Visible to the public Biblio

Found 2493 results

Filters: First Letter Of Last Name is W  [Clear All Filters]
2021-01-11
Whyte, C..  2020.  Problems of Poison: New Paradigms and "Agreed" Competition in the Era of AI-Enabled Cyber Operations. 2020 12th International Conference on Cyber Conflict (CyCon). 1300:215–232.
Few developments seem as poised to alter the characteristics of security in the digital age as the advent of artificial intelligence (AI) technologies. For national defense establishments, the emergence of AI techniques is particularly worrisome, not least because prototype applications already exist. Cyber attacks augmented by AI portend the tailored manipulation of human vectors within the attack surface of important societal systems at great scale, as well as opportunities for calamity resulting from the secondment of technical skill from the hacker to the algorithm. Arguably most important, however, is the fact that AI-enabled cyber campaigns contain great potential for operational obfuscation and strategic misdirection. At the operational level, techniques for piggybacking onto routine activities and for adaptive evasion of security protocols add uncertainty, complicating the defensive mission particularly where adversarial learning tools are employed in offense. Strategically, AI-enabled cyber operations offer distinct attempts to persistently shape the spectrum of cyber contention may be able to pursue conflict outcomes beyond the expected scope of adversary operation. On the other, AI-augmented cyber defenses incorporated into national defense postures are likely to be vulnerable to "poisoning" attacks that predict, manipulate and subvert the functionality of defensive algorithms. This article takes on two primary tasks. First, it considers and categorizes the primary ways in which AI technologies are likely to augment offensive cyber operations, including the shape of cyber activities designed to target AI systems. Then, it frames a discussion of implications for deterrence in cyberspace by referring to the policy of persistent engagement, agreed competition and forward defense promulgated in 2018 by the United States. Here, it is argued that the centrality of cyberspace to the deployment and operation of soon-to-be-ubiquitous AI systems implies new motivations for operation within the domain, complicating numerous assumptions that underlie current approaches. In particular, AI cyber operations pose unique measurement issues for the policy regime.
Wang, W.-C., Ho, C.-C., Chang, Y.-M., Chang, Y.-H..  2020.  Challenges and Designs for Secure Deletion in Storage Systems. 2020 Indo – Taiwan 2nd International Conference on Computing, Analytics and Networks (Indo-Taiwan ICAN). :181–189.
Data security has risen to be one of the most critical concerns of computer professionals. Tighter legal requirements now exist for the purpose of protecting user data from unauthorized uses and for both preserving and erasing/sanitizing data records to meet legal compliance requirements. To meet the data security requirement, many secure (data) deletion techniques have been proposed to deal with the data security concerns from different system layers. This paper surveys the state-of-the-art secure deletion techniques that have been designed to pursue higher efficiency, verifiability, and portability for emerging types of hard disk drives and flash-based solid-state drives. Meanwhile, the pros and cons of implementing secure deletion in different system layers are also discussed, so as to assist in pursuing better secure deletion designs for future storage systems.
2020-12-28
Dove, R., Willett, K. D..  2020.  Contextually Aware Agile-Security in the Future of Systems Engineering. 2020 IEEE Systems Security Symposium (SSS). :1—8.

A recurring principle in consideration of the future of systems engineering is continual dynamic adaptation. Context drives change whether it be from potential loss (threats, vulnerabilities) or from potential gain (opportunity-driven). Contextual-awareness has great influence over the future of systems engineering and of systems security. Those contextual environments contain fitness functions that will naturally select compatible approaches and filter out the incompatible, with prejudice. We don't have to guess at what those environmental shaping forces will look like. William Gibson famously tells us why: “The future is already here, it's just not evenly distributed;” and, sometimes difficult to discern. This paper provides archetypes that 1) characterize general systems engineering for products, processes, and operations; 2) characterize the integration of security to systems engineering; and, 3) characterize contextually aware agile-security. This paper is more of a problem statement than a solution. Solution objectives and tactics for guiding the path forward have a broader range of options for subsequent treatment elsewhere. Our purpose here is to offer a short list of necessary considerations for effective contextually aware adaptive system security in the future of systems engineering.

Yu, Y., Li, H., Fu, Y., Wu, X..  2020.  A Dynamic Updating Method for Release of Privacy Protected Data Based on Privacy Differences in Relational Data. 2020 International Conference on Computer Information and Big Data Applications (CIBDA). :23—27.

To improve dynamic updating of privacy protected data release caused by multidimensional sensitivity attribute privacy differences in relational data, we propose a dynamic updating method for privacy protection data release based on the multidimensional privacy differences. By adopting the multi-sensitive bucketization technology (MSB), this method performs quantitative classification of the multidimensional sensitive privacy difference and the recorded value, provides the basic updating operation unit, and thereby realizes dynamic updating of privacy protection data release based on the privacy difference among relational data. The experiment confirms that the method can secure the data updating efficiency while ensuring the quality of data release.

Wang, A., Yuan, Z., He, B..  2020.  Design and Realization of Smart Home Security System Based on AWS. 2020 International Conference on Information Science, Parallel and Distributed Systems (ISPDS). :291—295.
With the popularization and application of Internet of Things technology, the degree of intelligence of the home system is getting higher and higher. As an important part of the smart home, the security system plays an important role in protecting against accidents such as flammable gas leakage, fire, and burglary that may occur in the home environment. This design focuses on sensor signal acquisition and processing, wireless access, and cloud applications, and integrates Cypress’s new generation of PSoC 6 MCU, CYW4343W Wi-Fi and Bluetooth dual-module chips, and Amazon’s AWS cloud into smart home security System designing. First, through the designed air conditioning and refrigeration module, fire warning processing module, lighting control module, ventilation fan control module, combustible gas and smoke detection and warning module, important parameter information in the home environment is obtained. Then, the hardware system is connected to the AWS cloud platform through Wi-Fi; finally, a WEB interface is built in the AWS cloud to realize remote monitoring of the smart home environment. This design has a good reference for the design of future smart home security systems.
Zhang, Y., Weng, J., Ling, Z., Pearson, B., Fu, X..  2020.  BLESS: A BLE Application Security Scanning Framework. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :636—645.
Bluetooth Low Energy (BLE) is a widely adopted wireless communication technology in the Internet of Things (IoT). BLE offers secure communication through a set of pairing strategies. However, these pairing strategies are obsolete in the context of IoT. The security of BLE based devices relies on physical security, but a BLE enabled IoT device may be deployed in a public environment without physical security. Attackers who can physically access a BLE-based device will be able to pair with it and may control it thereafter. Therefore, manufacturers may implement extra authentication mechanisms at the application layer to address this issue. In this paper, we design and implement a BLE Security Scan (BLESS) framework to identify those BLE apps that do not implement encryption or authentication at the application layer. Taint analysis is used to track if BLE apps use nonces and cryptographic keys, which are critical to cryptographic protocols. We scan 1073 BLE apps and find that 93% of them are not secure. To mitigate this problem, we propose and implement an application-level defense with a low-cost \$0.55 crypto co-processor using public key cryptography.
2020-12-21
Liu, Q., Wu, W., Liu, Q., Huangy, Q..  2020.  T2DNS: A Third-Party DNS Service with Privacy Preservation and Trustworthiness. 2020 29th International Conference on Computer Communications and Networks (ICCCN). :1–11.
We design a third-party DNS service named T2DNS. T2DNS serves client DNS queries with the following features: protecting clients from channel and server attackers, providing trustworthiness proof to clients, being compatible with the existing Internet infrastructure, and introducing bounded overhead. T2DNS's privacy preservation is achieved by a hybrid protocol of encryption and obfuscation, and its service proxy is implemented on Intel SGX. We overcome the challenges of scaling the initialization process, bounding the obfuscation overhead, and tuning practical system parameters. We prototype T2DNS, and experiment results show that T2DNS is fully functional, has acceptable overhead in comparison with other solutions, and is scalable to the number of clients.
Nasution, A. P., Suryani, V., Wardana, A. A..  2020.  IoT Object Security towards On-off Attack Using Trustworthiness Management. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1–6.
Internet of Things (IoT) can create the world with the integration of the physical things with the seamlessly network of information purposely to give a sophisticated and smart service for human life. A variety of threats and attacks to IoT object, however, can lead to the misuse of data or information to the IoT objects. One of the attacks is On-off Attack in which the attacker acts not only as an object with a good manner by sending the valid trust value but also sometimes as a bad object by sending invalid one. To respond this action, there is a need for the object security to such attacks. Here the writer used the Trustworthiness Management as a method to cope with this attack. Trustworthiness Management can use the aspect of trust value security as a reference for detecting an attack to the object. In addition, with the support of security system using the authentication provided by MQTT, it is expected that it can provide an additional security. The approach used in this research was the test on On-Off Attack detection directly to the object connected to the network. The results of the test were then displayed on the webpage made using PHP and MySQL database as the storage of the values sent by the object to the server. The test on the On-off Attack detection was successfully conducted with the success level of 100% and the execution to detection took 0.5518318 seconds. This then showed that Trustworthiness Management can be used as one of the methods to cope with On-off Attack.
Neises, J., Moldovan, G., Walloschke, T., Popovici, B..  2020.  Trustworthiness in Supply Chains : A modular extensible Approach applied to Industrial IoT. 2020 Global Internet of Things Summit (GIoTS). :1–6.
Typical transactions in cross-company Industry 4.0 supply chains require a dynamically evaluable form of trustworthiness. Therefore, specific requirements on the parties involved, down to the machine level, for automatically verifiable operations shall facilitate the realization of the economic advantages of future flexible process chains in production. The core of the paper is a modular and extensible model for the assessment of trustworthiness in industrial IoT based on the Industrial Internet Security Framework of the Industrial Internet Consortium, which among other things defines five trustworthiness key characteristics of NIST. This is the starting point for a flexible model, which contains features as discussed in ISO/IEC JTC 1/AG 7 N51 or trustworthiness profiles as used in regulatory requirements. Specific minimum and maximum requirement parameters define the range of trustworthy operation. An automated calculation of trustworthiness in a dynamic environment based on an initial trust metric is presented. The evaluation can be device-based, connection-based, behaviour-based and context-based and thus become part of measurable, trustworthy, monitorable Industry 4.0 scenarios. Finally, the dynamic evaluation of automatable trust models of industrial components is illustrated based on the Multi-Vendor-Industry of the Horizon 2020 project SecureIoT. (grant agreement number 779899).
Zhu, Y., Wang, N., Liu, C., Zhang, Y..  2020.  A Review of the Approaches to Improve The Effective Coupling Coefficient of AlN based RF MEMS Resonators. 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF). :1–2.
This work reviews various methods which improve the effective coupling coefficient ( k2eff) of non-bulk acoustic wave (BAW) aluminum nitride (AlN) based RF MEMS resonators, mainly focusing on the innovative structural design of the resonators. k2eff is the key parameter for a resonator in communication applications because it measures the achievable fractional bandwidth of the filter constructed. The resonator's configuration, dimension, material stack and the fabrication process will all have impact on its k2eff. In this paper, the authors will review the efforts in improving the k2eff of piezoelectric MEMS resonators from research community in the past 15 years, mainly from the following three approaches: coupling lateral wave with vertical wave, exciting two-dimensional (2-D) lateral wave, as well as coupling 2-D lateral wave with vertical wave. The material will be limited to AlN family, which is proven to be manageable for manufacturing. The authors will also try to make recommendations to the effectiveness of various approaches and the path forward.
Tseng, S.-Y., Hsiao, C.-C., Wu, R.-B..  2020.  Synthesis and Realization of Chebyshev Filters Based on Constant Electromechanical Coupling Coefficient Acoustic Wave Resonators. 2020 IEEE/MTT-S International Microwave Symposium (IMS). :257–260.
This paper proposes a method to synthesis acoustic wave (AW) filters with Chebyshev response automatically. Meanwhile, each AW resonator used to design the filter can be easily fabricated on the same piezoelectric substrate. The method is based on an optimization algorithm with constraints for constant electromechanical coupling coefficient ( kt2) to minimize the defined cost function. Finally, the experimental result for a surface acoustic wave (SAW) filter of global positioning system (GPS) frequency band based on the 42° lithium tantalate (LiTaO3) substrate validates the simulation results. The designed filter shows insertion loss (IL) and return loss (RL) better than 2.5dB and 18dB respectively in the pass-band, and out-band reflection larger than 30dB.
Wang, H., Zeng, X., Lei, Y., Ren, S., Hou, F., Dong, N..  2020.  Indoor Object Identification based on Spectral Subtraction of Acoustic Room Impulse Response. 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC). :1–4.
Object identification in the room environment is a key technique in many advanced engineering applications such as the unidentified object recognition in security surveillance, human identification and barrier recognition for AI robots. The identification technique based on the sound field perturbation analysis is capable of giving immersive identification which avoids the occlusion problem in the traditional vision-based method. In this paper, a new insight into the relation between the object and the variation of the sound field is presented. The sound field difference before and after the object locates in the environment is analyzed using the spectral subtraction based on the room impulse response. The spectral subtraction shows that the energy loss caused by the sound absorption is the essential factor which perturbs the sound field. By using the energy loss with high uniqueness as the extracted feature, an object identification technique is constructed under the classical supervised pattern recognition framework. The experiment in a real room validates that the system has high identification accuracy. In addition, based on the feature property of position insensitivity, this technique can achieve high identifying accuracy with a quite small training data set, which demonstrates that the technique has potential to be used in real engineering applications.
2020-12-17
Wehbe, R., Williams, R. K..  2019.  Approximate Probabilistic Security for Networked Multi-Robot Systems. 2019 International Conference on Robotics and Automation (ICRA). :1997—2003.

In this paper, we formulate a combinatorial optimization problem that aims to maximize the accuracy of a lower bound estimate of the probability of security of a multi-robot system (MRS), while minimizing the computational complexity involved in its calculation. Security of an MRS is defined using the well-known control theoretic notion of left invertiblility, and the probability of security of an MRS can be calculated using binary decision diagrams (BDDs). The complexity of a BDD depends on the number of disjoint path sets considered during its construction. Taking into account all possible disjoint paths results in an exact probability of security, however, selecting an optimal subset of disjoint paths leads to a good estimate of the probability while significantly reducing computation. To deal with the dynamic nature of MRSs, we introduce two methods: (1) multi-point optimization, a technique that requires some a priori knowledge of the topology of the MRS over time, and (2) online optimization, a technique that does not require a priori knowledge, but must construct BDDs while the MRS is operating. Finally, our approach is validated on an MRS performing a rendezvous objective while exchanging information according to a noisy state agreement process.

2020-12-15
Prakash, A., Walambe, R..  2018.  Military Surveillance Robot Implementation Using Robot Operating System. 2018 IEEE Punecon. :1—5.

Robots are becoming more and more prevalent in many real world scenarios. Housekeeping, medical aid, human assistance are a few common implementations of robots. Military and Security are also major areas where robotics is being researched and implemented. Robots with the purpose of surveillance in war zones and terrorist scenarios need specific functionalities to perform their tasks with precision and efficiency. In this paper, we present a model of Military Surveillance Robot developed using Robot Operating System. The map generation based on Kinect sensor is presented and some test case scenarios are discussed with results.

Chen, Z., Jia, Z., Wang, Z., Jafar, S. A..  2020.  GCSA Codes with Noise Alignment for Secure Coded Multi-Party Batch Matrix Multiplication. 2020 IEEE International Symposium on Information Theory (ISIT). :227—232.

A secure multi-party batch matrix multiplication problem (SMBMM) is considered, where the goal is to allow a master to efficiently compute the pairwise products of two batches of massive matrices, by distributing the computation across S servers. Any X colluding servers gain no information about the input, and the master gains no additional information about the input beyond the product. A solution called Generalized Cross Subspace Alignment codes with Noise Alignment (GCSA- NA) is proposed in this work, based on cross-subspace alignment codes. The state of art solution to SMBMM is a coding scheme called polynomial sharing (PS) that was proposed by Nodehi and Maddah-Ali. GCSA-NA outperforms PS codes in several key aspects - more efficient and secure inter-server communication, lower latency, flexible inter-server network topology, efficient batch processing, and tolerance to stragglers.

Boche, H., Cai, M., Wiese, M., Deppe, C., Ferrara, R..  2020.  Semantic Security for Quantum Wiretap Channels. 2020 IEEE International Symposium on Information Theory (ISIT). :1990—1995.

We determine the semantic security capacity for quantum wiretap channels. We extend methods for classical channels to quantum channels to demonstrate that a strongly secure code guarantees a semantically secure code with the same secrecy rate. Furthermore, we show how to transform a non-secure code into a semantically secure code by means of biregular irreducible functions (BRI functions). We analyze semantic security for classical-quantum channels and for quantum channels.

2020-12-14
Huang, Y., Wang, W., Wang, Y., Jiang, T., Zhang, Q..  2020.  Lightweight Sybil-Resilient Multi-Robot Networks by Multipath Manipulation. IEEE INFOCOM 2020 - IEEE Conference on Computer Communications. :2185–2193.

Wireless networking opens up many opportunities to facilitate miniaturized robots in collaborative tasks, while the openness of wireless medium exposes robots to the threats of Sybil attackers, who can break the fundamental trust assumption in robotic collaboration by forging a large number of fictitious robots. Recent advances advocate the adoption of bulky multi-antenna systems to passively obtain fine-grained physical layer signatures, rendering them unaffordable to miniaturized robots. To overcome this conundrum, this paper presents ScatterID, a lightweight system that attaches featherlight and batteryless backscatter tags to single-antenna robots to defend against Sybil attacks. Instead of passively "observing" signatures, ScatterID actively "manipulates" multipath propagation by using backscatter tags to intentionally create rich multipath features obtainable to a single-antenna robot. These features are used to construct a distinct profile to detect the real signal source, even when the attacker is mobile and power-scaling. We implement ScatterID on the iRobot Create platform and evaluate it in typical indoor and outdoor environments. The experimental results show that our system achieves a high AUROC of 0.988 and an overall accuracy of 96.4% for identity verification.

Wang, H., Ma, L., Bai, H..  2020.  A Three-tier Scheme for Sybil Attack Detection in Wireless Sensor Networks. 2020 5th International Conference on Computer and Communication Systems (ICCCS). :752–756.
Wireless sensor network (WSN) is a wireless self-organizing multi-hop network that can sense and collect the information of the monitored environment through a certain number of sensor nodes which deployed in a certain area and transmit the collected information to the client. Due to the limited power and data capacity stored by the micro sensor, it is weak in communication with other nodes, data storage and calculation, and is very vulnerable to attack and harm to the entire network. The Sybil attack is a classic example. Sybil attack refers to the attack in which malicious nodes forge multiple node identities to participate in network operation. Malicious attackers can forge multiple node identities to participate in data forwarding. So that the data obtained by the end user without any use value. In this paper, we propose a three-tier detection scheme for the Sybil node in the severe environment. Every sensor node will determine whether they are Sybil nodes through the first-level and second-level high-energy node detection. Finally, the base station determines whether the Sybil node detected by the first two stages is true Sybil node. The simulation results show that our proposed scheme significantly improves network lifetime, and effectively improves the accuracy of Sybil node detection.
Hadiansyah, R., Suryani, V., Wardana, A. A..  2020.  IoT Object Security towards the Sybil Attack Using the Trustworthiness Management. 2020 8th International Conference on Information and Communication Technology (ICoICT). :1–4.

Internet of Things (IoT), commonly referred to a physical object connected to network, refers to a paradigm in information technology integrating the advances in terms of sensing, computation and communication to improve the service in daily life. This physical object consists of sensors and actuators that are capable of changing the data to offer the improvement of service quality in daily life. When a data exchange occurs, the exchanged data become sensitive; making them vulnerable to any security attacks, one of which, for example, is Sybil attack. This paper aimed to propose a method of trustworthiness management based upon the authentication and trust value. Once performing the test on three scenarios, the system was found to be capable of detecting the Sybil attack rapidly and accurately. The average of time to detect the Sybil attacks was 9.3287 seconds and the average of time required to detect the intruder object in the system was 18.1029 seconds. The accuracy resulted in each scenario was found 100% indicating that the detection by the system to Sybil attack was 100% accurate.

Cai, L., Hou, Y., Zhao, Y., Wang, J..  2020.  Application research and improvement of particle swarm optimization algorithm. 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS). :238–241.
Particle swarm optimization (PSO), as a kind of swarm intelligence algorithm, has the advantages of simple algorithm principle, less programmable parameters and easy programming. Many scholars have applied particle swarm optimization (PSO) to various fields through learning it, and successfully solved linear problems, nonlinear problems, multiobjective optimization and other problems. However, the algorithm also has obvious problems in solving problems, such as slow convergence speed, too early maturity, falling into local optimization in advance, etc., which makes the convergence speed slow, search the optimal value accuracy is not high, and the optimization effect is not ideal. Therefore, many scholars have improved the particle swarm optimization algorithm. Taking into account the improvement ideas proposed by scholars in the early stage and the shortcomings still existing in the improvement, this paper puts forward the idea of improving particle swarm optimization algorithm in the future.
Zhou, J.-L., Wang, J.-S., Zhang, Y.-X., Guo, Q.-S., Li, H., Lu, Y.-X..  2020.  Particle Swarm Optimization Algorithm with Variety Inertia Weights to Solve Unequal Area Facility Layout Problem. 2020 Chinese Control And Decision Conference (CCDC). :4240–4245.
The unequal area facility layout problem (UA-FLP) is to place some objects in a specified space according to certain requirements, which is a NP-hard problem in mathematics because of the complexity of its solution, the combination explosion and the complexity of engineering system. Particle swarm optimization (PSO) algorithm is a kind of swarm intelligence algorithm by simulating the predatory behavior of birds. Aiming at the minimization of material handling cost and the maximization of workshop area utilization, the optimization mathematical model of UA-FLPP is established, and it is solved by the particle swarm optimization (PSO) algorithm which simulates the design of birds' predation behavior. The improved PSO algorithm is constructed by using nonlinear inertia weight, dynamic inertia weight and other methods to solve static unequal area facility layout problem. The effectiveness of the proposed method is verified by simulation experiments.
Willcox, G., Rosenberg, L., Domnauer, C..  2020.  Analysis of Human Behaviors in Real-Time Swarms. 2020 10th Annual Computing and Communication Workshop and Conference (CCWC). :0104–0109.
Many species reach group decisions by deliberating in real-time systems. This natural process, known as Swarm Intelligence (SI), has been studied extensively in a range of social organisms, from schools of fish to swarms of bees. A new technique called Artificial Swarm Intelligence (ASI) has enabled networked human groups to reach decisions in systems modeled after natural swarms. The present research seeks to understand the behavioral dynamics of such “human swarms.” Data was collected from ten human groups, each having between 21 and 25 members. The groups were tasked with answering a set of 25 ordered ranking questions on a 1-5 scale, first independently by survey and then collaboratively as a real-time swarm. We found that groups reached significantly different answers, on average, by swarm versus survey ( p=0.02). Initially, the distribution of individual responses in each swarm was little different than the distribution of survey responses, but through the process of real-time deliberation, the swarm's average answer changed significantly ( ). We discuss possible interpretations of this dynamic behavior. Importantly, the we find that swarm's answer is not simply the arithmetic mean of initial individual “votes” ( ) as in a survey, suggesting a more complex mechanism is at play-one that relies on the time-varying behaviors of the participants in swarms. Finally, we publish a set of data that enables other researchers to analyze human behaviors in real-time swarms.
Willcox, G., Rosenberg, L., Burgman, M., Marcoci, A..  2020.  Prioritizing Policy Objectives in Polarized Groups using Artificial Swarm Intelligence. 2020 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA). :1–9.
Groups often struggle to reach decisions, especially when populations are strongly divided by conflicting views. Traditional methods for collective decision-making involve polling individuals and aggregating results. In recent years, a new method called Artificial Swarm Intelligence (ASI) has been developed that enables networked human groups to deliberate in real-time systems, moderated by artificial intelligence algorithms. While traditional voting methods aggregate input provided by isolated participants, Swarm-based methods enable participants to influence each other and converge on solutions together. In this study we compare the output of traditional methods such as Majority vote and Borda count to the Swarm method on a set of divisive policy issues. We find that the rankings generated using ASI and the Borda Count methods are often rated as significantly more satisfactory than those generated by the Majority vote system (p\textbackslashtextless; 0.05). This result held for both the population that generated the rankings (the “in-group”) and the population that did not (the “out-group”): the in-group ranked the Swarm prioritizations as 9.6% more satisfactory than the Majority prioritizations, while the out-group ranked the Swarm prioritizations as 6.5% more satisfactory than the Majority prioritizations. This effect also held even when the out-group was subject to a demographic sampling bias of 10% (i.e. the out-group was composed of 10% more Labour voters than the in-group). The Swarm method was the only method to be perceived as more satisfactory to the “out-group” than the voting group.
Deng, M., Wu, X., Feng, P., Zeng, W..  2020.  Sparse Support Vector Machine for Network Behavior Anomaly Detection. 2020 IEEE 8th International Conference on Information, Communication and Networks (ICICN). :199–204.
Network behavior anomaly detection (NBAD) require fast mechanisms for learning from the large scale data. However, the training velocity of general machine learning approach is largely limited by the adopted training weights of all features in the NBAD. In this paper, we notice, however, that the related weights matching of NBAD features is sparse, which is not necessary for holding all weights. Hence, in this paper, we consider an efficient support vector machine (SVM) approach for NBAD by imposing 1 -norm. Essentially, we propose to use sparse SVM (S-SVM), where sparsity in model, i.e. in weights is used to interfere with special feature selection and that can achieve feature selection and classification efficiently.
2020-12-11
Liu, F., Li, J., Wang, Y., Li, L..  2019.  Kubestorage: A Cloud Native Storage Engine for Massive Small Files. 2019 6th International Conference on Behavioral, Economic and Socio-Cultural Computing (BESC). :1—4.
Cloud Native, the emerging computing infrastructure has become a new trend for cloud computing, especially after the development of containerization technology such as docker and LXD, and the orchestration system for them like Kubernetes and Swarm. With the growing popularity of Cloud Native, the following problems have been raised: (i) most Cloud Native applications were designed for making full use of the cloud platform, but their file storage has not been completely optimized for adapting it. (ii) the traditional file system is designed as a utility for storing and retrieving files, usually built into the kernel of the operating systems. But when placing it to a large-scale condition, like a network storage server shared by thousands of computing instances, and stores millions of files, it will be slow and even unstable. (iii) most storage solutions use metadata for faster tracking of files, but the metadata itself will take up a lot of space, and the capacity of it is usually limited. If the file system store metadata directly into hard disk without caching, the tracking of massive small files will be a lot slower. (iv) The traditional object storage solution can't provide enough features to make itself more practical on the cloud such as caching and auto replication. This paper proposes a new storage engine based on the well-known Haystack storage engine, optimized in terms of service discovery and Automated fault tolerance, make it more suitable for Cloud Native infrastructure, deployment and applications. We use the object storage model to solve the large and high-frequency file storage needs, offering a simple and unified set of APIs for application to access. We also take advantage of Kubernetes' sophisticated and automated toolchains to make cloud storage easier to deploy, more flexible to scale, and more stable to run.