Visible to the public Biblio

Found 236 results

Filters: Keyword is Robustness  [Clear All Filters]
2018-05-30
Liu, C., Feng, Y., Fan, M., Wang, G..  2008.  PKI Mesh Trust Model Based on Trusted Computing. 2008 The 9th International Conference for Young Computer Scientists. :1401–1405.

Different organizations or countries maybe adopt different PKI trust model in real applications. On a large scale, all certification authorities (CA) and end entities construct a huge mesh network. PKI trust model exhibits unstructured mesh network as a whole. However, mesh trust model worsens computational complexity in certification path processing when the number of PKI domains increases. This paper proposes an enhanced mesh trust model for PKI. Keys generation and signature are fulfilled in Trusted Platform Module (TPM) for higher security level. An algorithm is suggested to improve the performance of certification path processing in this model. This trust model is less complex but more efficient and robust than the existing PKI trust models.

2018-05-24
Chen, L., Yue, D., Dou, C., Ge, H., Lu, J., Yang, X..  2017.  Cascading Failure Initially from Power Grid in Interdependent Networks. 2017 IEEE Conference on Energy Internet and Energy System Integration (EI2). :1–5.

The previous consideration of power grid focuses on the power system itself, however, the recent work is aiming at both power grid and communication network, this coupling networks are firstly called as interdependent networks. Prior study on modeling interdependent networks always extracts main features from real networks, the model of network A and network B are completely symmetrical, both degree distribution in intranetwork and support pattern in inter-network, but in reality this circumstance is hard to attain. In this paper, we deliberately set both networks with same topology in order to specialized research the support pattern between networks. In terms of initial failure from power grid or communication network, we find the remaining survival fraction is greatly disparate, and the failure initially from power grid is more harmful than failure initially from communication network, which all show the vulnerability of interdependency and meantime guide us to pay more attention to the protection measures for power grid.

Dey, A. K., Gel, Y. R., Poor, H. V..  2017.  Motif-Based Analysis of Power Grid Robustness under Attacks. 2017 IEEE Global Conference on Signal and Information Processing (GlobalSIP). :1015–1019.

Network motifs are often called the building blocks of networks. Analysis of motifs is found to be an indispensable tool for understanding local network structure, in contrast to measures based on node degree distribution and its functions that primarily address a global network topology. As a result, networks that are similar in terms of global topological properties may differ noticeably at a local level. In the context of power grids, this phenomenon of the impact of local structure has been recently documented in fragility analysis and power system classification. At the same time, most studies of power system networks still tend to focus on global topo-logical measures of power grids, often failing to unveil hidden mechanisms behind vulnerability of real power systems and their dynamic response to malfunctions. In this paper a pilot study of motif-based analysis of power grid robustness under various types of intentional attacks is presented, with the goal of shedding light on local dynamics and vulnerability of power systems.

Bampis, C. G., Rusu, C., Hajj, H., Bovik, A. C..  2017.  Robust Matrix Factorization for Collaborative Filtering in Recommender Systems. 2017 51st Asilomar Conference on Signals, Systems, and Computers. :415–419.

Recently, matrix factorization has produced state-of-the-art results in recommender systems. However, given the typical sparsity of ratings, the often large problem scale, and the large number of free parameters that are often implied, developing robust and efficient models remains a challenge. Previous works rely on dense and/or sparse factor matrices to estimate unavailable user ratings. In this work we develop a new formulation for recommender systems that is based on projective non-negative matrix factorization, but relaxes the non-negativity constraint. Driven by a simple yet instructive intuition, the proposed formulation delivers promising and stable results that depend on a minimal number of parameters. Experiments that we conducted on two popular recommender system datasets demonstrate the efficiency and promise of our proposed method. We make available our code and datasets at https://github.com/christosbampis/PCMF\_release.

2018-05-01
Xie, T., Zhou, Q., Hu, J., Shu, L., Jiang, P..  2017.  A Sequential Multi-Objective Robust Optimization Approach under Interval Uncertainty Based on Support Vector Machines. 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM). :2088–2092.

Interval uncertainty can cause uncontrollable variations in the objective and constraint values, which could seriously deteriorate the performance or even change the feasibility of the optimal solutions. Robust optimization is to obtain solutions that are optimal and minimally sensitive to uncertainty. In this paper, a sequential multi-objective robust optimization (MORO) approach based on support vector machines (SVM) is proposed. Firstly, a sequential optimization structure is adopted to ease the computational burden. Secondly, SVM is used to construct a classification model to classify design alternatives into feasible or infeasible. The proposed approach is tested on a numerical example and an engineering case. Results illustrate that the proposed approach can reasonably approximate solutions obtained from the existing sequential MORO approach (SMORO), while the computational costs are significantly reduced compared with those of SMORO.

Benthall, S..  2017.  Assessing Software Supply Chain Risk Using Public Data. 2017 IEEE 28th Annual Software Technology Conference (STC). :1–5.

The software supply chain is a source of cybersecurity risk for many commercial and government organizations. Public data may be used to inform automated tools for detecting software supply chain risk during continuous integration and deployment. We link data from the National Vulnerability Database (NVD) with open version control data for the open source project OpenSSL, a widely used secure networking library that made the news when a significant vulnerability, Heartbleed, was discovered in 2014. We apply the Alhazmi-Malaiya Logistic (AML) model for software vulnerability discovery to this case. This model predicts a sigmoid cumulative vulnerability discovery function over time. Some versions of OpenSSL do not conform to the predictions of the model because they contain a temporary plateau in the cumulative vulnerability discovery plot. This temporary plateau feature is an empirical signature of a security failure mode that may be useful in future studies of software supply chain risk.

Fraj, R. Ben, Beroulle, V., Fourty, N., Meddeb, A..  2017.  A Global Approach for the Improvement of UHF RFID Safety and Security. 2017 12th International Conference on Design Technology of Integrated Systems In Nanoscale Era (DTIS). :1–2.
Radio Frequency Identification (RFID) devices are widely used in many domains such as tracking, marking and management of goods, smart houses (IoT), supply chains, etc. However, there is a big number of challenges which must still be overcome to ensure RFID security and privacy. In addition, due to the low cost and low consumption power of UHF RFID tags, communications between tags and readers are not robust. In this paper, we present our approach to evaluate at the same time the security and the safety of UHF RFID systems in order to improve them. First, this approach allows validating UHF RFID systems by simulation of the system behavior in presence of faults in a real environment. Secondly, evaluating the system robustness and the security of the used protocols, this approach will enable us to propose the development of new more reliable and secure protocols. Finally, it leads us to develop and validate new low cost and secure tag hardware architectures.
2018-04-11
Cui, T., Yu, H., Hao, F..  2017.  Security Control for Linear Systems Subject to Denial-of-Service Attacks. 2017 36th Chinese Control Conference (CCC). :7673–7678.

This paper studies the stability of event-triggered control systems subject to Denial-of-Service attacks. An improved method is provided to increase frequency and duration of the DoS attacks where closed-loop stability is not destroyed. A two-mode switching control method is adopted to maintain stability of event-triggered control systems in the presence of attacks. Moreover, this paper reveals the relationship between robustness of systems against DoS attacks and lower bound of the inter-event times, namely, enlarging the inter-execution time contributes to enhancing the robustness of the systems against DoS attacks. Finally, some simulations are presented to illustrate the efficiency and feasibility of the obtained results.

2018-04-04
Parchami, M., Bashbaghi, S., Granger, E..  2017.  CNNs with cross-correlation matching for face recognition in video surveillance using a single training sample per person. 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). :1–6.

In video surveillance, face recognition (FR) systems seek to detect individuals of interest appearing over a distributed network of cameras. Still-to-video FR systems match faces captured in videos under challenging conditions against facial models, often designed using one reference still per individual. Although CNNs can achieve among the highest levels of accuracy in many real-world FR applications, state-of-the-art CNNs that are suitable for still-to-video FR, like trunk-branch ensemble (TBE) CNNs, represent complex solutions for real-time applications. In this paper, an efficient CNN architecture is proposed for accurate still-to-video FR from a single reference still. The CCM-CNN is based on new cross-correlation matching (CCM) and triplet-loss optimization methods that provide discriminant face representations. The matching pipeline exploits a matrix Hadamard product followed by a fully connected layer inspired by adaptive weighted cross-correlation. A triplet-based training approach is proposed to optimize the CCM-CNN parameters such that the inter-class variations are increased, while enhancing robustness to intra-class variations. To further improve robustness, the network is fine-tuned using synthetically-generated faces based on still and videos of non-target individuals. Experiments on videos from the COX Face and Chokepoint datasets indicate that the CCM-CNN can achieve a high level of accuracy that is comparable to TBE-CNN and HaarNet, but with a significantly lower time and memory complexity. It may therefore represent the better trade-off between accuracy and complexity for real-time video surveillance applications.

2018-03-19
Ukwandu, E., Buchanan, W. J., Russell, G..  2017.  Performance Evaluation of a Fragmented Secret Share System. 2017 International Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber SA). :1–6.
There are many risks in moving data into public storage environments, along with an increasing threat around large-scale data leakage. Secret sharing scheme has been proposed as a keyless and resilient mechanism to mitigate this, but scaling through large scale data infrastructure has remained the bane of using secret sharing scheme in big data storage and retrievals. This work applies secret sharing methods as used in cryptography to create robust and secure data storage and retrievals in conjunction with data fragmentation. It outlines two different methods of distributing data equally to storage locations as well as recovering them in such a manner that ensures consistent data availability irrespective of file size and type. Our experiments consist of two different methods - data and key shares. Using our experimental results, we were able to validate previous works on the effects of threshold on file recovery. Results obtained also revealed the varying effects of share writing to and retrieval from storage locations other than computer memory. The implication is that increase in fragment size at varying file and threshold sizes rather than add overheads to file recovery, do so on creation instead, underscoring the importance of choosing a varying fragment size as file size increases.
2018-03-05
Chen, Q., Bridges, R. A..  2017.  Automated Behavioral Analysis of Malware: A Case Study of WannaCry Ransomware. 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA). :454–460.

Ransomware, a class of self-propagating malware that uses encryption to hold the victims' data ransom, has emerged in recent years as one of the most dangerous cyber threats, with widespread damage; e.g., zero-day ransomware WannaCry has caused world-wide catastrophe, from knocking U.K. National Health Service hospitals offline to shutting down a Honda Motor Company in Japan [1]. Our close collaboration with security operations of large enterprises reveals that defense against ransomware relies on tedious analysis from high-volume systems logs of the first few infections. Sandbox analysis of freshly captured malware is also commonplace in operation. We introduce a method to identify and rank the most discriminating ransomware features from a set of ambient (non-attack) system logs and at least one log stream containing both ambient and ransomware behavior. These ranked features reveal a set of malware actions that are produced automatically from system logs, and can help automate tedious manual analysis. We test our approach using WannaCry and two polymorphic samples by producing logs with Cuckoo Sandbox during both ambient, and ambient plus ransomware executions. Our goal is to extract the features of the malware from the logs with only knowledge that malware was present. We compare outputs with a detailed analysis of WannaCry allowing validation of the algorithm's feature extraction and provide analysis of the method's robustness to variations of input data—changing quality/quantity of ambient data and testing polymorphic ransomware. Most notably, our patterns are accurate and unwavering when generated from polymorphic WannaCry copies, on which 63 (of 63 tested) antivirus (AV) products fail.

2018-02-27
He, F., Rao, N. S. V., Ma, C. Y. T..  2017.  Game-Theoretic Analysis of System of Systems with Inherent Robustness Parameters. 2017 20th International Conference on Information Fusion (Fusion). :1–9.

Large-scale infrastructures are critical to economic and social development, and hence their continued performance and security are of high national importance. Such an infrastructure often is a system of systems, and its functionality critically depends on the inherent robustness of its constituent systems and its defense strategy for countering attacks. Additionally, interdependencies between the systems play another critical role in determining the infrastructure robustness specified by its survival probability. In this paper, we develop game-theoretic models between a defender and an attacker for a generic system of systems using inherent parameters and conditional survival probabilities that characterize the interdependencies. We derive Nash Equilibrium conditions for the cases of interdependent and independent systems of systems under sum-form utility functions. We derive expressions for the infrastructure survival probability that capture its dependence on cost and system parameters, and also on dependencies that are specified by conditional probabilities. We apply the results to cyber-physical systems which show the effects on system survival probability due to defense and attack intensities, inherent robustness, unit cost, target valuation, and interdependencies.

2018-02-21
Signorello, S., Marchal, S., François, J., Festor, O., State, R..  2017.  Advanced interest flooding attacks in named-data networking. 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA). :1–10.

The Named-Data Networking (NDN) has emerged as a clean-slate Internet proposal on the wave of Information-Centric Networking. Although the NDN's data-plane seems to offer many advantages, e.g., native support for multicast communications and flow balance, it also makes the network infrastructure vulnerable to a specific DDoS attack, the Interest Flooding Attack (IFA). In IFAs, a botnet issuing unsatisfiable content requests can be set up effortlessly to exhaust routers' resources and cause a severe performance drop to legitimate users. So far several countermeasures have addressed this security threat, however, their efficacy was proved by means of simplistic assumptions on the attack model. Therefore, we propose a more complete attack model and design an advanced IFA. We show the efficiency of our novel attack scheme by extensively assessing some of the state-of-the-art countermeasures. Further, we release the software to perform this attack as open source tool to help design future more robust defense mechanisms.

2018-02-14
Kravitz, D. W., Cooper, J..  2017.  Securing user identity and transactions symbiotically: IoT meets blockchain. 2017 Global Internet of Things Summit (GIoTS). :1–6.
Swarms of embedded devices provide new challenges for privacy and security. We propose Permissioned Blockchains as an effective way to secure and manage these systems of systems. A long view of blockchain technology yields several requirements absent in extant blockchain implementations. Our approach to Permissioned Blockchains meets the fundamental requirements for longevity, agility, and incremental adoption. Distributed Identity Management is an inherent feature of our Permissioned Blockchain and provides for resilient user and device identity and attribute management.
Zhao, J., Shetty, S., Pan, J. W..  2017.  Feature-based transfer learning for network security. MILCOM 2017 - 2017 IEEE Military Communications Conference (MILCOM). :17–22.

New and unseen network attacks pose a great threat to the signature-based detection systems. Consequently, machine learning-based approaches are designed to detect attacks, which rely on features extracted from network data. The problem is caused by different distribution of features in the training and testing datasets, which affects the performance of the learned models. Moreover, generating labeled datasets is very time-consuming and expensive, which undercuts the effectiveness of supervised learning approaches. In this paper, we propose using transfer learning to detect previously unseen attacks. The main idea is to learn the optimized representation to be invariant to the changes of attack behaviors from labeled training sets and non-labeled testing sets, which contain different types of attacks and feed the representation to a supervised classifier. To the best of our knowledge, this is the first effort to use a feature-based transfer learning technique to detect unseen variants of network attacks. Furthermore, this technique can be used with any common base classifier. We evaluated the technique on publicly available datasets, and the results demonstrate the effectiveness of transfer learning to detect new network attacks.

2018-02-02
Kim, C..  2016.  Cyber-resilient industrial control system with diversified architecture and bus monitoring. 2016 World Congress on Industrial Control Systems Security (WCICSS). :1–6.

This paper focuses on exploitable cyber vulnerabilities in industrial control systems (ICS) and on a new approach of resiliency against them. Even with numerous metrics and methods for intrusion detection and mitigation strategy, a complete detection and deterrence of cyber-attacks for ICS is impossible. Countering the impact and consequence of possible malfunctions caused by such attacks in the safety-critical ICS's, this paper proposes new controller architecture to fail-operate even under compromised situations. The proposed new ICS is realized with diversification of hardware/software and unidirectional communication in alerting suspicious infiltration to upper-level management. Equipped with control bus monitoring, this operation-basis approach of infiltration detection would become a truly cyber-resilient ICS. The proposed system is tested in a lab hardware experimentation setup and on a cybersecurity test bed, DeterLab, for validation.

2018-01-23
Chandran, V., Sekhar, A..  2017.  A secure and reliable channel error correction technique for picode. 2017 IEEE International Conference on Electrical, Instrumentation and Communication Engineering (ICEICE). :1–4.

With the advent of QR readers and mobile phones the use of graphical codes like QR codes and data matrix code has become very popular. Despite the noise like appearance, it has the advantage of high data capacity, damage resistance and fast decoding robustness. The proposed system embeds the image chosen by the user to develop visually appealing QR codes with improved decoding robustness using BCH algorithm. The QR information bits are encoded into luminance value of the input image. The developed Picode can inspire perceptivity in multimedia applications and can ensure data security for instances like online payments. The system is implemented on Matlab and ARM cortex A8.

2018-01-10
Ouali, C., Dumouchel, P., Gupta, V..  2017.  Robust video fingerprints using positions of salient regions. 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). :3041–3045.
This paper describes a video fingerprinting system that is highly robust to audio and video transformations. The proposed system adapts a robust audio fingerprint extraction approach to video fingerprinting. The audio fingerprinting system converts the spectrogram into binary images, and then encodes the positions of salient regions selected from each binary image. Visual features are extracted in a similar way from the video images. We propose two visual fingerprint generation methods where fingerprints encode the positions of salient regions of greyscale video images. Salient regions of the first method are selected based on the intensity values of the image, while the second method identifies the regions that represent the highest variations between two successive images. The similarity between two fingerprints is defined as the intersection between their elements. The search algorithm is speeded up by an efficient implementation on a Graphics Processing Unit (GPU). We evaluate the performance of the proposed video system on TRECVID 2009 and 2010 datasets, and we show that this system achieves promising results and outperforms other state-of-the-art video copy detection methods for queries that do not includes geometric transformations. In addition, we show the effectiveness of this system for a challenging audio+video copy detection task.
2017-12-28
Cai, C., Yuan, X., Wang, C..  2017.  Hardening Distributed and Encrypted Keyword Search via Blockchain. 2017 IEEE Symposium on Privacy-Aware Computing (PAC). :119–128.

Distributed storage platforms draw much attention due to their high reliability and scalability for handling a massive amount of data. To protect user and data privacy, encryption is considered as a necessary feature for production systems like Storj. But it prohibits the nodes from performing content search. To preserve the functionality, we observe that a protocol of integration with searchable encryption and keyword search via distributed hash table allows the nodes in a network to search over encrypted and distributed data. However, this protocol does not address a practical threat in a fully distributed scenario. Malicious nodes would sabotage search results, and easily infiltrate the system as the network grows. Using primitives such as MAC and verifiable data structure may empower the users to verify the search result, but the robustness of the overall system can hardly be ensured. In this paper, we address this issue by proposing a protocol that is seamlessly incorporated to encrypted search in distributed network to attest and monitor nodes. From the moment a node joins the system, it will be attested and continuously monitored through verifiable search queries. The result of each attestation is determined via a standard quorum-based voting protocol, and then recorded on the blockchain as a consensus view of trusted nodes. Based on the proposed protocols, malicious nodes can be detected and removed by a majority of nodes in a self-determining manner. To demonstrate the security and efficiency, we conduct robustness analysis against several potential attacks, and perform performance and overhead evaluation on the proposed protocol.

Shafee, S., Rajaei, B..  2017.  A secure steganography algorithm using compressive sensing based on HVS feature. 2017 Seventh International Conference on Emerging Security Technologies (EST). :74–78.

Steganography is the science of hiding information to send secret messages using the carrier object known as stego object. Steganographic technology is based on three principles including security, robustness and capacity. In this paper, we present a digital image hidden by using the compressive sensing technology to increase security of stego image based on human visual system features. The results represent which our proposed method provides higher security in comparison with the other presented methods. Bit Correction Rate between original secret message and extracted message is used to show the accuracy of this method.

Datta, A., Kar, S., Sinopoli, B., Weerakkody, S..  2016.  Accountability in cyber-physical systems. 2016 Science of Security for Cyber-Physical Systems Workshop (SOSCYPS). :1–3.

Our position is that a key component of securing cyber-physical systems (CPS) is to develop a theory of accountability that encompasses both control and computing systems. We envision that a unified theory of accountability in CPS can be built on a foundation of causal information flow analysis. This theory will support design and analysis of mechanisms at various stages of the accountability regime: attack detection, responsibility-assignment (e.g., attack identification or localization), and corrective measures (e.g., via resilient control) As an initial step in this direction, we summarize our results on attack detection in control systems. We use the Kullback-Liebler (KL) divergence as a causal information flow measure. We then recover, using information flow analyses, a set of existing results in the literature that were previously proved using different techniques. These results cover passive detection, stealthy attack characterization, and active detection. This research direction is related to recent work on accountability in computational systems [1], [2], [3], [4]. We envision that by casting accountability theories in computing and control systems in terms of causal information flow, we can provide a common foundation to develop a theory for CPS that compose elements from both domains.

He, S., Shu, Y., Cui, X., Wei, C., Chen, J., Shi, Z..  2017.  A Trust Management Based Framework for Fault-Tolerant Barrier Coverage in Sensor Networks. 2017 IEEE Wireless Communications and Networking Conference (WCNC). :1–6.

Barrier coverage has been widely adopted to prevent unauthorized invasion of important areas in sensor networks. As sensors are typically placed outdoors, they are susceptible to getting faulty. Previous works assumed that faulty sensors are easy to recognize, e.g., they may stop functioning or output apparently deviant sensory data. In practice, it is, however, extremely difficult to recognize faulty sensors as well as their invalid output. We, in this paper, propose a novel fault-tolerant intrusion detection algorithm (TrusDet) based on trust management to address this challenging issue. TrusDet comprises of three steps: i) sensor-level detection, ii) sink-level decision by collective voting, and iii) trust management and fault determination. In the Step i) and ii), TrusDet divides the surveillance area into a set of fine- grained subareas and exploits temporal and spatial correlation of sensory output among sensors in different subareas to yield a more accurate and robust performance of barrier coverage. In the Step iii), TrusDet builds a trust management based framework to determine the confidence level of sensors being faulty. We implement TrusDet on HC- SR501 infrared sensors and demonstrate that TrusDet has a desired performance.

Ouffoué, G., Zaidi, F., Cavalli, A. R., Lallali, M..  2017.  Model-Based Attack Tolerance. 2017 31st International Conference on Advanced Information Networking and Applications Workshops (WAINA). :68–73.

Software-based systems are nowadays complex and highly distributed. In contrast, existing intrusion detection mechanisms are not always suitable for protecting these systems against new and sophisticated attacks that increasingly appear. In this paper, we present a new generic approach that combines monitoring and formal methods in order to ensure attack-tolerance at a high level of abstraction. Our experiments on an authentication Web application show that this method is effective and realistic to tolerate a variety of attacks.

El-Khamy, S. E., Korany, N. O., El-Sherif, M. H..  2017.  Correlation based highly secure image hiding in audio signals using wavelet decomposition and chaotic maps hopping for 5G multimedia communications. 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS). :1–3.

Audio Steganography is the technique of hiding any secret information behind a cover audio file without impairing its quality. Data hiding in audio signals has various applications such as secret communications and concealing data that may influence the security and safety of governments and personnel and has possible important applications in 5G communication systems. This paper proposes an efficient secure steganography scheme based on the high correlation between successive audio signals. This is similar to the case of differential pulse coding modulation technique (DPCM) where encoding uses the redundancy in sample values to encode the signals with lower bit rate. Discrete Wavelet Transform (DWT) of audio samples is used to store hidden data in the least important coefficients of Haar transform. We use the benefit of the small differences between successive samples generated from encoding of the cover audio signal wavelet coefficients to hide image data without making a remarkable change in the cover audio signal. instead of changing of actual audio samples so this doesn't perceptually degrade the audio signal and provides higher hiding capacity with lower distortion. To further increase the security of the image hiding process, the image to be hidden is divided into blocks and the bits of each block are XORed with a different random sequence of logistic maps using hopping technique. The performance of the proposed algorithm has been estimated extensively against attacks and experimental results show that the proposed method achieves good robustness and imperceptibility.

2017-12-20
Raiola, P., Erb, D., Reddy, S. M., Becker, B..  2017.  Accurate Diagnosis of Interconnect Open Defects Based on the Robust Enhanced Aggressor Victim Model. 2017 30th International Conference on VLSI Design and 2017 16th International Conference on Embedded Systems (VLSID). :135–140.

Interconnect opens are known to be one of the predominant defects in nanoscale technologies. Automatic test pattern generation for open faults is challenging, because of their rather unstable behavior and the numerous electrical parameters which need to be considered. Thus, most approaches try to avoid accurate modeling of all constraints like the influence of the aggressors on the open net and use simplified fault models in order to detect as many faults as possible or make assumptions which decrease both complexity and accuracy. Yet, this leads to the problem that not only generated tests may be invalidated but also the localization of a specific fault may fail - in case such a model is used as basis for diagnosis. Furthermore, most of the models do not consider the problem of oscillating behavior, caused by feedback introduced by coupling capacitances, which occurs in almost all designs. In [1], the Robust Enhanced Aggressor Victim Model (REAV) and in [2] an extension to address the problem of oscillating behavior were introduced. The resulting model does not only consider the influence of all aggressors accurately but also guarantees robustness against oscillating behavior as well as process variations affecting the thresholds of gates driven by an open interconnect. In this work we present the first diagnostic classification algorithm for this model. This algorithm considers all constraints enforced by the REAV model accurately - and hence handles unknown values as well as oscillating behavior. In addition, it allows to distinguish faults at the same interconnect and thus reducing the area that has to be considered for physical failure analysis. Experimental results show the high efficiency of the new method handling circuits with up to 500,000 non-equivalent faults and considerably increasing the diagnostic resolution.