Biblio
In recent years, websites that incorporate user reviews, such as Amazon, IMDB and YELP, have become exceedingly popular. As an important factor affecting users purchasing behavior, review information has been becoming increasingly important, and accordingly, the reliability of review information becomes an important issue. This paper proposes a method to more accurately detect the appearance period of spam reviews and to identify the spam reviews by verifying the consistency of review information among multiple review sites. Evaluation experiments were conducted to show the accuracy of the detection results, and compared the newly proposed method with our previously proposed method.
Reconfigurable Scan Networks (RSNs) are a powerful tool for testing and maintenance of embedded systems, since they allow for flexible access to on-chip instrumentation such as built-in self-test and debug modules. RSNs, however, can be also exploited by malicious users as a side-channel in order to gain information about sensitive data or intellectual property and to recover secret keys. Hence, implementing appropriate counter-measures to secure the access to and data integrity of embedded instrumentation is of high importance. In this paper we present a novel hardware and software combined approach to ensure data privacy in IEEE Std 1687 (IJTAG) RSNs. To do so, both a secure IJTAG compliant plug-and-play instrument wrapper and a versatile software toolchain are introduced. The wrapper demonstrates the necessary architectural adaptations required when using a lightweight stream cipher, whereas the software toolchain provides a seamless integration of the testing workflow with stream cipher. The applicability of the method is demonstrated by an FPGA-based implementation. We report on the performance of the developed instrument wrapper, which is empirically shown to have only a small impact on the workflow in terms of hardware overhead, operational costs and test time overhead.
The Internet of Things (IoT) and RFID devices are essential parts of the new information technology generation. They are mostly characterized by their limited power and computing resources. In order to ensure their security under computing and power constraints, a number of lightweight cryptography algorithms has emerged. This paper outlines the performance analysis of six lightweight blocks crypto ciphers with different structures - LED, PRESENT, HIGHT, LBlock, PICCOLO and TWINE on a LEON3 open source processor. We have implemented these crypto ciphers on the FPGA board using the C language and the LEON3 processor. Analysis of these crypto ciphers is evaluated after considering various benchmark parameters like throughput, execution time, CPU performance, AHB bandwidth, Simulator performance, and speed. These metrics are tested with different key sizes provided by each crypto algorithm.
With the rapid technological growth in the present context, Internet of Things (IoT) has attracted the worldwide attention and has become pivotal technology in the smart computing environment of 21st century. IoT provides a virtual view of real-life things in resource-constrained environment where security and privacy are of prime concern. Lightweight cryptography provides security solutions in resource-constrained environment of IoT. Several software and hardware implementation of lightweight ciphers have been presented by different researchers in this area. This paper presents a comparative analysis of several lightweight cryptographic solutions along with their pros and cons, and their future scope. The comparative analysis may further help in proposing a 32-bit ultra-lightweight block cipher security model for IoT enabled applications in the smart environment.
Nowadays, the Internet of Things (IoT) is a consolidated reality. Smart homes are equipped with a growing number of IoT devices that capture more and more information about human beings lives. However, manufacturers paid little or no attention to security, so that various challenges are still in place. In this paper, we propose a novel approach to secure IoT systems that combines the concept of Security-by-Contract (S×C) with the Fog computing distributed paradigm. We define the pillars of our approach, namely the notions of IoT device contract, Fog node policy and contract-policy matching, the respective life-cycles, and the resulting S×C workflow. To better understand all the concepts of the S×C framework, and highlight its practical feasibility, we use a running case study based on a context-aware system deployed in a real smart home.
While the introduction of the softwarelization technologies such as SDN and NFV transfers main focus of network management from hardware to software, the network operators still have to care for a lot of network and computing equipment located in the network center. Toward fully automated network management, we believe that robotic approach will be significant, meaning that robot will care for the physical equipment on behalf of human. This paper explains our experience and insight gained throughout development of a network management robot. We utilize ROS(Robot Operating System) which is a powerful platform for robot development and secures the ease of development and expandability. Our roadmap of the network management robot is also shown as well as three use cases such as environmental monitoring, operator assistance and autonomous maintenance of the equipment. Finally, the paper briefly explains experimental results conducted in a commercial network center.
The server is an important for storing data, collected during the diagnostics of Smart Business Center (SBC) as a subsystem of Industrial Internet of Things including sensors, network equipment, components for start and storage of monitoring programs and technical diagnostics. The server is exposed most often to various kind of attacks, in particular, aimed at processor, interface system, random access memory. The goal of the paper is analyzing the methods of the SBC server protection from malicious actions, as well as the development and investigation of the Markov model of the server's functioning in the SBC network, taking into account the impact of DDoS-attacks.
Computational Intelligence (CI) algorithms/techniques are packaged in a variety of disparate frameworks/applications that all vary with respect to specific supported functionality and implementation decisions that drastically change performance. Developers looking to employ different CI techniques are faced with a series of trade-offs in selecting the appropriate library/framework. These include resource consumption, features, portability, interface complexity, ease of parallelization, etc. Considerations such as language compatibility and familiarity with a particular library make the choice of libraries even more difficult. The paper introduces MeetCI, an open source software framework for computational intelligence software design automation that facilitates the application design decisions and their software implementation process. MeetCI abstracts away specific framework details of CI techniques designed within a variety of libraries. This allows CI users to benefit from a variety of current frameworks without investigating the nuances of each library/framework. Using an XML file, developed in accordance with the specifications, the user can design a CI application generically, and utilize various CI software without having to redesign their entire technology stack. Switching between libraries in MeetCI is trivial and accessing the right library to satisfy a user's goals can be done easily and effectively. The paper discusses the framework's use in design of various applications. The design process is illustrated with four different examples from expert systems and machine learning domains, including the development of an expert system for security evaluation, two classification problems and a prediction problem with recurrent neural networks.
Control-Flow Hijacking attacks are the dominant attack vector against C/C++ programs. Control-Flow Integrity (CFI) solutions mitigate these attacks on the forward edge, i.e., indirect calls through function pointers and virtual calls. Protecting the backward edge is left to stack canaries, which are easily bypassed through information leaks. Shadow Stacks are a fully precise mechanism for protecting backwards edges, and should be deployed with CFI mitigations. We present a comprehensive analysis of all possible shadow stack mechanisms along three axes: performance, compatibility, and security. For performance comparisons we use SPEC CPU2006, while security and compatibility are qualitatively analyzed. Based on our study, we renew calls for a shadow stack design that leverages a dedicated register, resulting in low performance overhead, and minimal memory overhead, but sacrifices compatibility. We present case studies of our implementation of such a design, Shadesmar, on Phoronix and Apache to demonstrate the feasibility of dedicating a general purpose register to a security monitor on modern architectures, and Shadesmar's deployability. Our comprehensive analysis, including detailed case studies for our novel design, allows compiler designers and practitioners to select the correct shadow stack design for different usage scenarios. Shadow stacks belong to the class of defense mechanisms that require metadata about the program's state to enforce their defense policies. Protecting this metadata for deployed mitigations requires in-process isolation of a segment of the virtual address space. Prior work on defenses in this class has relied on information hiding to protect metadata. We show that stronger guarantees are possible by repurposing two new Intel x86 extensions for memory protection (MPX), and page table control (MPK). Building on our isolation efforts with MPX and MPK, we present the design requirements for a dedicated hardware mechanism to support intra-process memory isolation, and discuss how such a mechanism can empower the next wave of highly precise software security mitigations that rely on partially isolated information in a process.
Nowadays, the proliferation of smart, communication-enable devices is opening up many new opportunities of pervasive applications. A major requirement of pervasive applications is to be secured. The complexity to secure pervasive systems is to address a end-to-end security level: from the device to the services according to the entire life cycle of devices, applications and platform. In this article, we propose a solution combining both hardware and software elements to secure communications between devices and pervasive platform based on certificates issued from a Public Key Infrastructure. Our solution is implemented and validated with a real device extended by a secure element and our own Public Key Infrastructure.
Underpinning the operation of Bitcoin is a peer-to-peer (P2P) network [1] that facilitates the execution of transactions by end users, as well as the transaction confirmation process known as bitcoin mining. The security of this P2P network is vital for the currency to function and subversion of the underlying network can lead to attacks on bitcoin users including theft of bitcoins, manipulation of the mining process and denial of service (DoS). As part of this paper the network protocol and bitcoin core software are analysed, with three bitcoin message exchanges (the connection handshake, GETHEADERS/HEADERS and MEMPOOL/INV) found to be potentially vulnerable to spoofing and use in distributed denial of service (DDoS) attacks. Possible solutions to the identified weaknesses and vulnerabilities are evaluated, such as the introduction of random nonces into network messages exchanges.
For aerospace FPGA software products, traditional simulation method faces severe challenges to verify product requirements under complicated scenarios. Given the increasing maturity of formal verification technology, this method can significantly improve verification work efficiency and product design quality, by expanding coverage on those "blind spots" in product design which were not easily identified previously. Taking UART communication as an example, this paper proposes several critical points to use formal verification for asynchronous communication protocol. Experiments and practices indicate that formal verification for asynchronous communication protocol can effectively reduce the time required, ensure a complete verification process and more importantly, achieve more accurate and intuitive results.
Defect prediction is an active topic in software quality assurance, which can help developers find potential bugs and make better use of resources. To improve prediction performance, this paper introduces cross-entropy, one common measure for natural language, as a new code metric into defect prediction tasks and proposes a framework called DefectLearner for this process. We first build a recurrent neural network language model to learn regularities in source code from software repository. Based on the trained model, the cross-entropy of each component can be calculated. To evaluate the discrimination for defect-proneness, cross-entropy is compared with 20 widely used metrics on 12 open-source projects. The experimental results show that cross-entropy metric is more discriminative than 50% of the traditional metrics. Besides, we combine cross-entropy with traditional metric suites together for accurate defect prediction. With cross-entropy added, the performance of prediction models is improved by an average of 2.8% in F1-score.
In Software Defined Networking (SDN) control plane of forwarding devices is concentrated in the SDN controller, which assumes the role of a network operating system. Big share of today's commercial SDN controllers are based on OpenDaylight, an open source SDN controller platform, whose bug repository is publicly available. In this article we provide a first insight into 8k+ bugs reported in the period over five years between March 2013 and September 2018. We first present the functional components in OpenDaylight architecture, localize the most vulnerable modules and measure their contribution to the total bug content. We provide high fidelity models that can accurately reproduce the stochastic behaviour of bug manifestation and bug removal rates, and discuss how these can be used to optimize the planning of the test effort, and to improve the software release management. Finally, we study the correlation between the code internals, derived from the Git version control system, and software defect metrics, derived from Jira issue tracker. To the best of our knowledge, this is the first study to provide a comprehensive analysis of bug characteristics in a production grade SDN controller.
The return-oriented programming(ROP) attack has been a common access to exploit software vulnerabilities in the modern operating system(OS). An attacker can execute arbitrary code with the aid of ROP despite security mechanisms are involved in OS. In order to mitigate ROP attack, defense mechanisms are also drawn researchers' attention. Besides, research on the benign use of ROP become a hot spot in recent years, since ROP has a perfect resistance to static analysis, which can be adapted to hide some important code. The results in benign use also benefit from a low overhead on program size. The paper discusses the concepts of ROP attack as well as extended ROP attack in recent years. Corresponding defense mechanisms based on randomization, frequency, and control flow integrity are analyzed as well, besides, we also analyzed limitations in this defense mechanisms. Later, we discussed the benign use of ROP in steganography, code integrity verification, and software watermarking, which showed the significant promotion by adopting ROP. At the end of this paper, we looked into the development of ROP attack, the future of possible mitigation strategies and the potential for benign use.
The Internet of Things (IoT) market is growing rapidly, allowing continuous evolution of new technologies. Alongside this development, most IoT devices are easy to compromise, as security is often not a prioritized characteristic. This paper proposes a novel IoT Security Model (IoTSM) that can be used by organizations to formulate and implement a strategy for developing end-to-end IoT security. IoTSM is grounded by the Software Assurance Maturity Model (SAMM) framework, however it expands it with new security practices and empirical data gathered from IoT practitioners. Moreover, we generalize the model into a conceptual framework. This approach allows the formal analysis for security in general and evaluates an organization's security practices. Overall, our proposed approach can help researchers, practitioners, and IoT organizations, to discourse about IoT security from an end-to-end perspective.