Visible to the public Biblio

Found 721 results

Filters: Keyword is Computational modeling  [Clear All Filters]
2023-06-29
Abbas, Qamber, Zeshan, Muhammad Umar, Asif, Muhammad.  2022.  A CNN-RNN Based Fake News Detection Model Using Deep Learning. 2022 International Seminar on Computer Science and Engineering Technology (SCSET). :40–45.

False news has become widespread in the last decade in political, economic, and social dimensions. This has been aided by the deep entrenchment of social media networking in these dimensions. Facebook and Twitter have been known to influence the behavior of people significantly. People rely on news/information posted on their favorite social media sites to make purchase decisions. Also, news posted on mainstream and social media platforms has a significant impact on a particular country’s economic stability and social tranquility. Therefore, there is a need to develop a deceptive system that evaluates the news to avoid the repercussions resulting from the rapid dispersion of fake news on social media platforms and other online platforms. To achieve this, the proposed system uses the preprocessing stage results to assign specific vectors to words. Each vector assigned to a word represents an intrinsic characteristic of the word. The resulting word vectors are then applied to RNN models before proceeding to the LSTM model. The output of the LSTM is used to determine whether the news article/piece is fake or otherwise.

Kanagavalli, N., Priya, S. Baghavathi, D, Jeyakumar.  2022.  Design of Hyperparameter Tuned Deep Learning based Automated Fake News Detection in Social Networking Data. 2022 6th International Conference on Computing Methodologies and Communication (ICCMC). :958–963.

Recently, social networks have become more popular owing to the capability of connecting people globally and sharing videos, images and various types of data. A major security issue in social media is the existence of fake accounts. It is a phenomenon that has fake accounts that can be frequently utilized by mischievous users and entities, which falsify, distribute, and duplicate fake news and publicity. As the fake news resulted in serious consequences, numerous research works have focused on the design of automated fake accounts and fake news detection models. In this aspect, this study designs a hyperparameter tuned deep learning based automated fake news detection (HDL-FND) technique. The presented HDL-FND technique accomplishes the effective detection and classification of fake news. Besides, the HDLFND process encompasses a three stage process namely preprocessing, feature extraction, and Bi-Directional Long Short Term Memory (BiLSTM) based classification. The correct way of demonstrating the promising performance of the HDL-FND technique, a sequence of replications were performed on the available Kaggle dataset. The investigational outcomes produce improved performance of the HDL-FND technique in excess of the recent approaches in terms of diverse measures.

Rahman, Md. Shahriar, Ashraf, Faisal Bin, Kabir, Md. Rayhan.  2022.  An Efficient Deep Learning Technique for Bangla Fake News Detection. 2022 25th International Conference on Computer and Information Technology (ICCIT). :206–211.

People connect with a plethora of information from many online portals due to the availability and ease of access to the internet and electronic communication devices. However, news portals sometimes abuse press freedom by manipulating facts. Most of the time, people are unable to discriminate between true and false news. It is difficult to avoid the detrimental impact of Bangla fake news from spreading quickly through online channels and influencing people’s judgment. In this work, we investigated many real and false news pieces in Bangla to discover a common pattern for determining if an article is disseminating incorrect information or not. We developed a deep learning model that was trained and validated on our selected dataset. For learning, the dataset contains 48,678 legitimate news and 1,299 fraudulent news. To deal with the imbalanced data, we used random undersampling and then ensemble to achieve the combined output. In terms of Bangla text processing, our proposed model achieved an accuracy of 98.29% and a recall of 99%.

2023-06-23
Chen, Meixu, Webb, Richard, Bovik, Alan C..  2022.  Foveated MOVI-Codec: Foveation-based Deep Video Compression without Motion. 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). :1–5.

The requirements of much larger file sizes, different storage formats, and immersive viewing conditions pose significant challenges to the goals of compressing VR content. At the same time, the great potential of deep learning to advance progress on the video compression problem has driven a significant research effort. Because of the high bandwidth requirements of VR, there has also been significant interest in the use of space-variant, foveated compression protocols. We have integrated these techniques to create an end-to-end deep learning video compression framework. A feature of our new compression model is that it dispenses with the need for expensive search-based motion prediction computations by using displaced frame differences. We also implement foveation in our learning based approach, by introducing a Foveation Generator Unit (FGU) that generates foveation masks which direct the allocation of bits, significantly increasing compression efficiency while making it possible to retain an impression of little to no additional visual loss given an appropriate viewing geometry. Our experiment results reveal that our new compression model, which we call the Foveated MOtionless VIdeo Codec (Foveated MOVI-Codec), is able to efficiently compress videos without computing motion, while outperforming foveated version of both H.264 and H.265 on the widely used UVG dataset and on the HEVC Standard Class B Test Sequences.

2023-06-22
Bennet, Ms. Deepthi Tabitha, Bennet, Ms. Preethi Samantha, Anitha, D.  2022.  Securing Smart City Networks - Intelligent Detection Of DDoS Cyber Attacks. 2022 5th International Conference on Contemporary Computing and Informatics (IC3I). :1575–1580.

A distributed denial-of-service (DDoS) is a malicious attempt by attackers to disrupt the normal traffic of a targeted server, service or network. This is done by overwhelming the target and its surrounding infrastructure with a flood of Internet traffic. The multiple compromised computer systems (bots or zombies) then act as sources of attack traffic. Exploited machines can include computers and other network resources such as IoT devices. The attack results in either degraded network performance or a total service outage of critical infrastructure. This can lead to heavy financial losses and reputational damage. These attacks maximise effectiveness by controlling the affected systems remotely and establishing a network of bots called bot networks. It is very difficult to separate the attack traffic from normal traffic. Early detection is essential for successful mitigation of the attack, which gives rise to a very important role in cybersecurity to detect the attacks and mitigate the effects. This can be done by deploying machine learning or deep learning models to monitor the traffic data. We propose using various machine learning and deep learning algorithms to analyse the traffic patterns and separate malicious traffic from normal traffic. Two suitable datasets have been identified (DDoS attack SDN dataset and CICDDoS2019 dataset). All essential preprocessing is performed on both datasets. Feature selection is also performed before detection techniques are applied. 8 different Neural Networks/ Ensemble/ Machine Learning models are chosen and the datasets are analysed. The best model is chosen based on the performance metrics (DEEP NEURAL NETWORK MODEL). An alternative is also suggested (Next best - Hypermodel). Optimisation by Hyperparameter tuning further enhances the accuracy. Based on the nature of the attack and the intended target, suitable mitigation procedures can then be deployed.

Verma, Amandeep, Saha, Rahul.  2022.  Performance Analysis of DDoS Mitigation in Heterogeneous Environments. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :222–230.
Computer and Vehicular networks, both are prone to multiple information security breaches because of many reasons like lack of standard protocols for secure communication and authentication. Distributed Denial of Service (DDoS) is a threat that disrupts the communication in networks. Detection and prevention of DDoS attacks with accuracy is a necessity to make networks safe.In this paper, we have experimented two machine learning-based techniques one each for attack detection and attack prevention. These detection & prevention techniques are implemented in different environments including vehicular network environments and computer network environments. Three different datasets connected to heterogeneous environments are adopted for experimentation. The first dataset is the NSL-KDD dataset based on the traffic of the computer network. The second dataset is based on a simulation-based vehicular environment, and the third CIC-DDoS 2019 dataset is a computer network-based dataset. These datasets contain different number of attributes and instances of network traffic. For the purpose of attack detection AdaBoostM1 classification algorithm is used in WEKA and for attack prevention Logit Model is used in STATA. Results show that an accuracy of more than 99.9% is obtained from the simulation-based vehicular dataset. This is the highest accuracy rate among the three datasets and it is obtained within a very short period of time i.e., 0.5 seconds. In the same way, we use a Logit regression-based model to classify packets. This model shows an accuracy of 100%.
2023-06-16
Yang, Di, Wang, Lianfa, Zhang, Yufeng.  2022.  Research on the Application of Computer Big Data Technology in the Health Monitoring of the Bridge Body of Cross-river Bridge. 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC). :1516—1520.
This article proposes a health monitoring system platform for cross-river bridges based on big data. The system can realize regionalized bridge operation and maintenance management. The system has functions such as registration modification and deletion of sensor equipment, user registration modification and deletion, real-time display and storage of sensor monitoring data, and evaluation and early warning of bridge structure safety. The sensor is connected to the lower computer through the serial port, analog signal, fiber grating signal, etc. The lower computer converts a variety of signals into digital signals through the single-chip A/D sampling and demodulator, etc., and transmits it to the upper computer through the serial port. The upper computer uses ARMCortex-A9 Run the main program to realize multi-threaded network communication. The system platform is to test the validity of the model, and a variety of model verification methods are used for evaluation to ensure the reliability of the big data analysis method.
2023-06-09
Plambeck, Swantje, Fey, Görschwin, Schyga, Jakob, Hinckeldeyn, Johannes, Kreutzfeldt, Jochen.  2022.  Explaining Cyber-Physical Systems Using Decision Trees. 2022 2nd International Workshop on Computation-Aware Algorithmic Design for Cyber-Physical Systems (CAADCPS). :3—8.
Cyber-Physical Systems (CPS) are systems that contain digital embedded devices while depending on environmental influences or external configurations. Identifying relevant influences of a CPS as well as modeling dependencies on external influences is difficult. We propose to learn these dependencies with decision trees in combination with clustering. The approach allows to automatically identify relevant influences and receive a data-related explanation of system behavior involving the system's use-case. Our paper presents a case study of our method for a Real-Time Localization System (RTLS) proving the usefulness of our approach, and discusses further applications of a learned decision tree.
Al-Amin, Mostafa, Khatun, Mirza Akhi, Nasir Uddin, Mohammed.  2022.  Development of Cyber Attack Model for Private Network. 2022 Second International Conference on Interdisciplinary Cyber Physical Systems (ICPS). :216—221.
Cyber Attack is the most challenging issue all over the world. Nowadays, Cyber-attacks are increasing on digital systems and organizations. Innovation and utilization of new digital technology, infrastructure, connectivity, and dependency on digital strategies are transforming day by day. The cyber threat scope has extended significantly. Currently, attackers are becoming more sophisticated, well-organized, and professional in generating malware programs in Python, C Programming, C++ Programming, Java, SQL, PHP, JavaScript, Ruby etc. Accurate attack modeling techniques provide cyber-attack planning, which can be applied quickly during a different ongoing cyber-attack. This paper aims to create a new cyber-attack model that will extend the existing model, which provides a better understanding of the network’s vulnerabilities.Moreover, It helps protect the company or private network infrastructure from future cyber-attacks. The final goal is to handle cyber-attacks efficacious manner using attack modeling techniques. Nowadays, many organizations, companies, authorities, industries, and individuals have faced cybercrime. To execute attacks using our model where honeypot, the firewall, DMZ and any other security are available in any environment.
Yang, Jeong, Rae Kim, Young, Earwood, Brandon.  2022.  A Study of Effectiveness and Problem Solving on Security Concepts with Model-Eliciting Activities. 2022 IEEE Frontiers in Education Conference (FIE). :1—9.
Security is a critical aspect in the process of designing, developing, and testing software systems. Due to the increasing need for security-related skills within software systems, there is a growing demand for these skills to be taught in computer science. A series of security modules was developed not only to meet the demand but also to assess the impact of these modules on teaching critical cyber security topics in computer science courses. This full paper in the innovative practice category presents the outcomes of six security modules in a freshman-level course at two institutions. The study adopts a Model-Eliciting Activity (MEA) as a project for students to demonstrate an understanding of the security concepts. Two experimental studies were conducted: 1) Teaching effectiveness of implementing cyber security modules and MEA project, 2) Students’ experiences in conceptual modeling tasks in problem-solving. In measuring the effectiveness of teaching security concepts with the MEA project, students’ performance, attitudes, and interests as well as the instructor’s effectiveness were assessed. For the conceptual modeling tasks in problem-solving, the results of student outcomes were analyzed. After implementing the security modules with the MEA project, students showed a great understanding of cyber security concepts and an increased interest in broader computer science concepts. The instructor’s beliefs about teaching, learning, and assessment shifted from teacher-centered to student-centered during their experience with the security modules and MEA project. Although 64.29% of students’ solutions do not seem suitable for real-world implementation, 76.9% of the developed solutions showed a sufficient degree of creativity.
Ali AL-Jumaili, Ahmed Hadi, Muniyandi, Ravie Chandren, Hasan, Mohammad Kamrul, Singh, Mandeep Jit, Siaw Paw, Johnny Koh.  2022.  Analytical Survey on the Security Framework of Cyber-Physical Systems for Smart Power System Networks. 2022 International Conference on Cyber Resilience (ICCR). :1—8.
Cyber-Physical Power System (CPPS) is one of the most critical infrastructure systems due to deep integration between power grids and communication networks. In the power system, cascading failure is spreading more readily in CPPS, even leading to blackouts as well as there are new difficulties with the power system security simulation and faults brought by physical harm or network intrusions. The current study summarized the cross- integration of several fields such as computer and cyberspace security in terms of the robustness of Cyber-Physical Systems, viewed as Interconnected and secure network systems. Therefore, the security events that significantly influenced the power system were evaluated in this study, besides the challenges and future directions of power system security simulation technologies were investigated for posing both challenges and opportunities for simulation techniques of power system security like building a new power system to accelerate the transformation of the existing energy system to a clean, low-carbon, safe, and efficient energy system which is used to assure power system stability through fusion systems that combine the cyber-physical to integrate the battery power station, power generation and renewable energy resources through the internet with the cyber system that contains Smart energy system control and attacks.
Sundararajan, Vijay, Ghodousi, Arman, Dietz, J. Eric.  2022.  The Most Common Control Deficiencies in CMMC non-compliant DoD contractors. 2022 IEEE International Symposium on Technologies for Homeland Security (HST). :1—7.
As cyber threats become highly damaging and complex, a new cybersecurity compliance certification model has been developed by the Department of Defense (DoD) to secure its Defense Industrial Base (DIB), and communication with its private partners. These partners or contractors are obligated by the Defense Federal Acquisition Regulations (DFARS) to be compliant with the latest standards in computer and data security. The Cybersecurity Maturity Model Certification (CMMC), and it is built upon existing DFARS 252.204-7012 and the NIST SP 800–171 controls. As of 2020, the DoD has incorporated DFARS and the National Institute of Standards and Technology (NIST) recommended security practices into what is now the CMMC. This paper presents the most commonly identified Security-Control-Deficiencies (SCD) faced, the attacks mitigated by addressing these SCD, and remediations applied to 127 DoD contractors in order to bring them into compliance with the CMMC guidelines. An analysis is done on what vulnerabilities are most prominent in the companies, and remediations applied to ensure these vulnerabilities are better avoided and the DoD supply-chain is more secure from attacks.
Wang, Jinwen, Li, Ao, Li, Haoran, Lu, Chenyang, Zhang, Ning.  2022.  RT-TEE: Real-time System Availability for Cyber-physical Systems using ARM TrustZone. 2022 IEEE Symposium on Security and Privacy (SP). :352—369.
Embedded devices are becoming increasingly pervasive in safety-critical systems of the emerging cyber-physical world. While trusted execution environments (TEEs), such as ARM TrustZone, have been widely deployed in mobile platforms, little attention has been given to deployment on real-time cyber-physical systems, which present a different set of challenges compared to mobile applications. For safety-critical cyber-physical systems, such as autonomous drones or automobiles, the current TEE deployment paradigm, which focuses only on confidentiality and integrity, is insufficient. Computation in these systems also needs to be completed in a timely manner (e.g., before the car hits a pedestrian), putting a much stronger emphasis on availability.To bridge this gap, we present RT-TEE, a real-time trusted execution environment. There are three key research challenges. First, RT-TEE bootstraps the ability to ensure availability using a minimal set of hardware primitives on commodity embedded platforms. Second, to balance real-time performance and scheduler complexity, we designed a policy-based event-driven hierarchical scheduler. Third, to mitigate the risks of having device drivers in the secure environment, we designed an I/O reference monitor that leverages software sandboxing and driver debloating to provide fine-grained access control on peripherals while minimizing the trusted computing base (TCB).We implemented prototypes on both ARMv8-A and ARMv8-M platforms. The system is tested on both synthetic tasks and real-life CPS applications. We evaluated rover and plane in simulation and quadcopter both in simulation and with a real drone.
Zhang, Yue, Nan, Xiaoya, Zhou, Jialing, Wang, Shuai.  2022.  Design of Differential Privacy Protection Algorithms for Cyber-Physical Systems. 2022 International Conference on Intelligent Systems and Computational Intelligence (ICISCI). :29—34.
A new privacy Laplace common recognition algorithm is designed to protect users’ privacy data in this paper. This algorithm disturbs state transitions and information generation functions using exponentially decaying Laplace noise to avoid attacks. The mean square consistency and privacy protection performance are further studied. Finally, the theoretical results obtained are verified by performing numerical simulations.
2023-06-02
Liang, Dingyang, Sun, Jianing, Zhang, Yizhi, Yan, Jun.  2022.  Lightweight Neural Network-based Web Fingerprinting Model. 2022 International Conference on Networking and Network Applications (NaNA). :29—34.

Onion Routing is an encrypted communication system developed by the U.S. Naval Laboratory that uses existing Internet equipment to communicate anonymously. Miscreants use this means to conduct illegal transactions in the dark web, posing a security risk to citizens and the country. For this means of anonymous communication, website fingerprinting methods have been used in existing studies. These methods often have high overhead and need to run on devices with high performance, which makes the method inflexible. In this paper, we propose a lightweight method to address the high overhead problem that deep learning website fingerprinting methods generally have, so that the method can be applied on common devices while also ensuring accuracy to a certain extent. The proposed method refers to the structure of Inception net, divides the original larger convolutional kernels into smaller ones, and uses group convolution to reduce the website fingerprinting and computation to a certain extent without causing too much negative impact on the accuracy. The method was experimented on the data set collected by Rimmer et al. to ensure the effectiveness.

2023-05-30
Shawky, Mahmoud A., Abbasi, Qammer H., Imran, Muhammad Ali, Ansari, Shuja, Taha, Ahmad.  2022.  Cross-Layer Authentication based on Physical-Layer Signatures for Secure Vehicular Communication. 2022 IEEE Intelligent Vehicles Symposium (IV). :1315—1320.
In recent years, research has focused on exploiting the inherent physical (PHY) characteristics of wireless channels to discriminate between different spatially separated network terminals, mitigating the significant costs of signature-based techniques. In this paper, the legitimacy of the corresponding terminal is firstly verified at the protocol stack’s upper layers, and then the re-authentication process is performed at the PHY-layer. In the latter, a unique PHY-layer signature is created for each transmission based on the spatially and temporally correlated channel attributes within the coherence time interval. As part of the verification process, the PHY-layer signature can be used as a message authentication code to prove the packet’s authenticity. Extensive simulation has shown the capability of the proposed scheme to support high detection probability at small signal-to-noise ratios. In addition, security evaluation is conducted against passive and active attacks. Computation and communication comparisons are performed to demonstrate that the proposed scheme provides superior performance compared to conventional cryptographic approaches.
2023-05-19
Hussaini, Adamu, Qian, Cheng, Liao, Weixian, Yu, Wei.  2022.  A Taxonomy of Security and Defense Mechanisms in Digital Twins-based Cyber-Physical Systems. 2022 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). :597—604.
The (IoT) paradigm’s fundamental goal is to massively connect the “smart things” through standardized interfaces, providing a variety of smart services. Cyber-Physical Systems (CPS) include both physical and cyber components and can apply to various application domains (smart grid, smart transportation, smart manufacturing, etc.). The Digital Twin (DT) is a cyber clone of physical objects (things), which will be an essential component in CPS. This paper designs a systematic taxonomy to explore different attacks on DT-based CPS and how they affect the system from a four-layer architecture perspective. We present an attack space for DT-based CPS on four layers (i.e., object layer, communication layer, DT layer, and application layer), three attack objects (i.e., confidentiality, integrity, and availability), and attack types combined with strength and knowledge. Furthermore, some selected case studies are conducted to examine attacks on representative DT-based CPS (smart grid, smart transportation, and smart manufacturing). Finally, we propose a defense mechanism called Secured DT Development Life Cycle (SDTDLC) and point out the importance of leveraging other enabling techniques (intrusion detection, blockchain, modeling, simulation, and emulation) to secure DT-based CPS.
Neema, Himanshu, Roth, Thomas, Wang, Chenli, Guo, Wenqi Wendy, Bhattacharjee, Anirban.  2022.  Integrating Multiple HLA Federations for Effective Simulation-Based Evaluations of CPS. 2022 IEEE Workshop on Design Automation for CPS and IoT (DESTION). :19—26.
Cyber-Physical Systems (CPS) are complex systems of computational, physical, and human components integrated to achieve some function over one or more networks. The use of distributed simulation, or co-simulation, is one method often used to analyze the behavior and properties of these systems. High-Level Architecture (HLA) is an IEEE co-simulation standard that supports the development and orchestration of distributed simulations. However, a simple HLA federation constructed with the component simulations (i.e., federates) does not satisfy several requirements that arise in real-world use cases such as the shared use of limited physical and computational resources, the need to selectively hide information from participating federates, the creation of reusable federates and federations for supporting configurable shared services, achieving performant distributed simulations, organizing federations across different model types or application concerns, and coordinating federations across organizations with different information technology policies. This paper describes these core requirements that necessitate the use of multiple HLA federations and presents various mechanisms for constructing such integrated HLA federations. An example use case is implemented using a model-based rapid simulation integration framework called the Universal CPS Environment for Federation (UCEF) to illustrate these requirements and demonstrate techniques for integrating multiple HLA federations.
Zhao, Jianming, Miao, Weiwei, Zeng, Zeng.  2022.  A non-interactive verifiable computation model of perceptual layer data based on CP-ABE. 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE). :799—803.
The computing of smart devices at the perception layer of the power Internet of Things is often insufficient, and complex computing can be outsourced to server resources such as the cloud computing, but the allocation process is not safe and controllable. Under special constraints of the power Internet of Things such as multi-users and heterogeneous terminals, we propose a CP-ABE-based non-interactive verifiable computation model of perceptual layer data. This model is based on CP-ABE, NPOT, FHE and other relevant safety and verifiable theories, and designs a new multi-user non-interactive secure verifiable computing scheme to ensure that only users with the decryption key can participate in the execution of NPOT Scheme. In terms of the calculation process design of the model, we gave a detailed description of the system model, security model, plan. Based on the definition given, the correctness and safety of the non-interactive safety verifiable model design in the power Internet of Things environment are proved, and the interaction cost of the model is analyzed. Finally, it proves that the CP-ABE-based non-interactive verifiable computation model for the perceptual layer proposed in this paper has greatly improved security, applicability, and verifiability, and is able to meet the security outsourcing of computing in the power Internet of Things environment.
Li, Jiacong, Lv, Hang, Lei, Bo.  2022.  A Cross-Domain Data Security Sharing Approach for Edge Computing based on CP-ABE. 2022 23rd Asia-Pacific Network Operations and Management Symposium (APNOMS). :1—6.
Cloud computing is a unified management and scheduling model of computing resources. To satisfy multiple resource requirements for various application, edge computing has been proposed. One challenge of edge computing is cross-domain data security sharing problem. Ciphertext policy attribute-based encryption (CP-ABE) is an effective way to ensure data security sharing. However, many existing schemes focus on could computing, and do not consider the features of edge computing. In order to address this issue, we propose a cross-domain data security sharing approach for edge computing based on CP-ABE. Besides data user attributes, we also consider access control from edge nodes to user data. Our scheme first calculates public-secret key peer of each edge node based on its attributes, and then uses it to encrypt secret key of data ciphertext to ensure data security. In addition, our scheme can add non-user access control attributes such as time, location, frequency according to the different demands. In this paper we take time as example. Finally, the simulation experiments and analysis exhibit the feasibility and effectiveness of our approach.
2023-05-12
Provencher, C. M., Johnson, A. J., Carroll, E. G., Povilus, A. P., Javedani, J., Stygar, W. A., Kozioziemski, B. J., Moody, J. D., Tang, V..  2022.  A Pulsed Power Design Optimization Code for Magnetized Inertial Confinement Fusion Experiments at the National Ignition Facility. 2022 IEEE International Conference on Plasma Science (ICOPS). :1–1.
The MagNIF team at LLNL is developing a pulsed power platform to enable magnetized inertial confinement fusion and high energy density experiments at the National Ignition Facility. A pulsed solenoidal driver capable of premagnetizing fusion fuel to 40T is predicted to increase performance of indirect drive implosions. We have written a specialized Python code suite to support the delivery of a practical design optimized for target magnetization and risk mitigation. The code simulates pulsed power in parameterized system designs and converges to high-performance candidates compliant with evolving engineering constraints, such as scale, mass, diagnostic access, mechanical displacement, thermal energy deposition, facility standards, and component-specific failure modes. The physics resolution and associated computational costs of our code are intermediate between those of 0D circuit codes and 3D magnetohydrodynamic codes, to be predictive and support fast, parallel simulations in parameter space. Development of a reduced-order, physics-based target model is driven by high-resolution simulations in ALE3D (an institutional multiphysics code) and multi-diagnostic data from a commissioned pulser platform. Results indicate system performance is sensitive to transient target response, which should include magnetohydrodynamic expansion, resistive heating, nonlinear magnetic diffusion, and phase change. Design optimization results for a conceptual NIF platform are reported.
ISSN: 2576-7208
Zhang, Chen, Wu, Zhouyang, Li, Xianghua, Liang, Jian, Jiang, Zhongyao, Luo, Ceheng, Wen, Fangjun, Wang, Guangda, Dai, Wei.  2022.  Resilience Assessment Method of Integrated Electricity and Gas System Based on Hetero-functional Graph Theory. 2022 2nd International Conference on Electrical Engineering and Control Science (IC2ECS). :34–39.
The resilience assessment of electric and gas networks gains importance due to increasing interdependencies caused by the coupling of gas-fired units. However, the gradually increasing scale of the integrated electricity and gas system (IEGS) poses a significant challenge to current assessment methods. The numerical analysis method is accurate but time-consuming, which may incur a significant computational cost in large-scale IEGS. Therefore, this paper proposes a resilience assessment method based on hetero-functional graph theory for IEGS to balance the accuracy with the computational complexity. In contrast to traditional graph theory, HFGT can effectively depict the coupled systems with inherent heterogeneity and can represent the structure of heterogeneous functional systems in a clear and unambiguous way. In addition, due to the advantages of modelling the system functionality, the effect of line-pack in the gas network on the system resilience is depicted more precisely in this paper. Simulation results on an IEGS with the IEEE 9-bus system and a 7-node gas system verify the effectiveness of the proposed method.
2023-04-28
Feng, Chunhua.  2022.  Discussion on the Ways of Constructing Computer Network Security in Colleges: Considering Complex Worm Networks. 2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC). :1650–1653.
This article analyzes the current situation of computer network security in colleges and universities, future development trends, and the relationship between software vulnerabilities and worm outbreaks. After analyzing a server model with buffer overflow vulnerabilities, a worm implementation model based on remote buffer overflow technology is proposed. Complex networks are the medium of worm propagation. By analyzing common complex network evolution models (rule network models, ER random graph model, WS small world network model, BA scale-free network model) and network node characteristics such as extraction degree distribution, single source shortest distance, network cluster coefficient, richness coefficient, and close center coefficient.
Jain, Ashima, Tripathi, Khushboo, Jatain, Aman, Chaudhary, Manju.  2022.  A Game Theory based Attacker Defender Model for IDS in Cloud Security. 2022 9th International Conference on Computing for Sustainable Global Development (INDIACom). :190–194.

Cloud security has become a serious challenge due to increasing number of attacks day-by-day. Intrusion Detection System (IDS) requires an efficient security model for improving security in the cloud. This paper proposes a game theory based model, named as Game Theory Cloud Security Deep Neural Network (GT-CSDNN) for security in cloud. The proposed model works with the Deep Neural Network (DNN) for classification of attack and normal data. The performance of the proposed model is evaluated with CICIDS-2018 dataset. The dataset is normalized and optimal points about normal and attack data are evaluated based on the Improved Whale Algorithm (IWA). The simulation results show that the proposed model exhibits improved performance as compared with existing techniques in terms of accuracy, precision, F-score, area under the curve, False Positive Rate (FPR) and detection rate.

Wang, Man.  2022.  Research on Network Confrontation Information Security Protection System under Computer Deep Learning. 2022 IEEE 2nd International Conference on Data Science and Computer Application (ICDSCA). :1442–1447.
Aiming at the single hopping strategy in the terminal information hopping active defense technology, a variety of heterogeneous hopping modes are introduced into the terminal information hopping system, the definition of the terminal information is expanded, and the adaptive adjustment of the hopping strategy is given. A network adversarial training simulation system is researched and designed, and related subsystems are discussed from the perspective of key technologies and their implementation, including interactive adversarial training simulation system, adversarial training simulation support software system, adversarial training simulation evaluation system and adversarial training Mock Repository. The system can provide a good environment for network confrontation theory research and network confrontation training simulation, which is of great significance.