similarity between two biometric samples. Studies have shown that personal information (e.g., health condition, ethnicity, etc.) can be inferred, and biometric samples can be reconstructed from those feature vectors, making their protection an urgent necessity. State-of-the-art biometrics protection solutions are based on homomorphic encryption (HE) to perform recognition over encrypted feature vectors, hiding the features and their processing while releasing the outcome only. However, this comes at the cost of those solutions' efficiency due to the inefficiency of HE-based solutions with a large number of multiplications; for (dis-)similarity measures, this number is proportional to the vector's dimension. In this paper, we tackle the HE performance bottleneck by freeing the two common (dis-)similarity measures, the cosine similarity and the squared Euclidean distance, from multiplications. Assuming normalized feature vectors, our approach pre-computes and organizes those (dis-)similarity measures into lookup tables. This transforms their computation into simple table-lookups and summation only. We study quantization parameters for the values in the lookup tables and evaluate performances on both synthetic and facial feature vectors for which we achieve a recognition performance identical to the non-tabularized baseline systems. We then assess their efficiency under HE and record runtimes between 28.95ms and 59.35ms for the three security levels, demonstrating their enhanced speed.

ISSN: 2474-9699

Magfirawaty, Magfirawaty, Budi Setiawan, Fauzan, Yusuf, Muhammad, Kurniandi, Rizki, Nafis, Raihan Fauzan, Hayati, Nur.  2022.  Principal Component Analysis and Data Encryption Model for Face Recognition System. 2022 2nd International Conference on Electronic and Electrical Engineering and Intelligent System (ICE3IS). :381–386.

Face recognition is a biometric technique that uses a computer or machine to facilitate the recognition of human faces. The advantage of this technique is that it can detect faces without direct contact with the device. In its application, the security of face recognition data systems is still not given much attention. Therefore, this study proposes a technique for securing data stored in the face recognition system database. It implements the Viola-Jones Algorithm, the Kanade-Lucas-Tomasi Algorithm (KLT), and the Principal Component Analysis (PCA) algorithm by applying a database security algorithm using XOR encryption. Several tests and analyzes have been performed with this method. The histogram analysis results show no visual information related to encrypted images with plain images. In addition, the correlation value between the encrypted and plain images is weak, so it has high security against statistical attacks with an entropy value of around 7.9. The average time required to carry out the introduction process is 0.7896 s.

Saraswat, Deepti, Ladhiya, Karan, Bhattacharya, Pronaya, Zuhair, Mohd.  2022.  PHBio: A Pallier Homomorphic Biometric Encryption Scheme in Healthcare 4.0 Ecosystems. 2022 3rd International Conference on Intelligent Engineering and Management (ICIEM). :306–312.

In healthcare 4.0 ecosystems, authentication of healthcare information allows health stakeholders to be assured that data is originated from correct source. Recently, biometric based authentication is a preferred choice, but as the templates are stored on central servers, there are high chances of copying and generating fake biometrics. An adversary can forge the biometric pattern, and gain access to critical health systems. Thus, to address the limitation, the paper proposes a scheme, PHBio, where an encryption-based biometric system is designed prior before storing the template to the server. Once a user provides his biometrics, the authentication process does not decrypt the data, rather uses a homomorphic-enabled Paillier cryptosystem. The scheme presents the encryption and the comparison part which is based on euclidean distance (EUD) strategy between the user input and the stored template on the server. We consider the minimum distance, and compare the same with a predefined threshold distance value to confirm a biometric match, and authenticate the user. The scheme is compared against parameters like accuracy, false rejection rates (FARs), and execution time. The proposed results indicate the validity of the scheme in real-time health setups.

Bauspieß, Pia, Olafsson, Jonas, Kolberg, Jascha, Drozdowski, Pawel, Rathgeb, Christian, Busch, Christoph.  2022.  Improved Homomorphically Encrypted Biometric Identification Using Coefficient Packing. 2022 International Workshop on Biometrics and Forensics (IWBF). :1–6.

Efficient large-scale biometric identification is a challenging open problem in biometrics today. Adding biometric information protection by cryptographic techniques increases the computational workload even further. Therefore, this paper proposes an efficient and improved use of coefficient packing for homomorphically protected biometric templates, allowing for the evaluation of multiple biometric comparisons at the cost of one. In combination with feature dimensionality reduction, the proposed technique facilitates a quadratic computational workload reduction for biometric identification, while long-term protection of the sensitive biometric data is maintained throughout the system. In previous works on using coefficient packing, only a linear speed-up was reported. In an experimental evaluation on a public face database, efficient identification in the encrypted domain is achieved on off-the-shelf hardware with no loss in recognition performance. In particular, the proposed improved use of coefficient packing allows for a computational workload reduction down to 1.6% of a conventional homomorphically protected identification system without improved packing.

Román, Roberto, Arjona, Rosario, López-González, Paula, Baturone, Iluminada.  2022.  A Quantum-Resistant Face Template Protection Scheme using Kyber and Saber Public Key Encryption Algorithms. 2022 International Conference of the Biometrics Special Interest Group (BIOSIG). :1–5.

Considered sensitive information by the ISO/IEC 24745, biometric data should be stored and used in a protected way. If not, privacy and security of end-users can be compromised. Also, the advent of quantum computers demands quantum-resistant solutions. This work proposes the use of Kyber and Saber public key encryption (PKE) algorithms together with homomorphic encryption (HE) in a face recognition system. Kyber and Saber, both based on lattice cryptography, were two finalists of the third round of NIST post-quantum cryptography standardization process. After the third round was completed, Kyber was selected as the PKE algorithm to be standardized. Experimental results show that recognition performance of the non-protected face recognition system is preserved with the protection, achieving smaller sizes of protected templates and keys, and shorter execution times than other HE schemes reported in literature that employ lattices. The parameter sets considered achieve security levels of 128, 192 and 256 bits.

ISSN: 1617-5468

L, Shammi, Milind, Emilin Shyni, C., Ul Nisa, Khair, Bora, Ravi Kumar, Saravanan, S..  2022.  Securing Biometric Data with Optimized Share Creation and Visual Cryptography Technique. 2022 6th International Conference on Electronics, Communication and Aerospace Technology. :673–679.

Biometric security is the fastest growing area that receives considerable attention over the past few years. Digital hiding and encryption technologies provide an effective solution to secure biometric information from intentional or accidental attacks. Visual cryptography is the approach utilized for encrypting the information which is in the form of visual information for example images. Meanwhile, the biometric template stored in the databases are generally in the form of images, the visual cryptography could be employed effectively for encrypting the template from the attack. This study develops a share creation with improved encryption process for secure biometric verification (SCIEP-SBV) technique. The presented SCIEP-SBV technique majorly aims to attain security via encryption and share creation (SC) procedure. Firstly, the biometric images undergo SC process to produce several shares. For encryption process, homomorphic encryption (HE) technique is utilized in this work. To further improve the secrecy, an improved bald eagle search (IBES) approach was exploited in this work. The simulation values of the SCIEP-SBV system are tested on biometric images. The extensive comparison study demonstrated the improved outcomes of the SCIEP-SBV technique over compared methods.

Khelifi, Hakima, Belouahri, Amani.  2022.  The Impact of Big Data Analytics on Traffic Prediction. 2022 International Conference on Advanced Aspects of Software Engineering (ICAASE). :1–6.
The Internet of Vehicles (IoVs) performs the rapid expansion of connected devices. This massive number of devices is constantly generating a massive and near-real-time data stream for numerous applications, which is known as big data. Analyzing such big data to find, predict, and control decisions is a critical solution for IoVs to enhance service quality and experience. Thus, the main goal of this paper is to study the impact of big data analytics on traffic prediction in IoVs. In which we have used big data analytics steps to predict the traffic flow, and based on different deep neural models such as LSTM, CNN-LSTM, and GRU. The models are validated using evaluation metrics, MAE, MSE, RMSE, and R2. Hence, a case study based on a real-world road is used to implement and test the efficiency of the traffic prediction models.
Soderi, Mirco, Kamath, Vignesh, Breslin, John G..  2022.  A Demo of a Software Platform for Ubiquitous Big Data Engineering, Visualization, and Analytics, via Reconfigurable Micro-Services, in Smart Factories. 2022 IEEE International Conference on Smart Computing (SMARTCOMP). :1–3.
Intelligent, smart, Cloud, reconfigurable manufac-turing, and remote monitoring, all intersect in modern industry and mark the path toward more efficient, effective, and sustain-able factories. Many obstacles are found along the path, including legacy machineries and technologies, security issues, and software that is often hard, slow, and expensive to adapt to face unforeseen challenges and needs in this fast-changing ecosystem. Light-weight, portable, loosely coupled, easily monitored, variegated software components, supporting Edge, Fog and Cloud computing, that can be (re)created, (re)configured and operated from remote through Web requests in a matter of milliseconds, and that rely on libraries of ready-to-use tasks also extendable from remote through sub-second Web requests, constitute a fertile technological ground on top of which fourth-generation industries can be built. In this demo it will be shown how starting from a completely virgin Docker Engine, it is possible to build, configure, destroy, rebuild, operate, exclusively from remote, exclusively via API calls, computation networks that are capable to (i) raise alerts based on configured thresholds or trained ML models, (ii) transform Big Data streams, (iii) produce and persist Big Datasets on the Cloud, (iv) train and persist ML models on the Cloud, (v) use trained models for one-shot or stream predictions, (vi) produce tabular visualizations, line plots, pie charts, histograms, at real-time, from Big Data streams. Also, it will be shown how easily such computation networks can be upgraded with new functionalities at real-time, from remote, via API calls.
ISSN: 2693-8340
Mudgal, Akshay, Bhatia, Shaveta.  2022.  A Step Towards Improvement in Classical Honeypot Security System. 2022 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COM-IT-CON). 1:720–725.
Data security is a vast term that doesn’t have any limits, but there are a certain amount of tools and techniques that could help in gaining security. Honeypot is among one of the tools that are designated and designed to protect the security of a network but in a very dissimilar manner. It is a system that is designed and developed to be compromised and exploited. Honeypots are meant to lure the invaders, but due to advancements in computing systems parallelly, the intruding technologies are also attaining their gigantic influence. In this research work, an approach involving apache-spark (a Big Data Technique) would be introduced in order to use it with the Honeypot System. This work includes an extensive study based on several research papers, through which elaborated experiment-based result has been expressed on the best known open-source honeypot systems. The preeminent possible method of using The Honeypot with apache spark in the sequential channel would also be proposed with the help of a framework diagram.
Vineela, A., Kasiviswanath, N., Bindu, C. Shoba.  2022.  Data Integrity Auditing Scheme for Preserving Security in Cloud based Big Data. 2022 6th International Conference on Intelligent Computing and Control Systems (ICICCS). :609–613.
Cloud computing has become an integral part of medical big data. The cloud has the capability to store the large data volumes has attracted more attention. The integrity and privacy of patient data are some of the issues that cloud-based medical big data should be addressed. This research work introduces data integrity auditing scheme for cloud-based medical big data. This will help minimize the risk of unauthorized access to the data. Multiple copies of the data are stored to ensure that it can be recovered quickly in case of damage. This scheme can also be used to enable doctors to easily track the changes in patients' conditions through a data block. The simulation results proved the effectiveness of the proposed scheme.
ISSN: 2768-5330
Biswas, Ankur, K V, Pradeep, Kumar Pandey, Arvind, Kumar Shukla, Surendra, Raj, Tej, Roy, Abhishek.  2022.  Hybrid Access Control for Atoring Large Data with Security. 2022 International Interdisciplinary Humanitarian Conference for Sustainability (IIHC). :838–844.
Although the public cloud is known for its incredible capabilities, consumers cannot totally depend on cloud service providers to keep personal data because to the lack of client maneuverability. To protect privacy, data controllers outsourced encryption keys rather than providing information. Crypt - text to conduct out okay and founder access control and provide the encryption keys with others, innate quality Aes (CP-ABE) may be employed. This, however, falls short of effectively protecting against new dangers. The public cloud was unable to validate if a downloader could decode using a number of older methods. Therefore, these files should be accessible to everyone having access to a data storage. A malicious attacker may download hundreds of files in order to launch Economic Deny of Sustain (EDoS) attacks, greatly depleting the cloud resource. The user of cloud storage is responsible for paying the fee. Additionally, the public cloud serves as both the accountant and the payer of resource consumption costs, without offering data owners any information. Cloud infrastructure storage should assuage these concerns in practice. In this study, we provide a technique for resource accountability and defense against DoS attacks for encrypted cloud storage tanks. It uses black-box CP-ABE techniques and abides by the access policy of CP-arbitrary ABE. After presenting two methods for different parameters, speed and security evaluations are given.