Visible to the public Biblio

Filters: Keyword is Ethernet  [Clear All Filters]
2023-07-31
Liu, Lu, Song, Suwen, Wang, Zhongfeng.  2022.  A Novel Interleaving Scheme for Concatenated Codes on Burst-Error Channel. 2022 27th Asia Pacific Conference on Communications (APCC). :309—314.
With the rapid development of Ethernet, RS (544, 514) (KP4-forward error correction), which was widely used in high-speed Ethernet standards for its good performance-complexity trade-off, may not meet the demands of next-generation Ethernet for higher data transmission speed and better decoding performance. A concatenated code based on KP4-FEC has become a good solution because of its low complexity and excellent compatibility. For concatenated codes, aside from the selection of outer and inner codes, an efficient interleaving scheme is also very critical to deal with different channel conditions. Aiming at burst errors in wired communication, we propose a novel matrix interleaving scheme for concatenated codes which set the outer code as KP4-FEC and the inner code as Bose-Chaudhuri-Hocquenghem (BCH) code. In the proposed scheme, burst errors are evenly distributed to each BCH code as much as possible to improve their overall decoding efficiency. Meanwhile, the bit continuity in each symbol of the RS codeword is guaranteed during transmission, so the number of symbols affected by burst errors is minimized. Simulation results demonstrate that the proposed interleaving scheme can achieve a better decoding performance on burst-error channels than the original scheme. In some cases, the extra coding gain at the bit-error-rate (BER) of 1 × 10−15 can even reach 1 dB.
2023-07-19
Kurz, Sascha, Stillig, Javier, Parspour, Nejila.  2022.  Concept of a Scalable Communication System for Industrial Wireless Power Transfer Modules. 2022 4th Global Power, Energy and Communication Conference (GPECOM). :124—129.
Modular wireless power distribution systems will be commonly used in next generation factories to supply industrial production equipment, in particular automated guided vehicles. This requires the development of a flexible and standardized communication system in between individual Wireless Power Transfer (WPT) modules and production equipment. Therefore, we first derive the requirements for such a system in order to incorporate them in a generic communication concept. This concept focuses on the zero configuration and user-friendly expandability of the system, in which the communication unit is integrated in each WPT module. The paper describes the communication concept and discusses the advantages and disadvantages. The work concludes with an outlook on the practical implementation in a research project.
2023-01-06
Guri, Mordechai.  2022.  ETHERLED: Sending Covert Morse Signals from Air-Gapped Devices via Network Card (NIC) LEDs. 2022 IEEE International Conference on Cyber Security and Resilience (CSR). :163—170.
Highly secure devices are often isolated from the Internet or other public networks due to the confidential information they process. This level of isolation is referred to as an ’air-gap .’In this paper, we present a new technique named ETHERLED, allowing attackers to leak data from air-gapped networked devices such as PCs, printers, network cameras, embedded controllers, and servers. Networked devices have an integrated network interface controller (NIC) that includes status and activity indicator LEDs. We show that malware installed on the device can control the status LEDs by blinking and alternating colors, using documented methods or undocumented firmware commands. Information can be encoded via simple encoding such as Morse code and modulated over these optical signals. An attacker can intercept and decode these signals from tens to hundreds of meters away. We show an evaluation and discuss defensive and preventive countermeasures for this exfiltration attack.
2022-08-26
Kang, Dong Mug, Yoon, Sang Hun, Shin, Dae Kyo, Yoon, Young, Kim, Hyeon Min, Jang, Soo Hyun.  2021.  A Study on Attack Pattern Generation and Hybrid MR-IDS for In-Vehicle Network. 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC). :291–294.
The CAN (Controller Area Network) bus, which transmits and receives ECU control information in vehicle, has a critical risk of external intrusion because there is no standardized security system. Recently, the need for IDS (Intrusion Detection System) to detect external intrusion of CAN bus is increasing, and high accuracy and real-time processing for intrusion detection are required. In this paper, we propose Hybrid MR (Machine learning and Ruleset) -IDS based on machine learning and ruleset to improve IDS performance. For high accuracy and detection rate, feature engineering was conducted based on the characteristics of the CAN bus, and the generated features were used in detection step. The proposed Hybrid MR-IDS can cope to various attack patterns that have not been learned in previous, as well as the learned attack patterns by using both advantages of rule set and machine learning. In addition, by collecting CAN data from an actual vehicle in driving and stop state, five attack scenarios including physical effects during all driving cycle are generated. Finally, the Hybrid MR-IDS proposed in this paper shows an average of 99% performance based on F1-score.
2022-06-09
Qiu, Bin, Chen, Ke, He, Kexun, Fang, Xiyu.  2021.  Research on vehicle network intrusion detection technology based on dynamic data set. 2021 IEEE 3rd International Conference on Frontiers Technology of Information and Computer (ICFTIC). :386–390.
A new round of scientific and technological revolution and industrial reform promote the intelligent development of automobile and promote the deep integration of automobile with Internet, big data, communication and other industries. At the same time, it also brings network and data security problems to automobile, which is very easy to cause national security and social security risks. Intelligent vehicle Ethernet intrusion detection can effectively alleviate the security risk of vehicle network, but the complex attack means and vehicle compatibility have not been effectively solved. This research takes the vehicle Ethernet as the research object, constructs the machine learning samples for neural network, applies the self coding network technology combined with the original characteristics to the network intrusion detection algorithm, and studies a self-learning vehicle Ethernet intrusion detection algorithm. Through the application and test of vehicle terminal, the algorithm generated in this study can be used for vehicle terminal with Ethernet communication function, and can effectively resist 34 kinds of network attacks in four categories. This method effectively improves the network security defense capability of vehicle Ethernet, provides technical support for the network security of intelligent vehicles, and can be widely used in mass-produced intelligent vehicles with Ethernet.
2021-12-20
Guri, Mordechai.  2021.  LANTENNA: Exfiltrating Data from Air-Gapped Networks via Ethernet Cables Emission. 2021 IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC). :745–754.
In this paper we present LANTENNA - a new type of an electromagnetic attack allowing adversaries to leak sensitive data from isolated, air-gapped networks. Malicious code in air-gapped computers gathers sensitive data and then encodes it over radio waves emanated from Ethernet cables. A nearby receiving device can intercept the signals wirelessly, decodes the data and sends it to the attacker. We discuss the exiltration techniques, examine the covert channel characteristics, and provide implementation details. Notably, the malicious code can run in an ordinary user mode process, and can successfully operates from within a virtual machine. We evaluate the covert channel in different scenarios and present a set of of countermeasures. Our experiments show that with the LANTENNA attack, data can be exfiltrated from air-gapped computers to a distance of several meters away.
2021-09-21
Vaseer, Gurveen.  2020.  Multi-Attack Detection Using Forensics and Neural Network Based Prevention for Secure MANETs. 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT). :1–6.
This paper presents Forensic methods for detection and prevention of multiple attacks along with neural networks like Denial-of-Service (DoS), probe, vampire, and User-to-Root (U2R) attacks, in a Mobile Ad hoc Network (MANET). We accomplish attacker(s) detection and prevention percentage upto 99% in varied node density scenarios 50/100/150.
2021-08-11
Li, Yuekang, Chen, Hongxu, Zhang, Cen, Xiong, Siyang, Liu, Chaoyi, Wang, Yi.  2020.  Ori: A Greybox Fuzzer for SOME/IP Protocols in Automotive Ethernet. 2020 27th Asia-Pacific Software Engineering Conference (APSEC). :495—499.
With the emergence of smart automotive devices, the data communication between these devices gains increasing importance. SOME/IP is a light-weight protocol to facilitate inter- process/device communication, which supports both procedural calls and event notifications. Because of its simplicity and capability, SOME/IP is getting adopted by more and more automotive devices. Subsequently, the security of SOME/IP applications becomes crucial. However, previous security testing techniques cannot fit the scenario of vulnerability detection SOME/IP applications due to miscellaneous challenges such as the difficulty of server-side testing programs in parallel, etc. By addressing these challenges, we propose Ori - a greybox fuzzer for SOME/IP applications, which features two key innovations: the attach fuzzing mode and structural mutation. The attach fuzzing mode enables Ori to test server programs efficiently, and the structural mutation allows Ori to generate valid SOME/IP packets to reach deep paths of the target program effectively. Our evaluation shows that Ori can detect vulnerabilities in SOME/IP applications effectively and efficiently.
2021-07-27
Su, K.-M., Liu, I.-H., Li, J.-S..  2020.  The Risk of Industrial Control System Programmable Logic Controller Default Configurations. 2020 International Computer Symposium (ICS). :443—447.
In recent years, many devices in industrial control systems (ICS) equip Ethernet modules for more efficient communication and more fiexible deployment. Many communication protocols of those devices are based on internet protocol, which brings the above benefits but also makes it easier to access by anyone including attackers. In the case of using the factory default configurations, we wiiˆ demonstrate how to easily modify the programmable logic controllers (PLCs) program through the Integrated Development Environment provided by the manufacturer under the security protection of PLC not set properly and discuss the severity of it.
2020-09-28
Gu, Bruce, Wang, Xiaodong, Qu, Youyang, Jin, Jiong, Xiang, Yong, Gao, Longxiang.  2019.  Context-Aware Privacy Preservation in a Hierarchical Fog Computing System. ICC 2019 - 2019 IEEE International Conference on Communications (ICC). :1–6.
Fog computing faces various security and privacy threats. Internet of Things (IoTs) devices have limited computing, storage, and other resources. They are vulnerable to attack by adversaries. Although the existing privacy-preserving solutions in fog computing can be migrated to address some privacy issues, specific privacy challenges still exist because of the unique features of fog computing, such as the decentralized and hierarchical infrastructure, mobility, location and content-aware applications. Unfortunately, privacy-preserving issues and resources in fog computing have not been systematically identified, especially the privacy preservation in multiple fog node communication with end users. In this paper, we propose a dynamic MDP-based privacy-preserving model in zero-sum game to identify the efficiency of the privacy loss and payoff changes to preserve sensitive content in a fog computing environment. First, we develop a new dynamic model with MDP-based comprehensive algorithms. Then, extensive experimental results identify the significance of the proposed model compared with others in more effectively and feasibly solving the discussed issues.
2020-03-02
Yoshikawa, Takashi, Date, Susumu, Watashiba, Yasuhiro, Matsui, Yuki, Nozaki, Kazunori, Murakami, Shinya, Lee, Chonho, Hida, Masami, Shimojo, Shinji.  2019.  Secure Staging System for Highly Confidential Data Built on Reconfigurable Computing Platform. 2019 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC). :308–313.
Cloud use for High Performance Computing (HPC) and High Performance Data Analytics (HPDA) is increasing. The data are transferred to the cloud and usually left there even after the data being processed. There is security concern for such data being left online. We propose secure staging system to prepare not only data but also computing platform for processing the data dynamically just while the data is processed. The data plane of the secure staging system has dynamic reconfigurability with several lower-than-IP-layer partitioning mechanisms. The control plane consists of a scheduler and a resource provisioner working together to reconfigure the partitioning in the data plane dynamically. A field trial system is deployed for treating secure data in dental school to be processed in the computer center with the location distance of 1km. The system shows high score in the Common Vulnerability Scoring System (CVSS) evaluation.
2020-02-17
Liu, Zhikun, Gui, Canzhi, Ma, Chao.  2019.  Design and Verification of Integrated Ship Monitoring Network with High Reliability and Zero-Time Self-Healing. 2019 Chinese Control And Decision Conference (CCDC). :2348–2351.
The realization principle of zero-time self-healing network communication technology is introduced. According to the characteristics of ship monitoring, an integrated ship monitoring network is designed, which integrates the information of ship monitoring equipment. By setting up a network performance test environment, the information delay of self-healing network switch is tested, and the technical characteristics of "no packet loss" are verified. Zero-time self-healing network communication technology is an innovative technology in the design of ship monitoring network. It will greatly reduce the laying of network cables, reduce the workload of information upgrade and transformation of ships, and has the characteristics of continuous maintenance of the network. It has a wide application prospect.
2018-09-12
Yousef, K. M. A., AlMajali, A., Hasan, R., Dweik, W., Mohd, B..  2017.  Security risk assessment of the PeopleBot mobile robot research platform. 2017 International Conference on Electrical and Computing Technologies and Applications (ICECTA). :1–5.

Nowadays, robots are widely ubiquitous and integral part in our daily lives, which can be seen almost everywhere in industry, hospitals, military, etc. To provide remote access and control, usually robots are connected to local network or to the Internet through WiFi or Ethernet. As such, it is of great importance and of a critical mission to maintain the safety and the security access of such robots. Security threats may result in completely preventing the access and control of the robot. The consequences of this may be catastrophic and may cause an immediate physical damage to the robot. This paper aims to present a security risk assessment of the well-known PeopleBot; a mobile robot platform from Adept MobileRobots Company. Initially, we thoroughly examined security threats related to remote accessing the PeopleBot robot. We conducted an impact-oriented analysis approach on the wireless communication medium; the main method considered to remotely access the PeopleBot robot. Numerous experiments using SSH and server-client applications were conducted, and they demonstrated that certain attacks result in denying remote access service to the PeopleBot robot. Consequently and dangerously the robot becomes unavailable. Finally, we suggested one possible mitigation and provided useful conclusions to raise awareness of possible security threats on the robotic systems; especially when the robots are involved in critical missions or applications.

2018-03-05
Khan, J..  2017.  Vehicle Network Security Testing. 2017 Third International Conference on Sensing, Signal Processing and Security (ICSSS). :119–123.

In-vehicle networks like Controller Area Network, FlexRay, Ethernet are now subjected to huge security threats where unauthorized entities can take control of the whole vehicle. This can pose very serious threats including accidents. Security features like encryption, message authentication are getting implemented in vehicle networks to counteract these issues. This paper is proposing a set of novel validation techniques to ensure that vehicle network security is fool proof. Security validation against requirements, security validation using white box approach, black box approach and grey box approaches are put forward. Test system architecture, validation of message authentication, decoding the patterns from vehicle network data, using diagnostics as a security loophole, V2V V2X loopholes, gateway module security testing are considered in detail. Aim of this research paper is to put forward a set of tools and methods for finding and reporting any security loopholes in the in-vehicle network security implementation.

2017-09-05
Schulz, Matthias, Klapper, Patrick, Hollick, Matthias, Tews, Erik, Katzenbeisser, Stefan.  2016.  Trust The Wire, They Always Told Me!: On Practical Non-Destructive Wire-Tap Attacks Against Ethernet. Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks. :43–48.

Ethernet technology dominates enterprise and home network installations and is present in datacenters as well as parts of the backbone of the Internet. Due to its wireline nature, Ethernet networks are often assumed to intrinsically protect the exchanged data against attacks carried out by eavesdroppers and malicious attackers that do not have physical access to network devices, patch panels and network outlets. In this work, we practically evaluate the possibility of wireless attacks against wired Ethernet installations with respect to resistance against eavesdropping by using off-the-shelf software-defined radio platforms. Our results clearly indicate that twisted-pair network cables radiate enough electromagnetic waves to reconstruct transmitted frames with negligible bit error rates, even when the cables are not damaged at all. Since this allows an attacker to stay undetected, it urges the need for link layer encryption or physical layer security to protect confidentiality.

2015-05-06
Sumec, S..  2014.  Software tool for verification of sampled values transmitted via IEC 61850-9-2 protocol. Electric Power Engineering (EPE), Proccedings of the 2014 15th International Scientific Conference on. :113-117.

Nowadays is increasingly used process bus for communication of equipments in substations. In addition to signaling various statuses of device using GOOSE messages it is possible to transmit measured values, which can be used for diagnostic of system or other advanced functions. Transmission of such values via Ethernet is well defined in protocol IEC 61850-9-2. Paper introduces a tool designed for verification of sampled values generated by various devices using this protocol.