Biblio
In order to improve the buffering performance of the data encrypted by CP-ABE (ciphertext policy attribute based encryption), this paper proposed a Markov prefetching model based on attribute classification. The prefetching model combines the access strategy of CP-ABE encrypted file, establishes the user relationship network according to the attribute value of the user, classifies the user by the modularity-based community partitioning algorithm, and establishes a Markov prefetching model based on attribute classification. In comparison with the traditional Markov prefetching model and the classification-based Markov prefetching model, the attribute-based Markov prefetching model is proposed in this paper has higher prefetch accuracy and coverage.
Energy Internet is a typical cyber-physical system (CPS), in which the disturbance on cyber part may result in the operation risks on the physical part. In order to perform CPS assessment and research the interactive influence between cyber part and physical part, an integrated energy internet CPS model which adopts information flow matrix, energy control flow matrix and information energy hybrid flow matrix is proposed in this paper. The proposed model has a higher computational efficacy compared with simulation based approaches. Then, based on the proposed model, the influence of cyber disturbances such as data dislocation, data delay and data error on the physical part are studied. Finally, a 3 MW PET based energy internet CPS is built using PSCAD/EMTDC software. The simulation results prove the validity of the proposed model and the correctness of the interactive influence analysis.
Unlike traditional processors, Internet of Things (IoT) devices are short of resources to incorporate mature protections (e.g. MMU, TrustZone) against modern control-flow attacks. Remote (control-flow) attestation is fast becoming a key instrument in securing such devices as it has proven the effectiveness on not only detecting runtime malware infestation of a remote device, but also saving the computing resources by moving the costly verification process away. However, few control-flow attestation schemes have been able to draw on any systematic research into the software specificity of bare-metal systems, which are widely deployed on resource-constrained IoT devices. To our knowledge, the unique design patterns of the system limit implementations of such expositions. In this paper, we present the design and proof-of-concept implementation of LAPE, a lightweight attestation of program execution scheme that enables detecting control-flow attacks for bare-metal systems without requiring hardware modification. With rudimentary memory protection support found in modern IoT-class microcontrollers, LAPE leverages software instrumentation to compartmentalize the firmware functions into several ”attestation compartments”. It then continuously tracks the control-flow events of each compartment and periodically reports them to the verifier. The PoC of the scheme is incorporated into an LLVM-based compiler to generate the LAPE-enabled firmware. By taking experiments with several real-world IoT firmware, the results show both the efficiency and practicality of LAPE.
Due to the mobility and openness of wireless body area networks (WBANs), the security of WBAN has been questioned by people. The patient's physiological information in WBAN is sensitive and confidential, which requires full consideration of user anonymity, untraceability, and data privacy protection in key agreement. Aiming at the shortcomings of Li et al.'s protocol in terms of anonymity and session unlinkability, forward/backward confidentiality, etc., a new anonymous mutual authentication and key agreement protocol was proposed on the basis of the protocol. This scheme only uses XOR and the one-way hash operations, which not only reduces communication consumption but also ensures security, and realizes a truly lightweight anonymous mutual authentication and key agreement protocol.
Anonymous communication networks (ACNs) are intended to protect the metadata during communication. As classic ACNs, onion mix-nets are famous for strong anonymity, in which the source defines a static path and wraps the message multi-times with the public keys of nodes on the path, through which the message is relayed to the destination. However, onion mix-nets lacks in resilience when the static on-path mixes fail. Mix failure easily results in message loss, communication failure, and even specific attacks. Therefore, it is desirable to achieve resilient routing in onion mix-nets, providing persistent routing capability even though node failure. The state-of-theart solutions mainly adopt mix groups and thus need to share secret keys among all the group members which may cause single point of failure. To address this problem, in this work we propose a hybrid routing approach, which embeds the onion mix-net with hop-by-hop routing to increase routing resilience. Furthermore, we propose the threshold hybrid routing to achieve better key management and avoid single point of failure. As for experimental evaluations, we conduct quantitative analysis of the resilience and realize a local T-hybrid routing prototype to test performance. The experimental results show that our proposed routing strategy increases routing resilience effectively, at the expense of acceptable latency.