Visible to the public Biblio

Filters: Keyword is cyber-security  [Clear All Filters]
2021-01-22
Alghamdi, W., Schukat, M..  2020.  Practical Implementation of APTs on PTP Time Synchronisation Networks. 2020 31st Irish Signals and Systems Conference (ISSC). :1—5.
The Precision Time Protocol is essential for many time-sensitive and time-aware applications. However, it was never designed for security, and despite various approaches to harden this protocol against manipulation, it is still prone to cyber-attacks. Here Advanced Persistent Threats (APT) are of particular concern, as they may stealthily and over extended periods of time manipulate computer clocks that rely on the accurate functioning of this protocol. Simulating such attacks is difficult, as it requires firmware manipulation of network and PTP infrastructure components. Therefore, this paper proposes and demonstrates a programmable Man-in-the-Middle (pMitM) and a programmable injector (pInj) device that allow the implementation of a variety of attacks, enabling security researchers to quantify the impact of APTs on time synchronisation.
2020-12-17
Basheer, M. M., Varol, A..  2019.  An Overview of Robot Operating System Forensics. 2019 1st International Informatics and Software Engineering Conference (UBMYK). :1—4.
Autonomous technologies have been rapidly replacing the traditional manual intervention nearly in every aspect of our life. These technologies essentially require robots to carry out their automated processes. Nowadays, with the emergence of industry 4.0, robots are increasingly being remote-controlled via client-server connection, which creates uncommon vulnerabilities that allow attackers to target those robots. The development of an open source operational environment for robots, known as Robot Operating System (ROS) has come as a response to these demands. Security and privacy are crucial for the use of ROS as the chance of a compromise may lead to devastating ramifications. In this paper, an overview of ROS and the attacks targeting it are detailed and discussed. Followed by a review of the ROS security and digital investigation studies.
2020-11-20
Sui, T., Marelli, D., Sun, X., Fu, M..  2019.  Stealthiness of Attacks and Vulnerability of Stochastic Linear Systems. 2019 12th Asian Control Conference (ASCC). :734—739.
The security of Cyber-physical systems has been a hot topic in recent years. There are two main focuses in this area: Firstly, what kind of attacks can avoid detection, i.e., the stealthiness of attacks. Secondly, what kind of systems can stay stable under stealthy attacks, i.e., the invulnerability of systems. In this paper, we will give a detailed characterization for stealthy attacks and detection criterion for such attacks. We will also study conditions for the vulnerability of a stochastic linear system under stealthy attacks.
2020-10-05
Abusitta, Adel, Bellaiche, Martine, Dagenais, Michel.  2018.  A trust-based game theoretical model for cooperative intrusion detection in multi-cloud environments. 2018 21st Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN). :1—8.

Cloud systems are becoming more complex and vulnerable to attacks. Cyber attacks are also becoming more sophisticated and harder to detect. Therefore, it is increasingly difficult for a single cloud-based intrusion detection system (IDS) to detect all attacks, because of limited and incomplete knowledge about attacks. The recent researches in cyber-security have shown that a co-operation among IDSs can bring higher detection accuracy in such complex computer systems. Through collaboration, a cloud-based IDS can consult other IDSs about suspicious intrusions and increase the decision accuracy. The problem of existing cooperative IDS approaches is that they overlook having untrusted (malicious or not) IDSs that may negatively effect the decision about suspicious intrusions in the cloud. Moreover, they rely on a centralized architecture in which a central agent regulates the cooperation, which contradicts the distributed nature of the cloud. In this paper, we propose a framework that enables IDSs to distributively form trustworthy IDSs communities. We devise a novel decentralized algorithm, based on coalitional game theory, that allows a set of cloud-based IDSs to cooperatively set up their coalition in such a way to make their individual detection accuracy increase, even in the presence of untrusted IDSs.

2020-09-18
Ameli, Amir, Hooshyar, Ali, El-Saadany, Ehab F..  2019.  Development of a Cyber-Resilient Line Current Differential Relay. IEEE Transactions on Industrial Informatics. 15:305—318.
The application of line current differential relays (LCDRs) to protect transmission lines has recently proliferated. However, the reliance of LCDRs on digital communication channels has raised growing cyber-security concerns. This paper investigates the impacts of false data injection attacks (FDIAs) on the performance of LCDRs. It also develops coordinated attacks that involve multiple components, including LCDRs, and can cause false line tripping. Additionally, this paper proposes a technique for detecting FDIAs against LCDRs and differentiating them from actual faults in two-terminal lines. In this method, when an LCDR detects a fault, instead of immediately tripping the line, it calculates and measures the superimposed voltage at its local terminal, using the proposed positive-sequence (PS) and negative-sequence (NS) submodules. To calculate this voltage, the LCDR models the protected line in detail and replaces the rest of the system with a Thevenin equivalent that produces accurate responses at the line terminals. Afterwards, remote current measurement is utilized by the PS and NS submodules to compute each sequence's superimposed voltage. A difference between the calculated and the measured superimposed voltages in any sequence reveals that the remote current measurements are not authentic. Thus, the LCDR's trip command is blocked. The effectiveness of the proposed method is corroborated using simulation results for the IEEE 39-bus test system. The performance of the proposed method is also tested using an OPAL real-time simulator.
2020-06-26
Puccetti, Armand.  2019.  The European H2020 project VESSEDIA (Verification Engineering of Safety and SEcurity critical Dynamic Industrial Applications). 2019 22nd Euromicro Conference on Digital System Design (DSD). :588—591.

This paper presents an overview of the H2020 project VESSEDIA [9] aimed at verifying the security and safety of modern connected systems also called IoT. The originality relies in using Formal Methods inherited from high-criticality applications domains to analyze the source code at different levels of intensity, to gather possible faults and weaknesses. The analysis methods are mostly exhaustive an guarantee that, after analysis, the source code of the application is error-free. This paper is structured as follows: after an introductory section 1 giving some factual data, section 2 presents the aims and the problems addressed; section 3 describes the project's use-cases and section 4 describes the proposed approach for solving these problems and the results achieved until now; finally, section 5 discusses some remaining future work.

2020-03-23
Nakayama, Johannes, Plettenberg, Nils, Halbach, Patrick, Burbach, Laura, Ziefle, Martina, Calero Valdez, André.  2019.  Trust in Cyber Security Recommendations. 2019 IEEE International Professional Communication Conference (ProComm). :48–55.
Over the last two decades, the Internet has established itself as part of everyday life. With the recent invention of Social Media, the advent of the Internet of Things as well as trends like "bring your own device" (BYOD), the needs for connectivity rise exponentially and so does the need for proper cyber security. However, human factors research of cyber security in private contexts comprises only a small fraction of the research in the field. In this study, we investigated adoption behaviours and trust in cyber security in private contexts by measuring - among other trust measures - disposition to trust and providing five cyber security scenarios. In each, a person/agent recommends the use of a cyber security tool. Trust is then measured regarding the recommending agent. We compare personal, expert, institutional, and magazine recommendations along with manufacturer information in an exploratory study of sixty participants. We found that personal, expert and institutional recommendations were trusted significantly more than manufacturer information and magazine reports. The highest trust scores were produced by the expert and the personal recommendation scenarios. We argue that technical and professional communicators should aim for cyber security knowledge permeation through personal relations, educating people with high technology self-efficacy beliefs who then disperse the acquired knowledge.
2020-02-24
Brotsis, Sotirios, Kolokotronis, Nicholas, Limniotis, Konstantinos, Shiaeles, Stavros, Kavallieros, Dimitris, Bellini, Emanuele, Pavué, Clément.  2019.  Blockchain Solutions for Forensic Evidence Preservation in IoT Environments. 2019 IEEE Conference on Network Softwarization (NetSoft). :110–114.
The technological evolution brought by the Internet of things (IoT) comes with new forms of cyber-attacks exploiting the complexity and heterogeneity of IoT networks, as well as, the existence of many vulnerabilities in IoT devices. The detection of compromised devices, as well as the collection and preservation of evidence regarding alleged malicious behavior in IoT networks, emerge as areas of high priority. This paper presents a blockchain-based solution, which is designed for the smart home domain, dealing with the collection and preservation of digital forensic evidence. The system utilizes a private forensic evidence database, where the captured evidence is stored, along with a permissioned blockchain that allows providing security services like integrity, authentication, and non-repudiation, so that the evidence can be used in a court of law. The blockchain stores evidences' metadata, which are critical for providing the aforementioned services, and interacts via smart contracts with the different entities involved in an investigation process, including Internet service providers, law enforcement agencies and prosecutors. A high-level architecture of the blockchain-based solution is presented that allows tackling the unique challenges posed by the need for digitally handling forensic evidence collected from IoT networks.
2020-02-10
Naseem, Faraz, Babun, Leonardo, Kaygusuz, Cengiz, Moquin, S.J., Farnell, Chris, Mantooth, Alan, Uluagac, A. Selcuk.  2019.  CSPoweR-Watch: A Cyber-Resilient Residential Power Management System. 2019 International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData). :768–775.

Modern Energy Management Systems (EMS) are becoming increasingly complex in order to address the urgent issue of global energy consumption. These systems retrieve vital information from various Internet-connected resources in a smart grid to function effectively. However, relying on such resources results in them being susceptible to cyber attacks. Malicious actors can exploit the interconnections between the resources to perform nefarious tasks such as modifying critical firmware, sending bogus sensor data, or stealing sensitive information. To address this issue, we propose a novel framework that integrates PowerWatch, a solution that detects compromised devices in the smart grid with Cyber-secure Power Router (CSPR), a smart energy management system. The goal is to ascertain whether or not such a device has operated maliciously. To achieve this, PowerWatch utilizes a machine learning model that analyzes information from system and library call lists extracted from CSPR in order to detect malicious activity in the EMS. To test the efficacy of our framework, a number of unique attack scenarios were performed on a realistic testbed that comprises functional versions of CSPR and PowerWatch to monitor the electrical environment for suspicious activity. Our performance evaluation investigates the effectiveness of this first-of-its-kind merger and provides insight into the feasibility of developing future cybersecure EMS. The results of our experimental procedures yielded 100% accuracy for each of the attack scenarios. Finally, our implementation demonstrates that the integration of PowerWatch and CSPR is effective and yields minimal overhead to the EMS.

2020-01-21
Le, Duc C., Nur Zincir-Heywood, A..  2019.  Machine Learning Based Insider Threat Modelling and Detection. 2019 IFIP/IEEE Symposium on Integrated Network and Service Management (IM). :1–6.

Recently, malicious insider attacks represent one of the most damaging threats to companies and government agencies. This paper proposes a new framework in constructing a user-centered machine learning based insider threat detection system on multiple data granularity levels. System evaluations and analysis are performed not only on individual data instances but also on normal and malicious insiders, where insider scenario specific results and delay in detection are reported and discussed. Our results show that the machine learning based detection system can learn from limited ground truth and detect new malicious insiders with a high accuracy.

2019-10-23
Zieger, Andrej, Freiling, Felix, Kossakowski, Klaus-Peter.  2018.  The $\beta$-Time-to-Compromise Metric for Practical Cyber Security Risk Estimation. 2018 11th International Conference on IT Security Incident Management IT Forensics (IMF). :115-133.

To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose $\beta$-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a $\beta$-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.

2019-10-07
Aidan, J. S., Zeenia, Garg, U..  2018.  Advanced Petya Ransomware and Mitigation Strategies. 2018 First International Conference on Secure Cyber Computing and Communication (ICSCCC). :23–28.

In this cyber era, the cyber threats have reached a new level of menace and maturity. One of the major threat in this cyber world nowadays is ransomware attack which had affected millions of computers. Ransomware locks the valuable data with often unbreakable encryption codes making it inaccessible for both organization and consumers, thus demanding heavy ransom to decrypt the data. In this paper, advanced and improved version of the Petya ransomware has been introduced which has a reduced anti-virus detection of 33% which actually was 71% with the original version. System behavior is also monitored during the attack and analysis of this behavior is performed and described. Along with the behavioral analysis two mitigation strategies have also been proposed to defend the systems from the ransomware attack. This multi-layered approach for the security of the system will minimize the rate of infection as cybercriminals continue to refine their tactics, making it difficult for the organization's complacent development.

2019-09-05
Panfili, M., Giuseppi, A., Fiaschetti, A., Al-Jibreen, H. B., Pietrabissa, A., Priscoli, F. Delli.  2018.  A Game-Theoretical Approach to Cyber-Security of Critical Infrastructures Based on Multi-Agent Reinforcement Learning. 2018 26th Mediterranean Conference on Control and Automation (MED). :460-465.

This paper presents a control strategy for Cyber-Physical System defense developed in the framework of the European Project ATENA, that concerns Critical Infrastructure (CI) protection. The aim of the controller is to find the optimal security configuration, in terms of countermeasures to implement, in order to address the system vulnerabilities. The attack/defense problem is modeled as a multi-agent general sum game, where the aim of the defender is to prevent the most damage possible by finding an optimal trade-off between prevention actions and their costs. The problem is solved utilizing Reinforcement Learning and simulation results provide a proof of the proposed concept, showing how the defender of the protected CI is able to minimize the damage caused by his her opponents by finding the Nash equilibrium of the game in the zero-sum variant, and, in a more general scenario, by driving the attacker in the position where the damage she/he can cause to the infrastructure is lower than the cost it has to sustain to enforce her/his attack strategy.

2019-07-01
Zieger, A., Freiling, F., Kossakowski, K..  2018.  The β-Time-to-Compromise Metric for Practical Cyber Security Risk Estimation. 2018 11th International Conference on IT Security Incident Management IT Forensics (IMF). :115–133.

To manage cybersecurity risks in practice, a simple yet effective method to assess suchs risks for individual systems is needed. With time-to-compromise (TTC), McQueen et al. (2005) introduced such a metric that measures the expected time that a system remains uncompromised given a specific threat landscape. Unlike other approaches that require complex system modeling to proceed, TTC combines simplicity with expressiveness and therefore has evolved into one of the most successful cybersecurity metrics in practice. We revisit TTC and identify several mathematical and methodological shortcomings which we address by embedding all aspects of the metric into the continuous domain and the possibility to incorporate information about vulnerability characteristics and other cyber threat intelligence into the model. We propose β-TTC, a formal extension of TTC which includes information from CVSS vectors as well as a continuous attacker skill based on a β-distribution. We show that our new metric (1) remains simple enough for practical use and (2) gives more realistic predictions than the original TTC by using data from a modern and productively used vulnerability database of a national CERT.

2019-05-08
Le, Duc C., Khanchi, Sara, Zincir-Heywood, A. Nur, Heywood, Malcolm I..  2018.  Benchmarking Evolutionary Computation Approaches to Insider Threat Detection. Proceedings of the Genetic and Evolutionary Computation Conference. :1286–1293.
Insider threat detection represents a challenging problem to companies and organizations where malicious actions are performed by authorized users. This is a highly skewed data problem, where the huge class imbalance makes the adaptation of learning algorithms to the real world context very difficult. In this work, applications of genetic programming (GP) and stream active learning are evaluated for insider threat detection. Linear GP with lexicase/multi-objective selection is employed to address the problem under a stationary data assumption. Moreover, streaming GP is employed to address the problem under a non-stationary data assumption. Experiments conducted on a publicly available corporate data set show the capability of the approaches in dealing with extreme class imbalance, stream learning and adaptation to the real world context.
2018-06-20
Luo, J. S., Lo, D. C. T..  2017.  Binary malware image classification using machine learning with local binary pattern. 2017 IEEE International Conference on Big Data (Big Data). :4664–4667.

Malware classification is a critical part in the cyber-security. Traditional methodologies for the malware classification typically use static analysis and dynamic analysis to identify malware. In this paper, a malware classification methodology based on its binary image and extracting local binary pattern (LBP) features is proposed. First, malware images are reorganized into 3 by 3 grids which is mainly used to extract LBP feature. Second, the LBP is implemented on the malware images to extract features in that it is useful in pattern or texture classification. Finally, Tensorflow, a library for machine learning, is applied to classify malware images with the LBP feature. Performance comparison results among different classifiers with different image descriptors such as GIST, a spatial envelop, and the LBP demonstrate that our proposed approach outperforms others.

2018-04-02
Alharam, A. K., El-madany, W..  2017.  Complexity of Cyber Security Architecture for IoT Healthcare Industry: A Comparative Study. 2017 5th International Conference on Future Internet of Things and Cloud Workshops (FiCloudW). :246–250.

In recent years a wide range of wearable IoT healthcare applications have been developed and deployed. The rapid increase in wearable devices allows the transfer of patient personal information between different devices, at the same time personal health and wellness information of patients can be tracked and attacked. There are many techniques that are used for protecting patient information in medical and wearable devices. In this research a comparative study of the complexity for cyber security architecture and its application in IoT healthcare industry has been carried out. The objective of the study is for protecting healthcare industry from cyber attacks focusing on IoT based healthcare devices. The design has been implemented on Xilinx Zynq-7000, targeting XC7Z030 - 3fbg676 FPGA device.

2018-02-14
Huang, K., Zhou, C., Tian, Y. C., Tu, W., Peng, Y..  2017.  Application of Bayesian network to data-driven cyber-security risk assessment in SCADA networks. 2017 27th International Telecommunication Networks and Applications Conference (ITNAC). :1–6.

Supervisory control and data acquisition (SCADA) systems are the key driver for critical infrastructures and industrial facilities. Cyber-attacks to SCADA networks may cause equipment damage or even fatalities. Identifying risks in SCADA networks is critical to ensuring the normal operation of these industrial systems. In this paper we propose a Bayesian network-based cyber-security risk assessment model to dynamically and quantitatively assess the security risk level in SCADA networks. The major distinction of our work is that the proposed risk assessment method can learn model parameters from historical data and then improve assessment accuracy by incrementally learning from online observations. Furthermore, our method is able to assess the risk caused by unknown attacks. The simulation results demonstrate that the proposed approach is effective for SCADA security risk assessment.

2018-01-16
Feng, X., Zheng, Z., Cansever, D., Swami, A., Mohapatra, P..  2017.  A signaling game model for moving target defense. IEEE INFOCOM 2017 - IEEE Conference on Computer Communications. :1–9.

Incentive-driven advanced attacks have become a major concern to cyber-security. Traditional defense techniques that adopt a passive and static approach by assuming a fixed attack type are insufficient in the face of highly adaptive and stealthy attacks. In particular, a passive defense approach often creates information asymmetry where the attacker knows more about the defender. To this end, moving target defense (MTD) has emerged as a promising way to reverse this information asymmetry. The main idea of MTD is to (continuously) change certain aspects of the system under control to increase the attacker's uncertainty, which in turn increases attack cost/complexity and reduces the chance of a successful exploit in a given amount of time. In this paper, we go one step beyond and show that MTD can be further improved when combined with information disclosure. In particular, we consider that the defender adopts a MTD strategy to protect a critical resource across a network of nodes, and propose a Bayesian Stackelberg game model with the defender as the leader and the attacker as the follower. After fully characterizing the defender's optimal migration strategies, we show that the defender can design a signaling scheme to exploit the uncertainty created by MTD to further affect the attacker's behavior for its own advantage. We obtain conditions under which signaling is useful, and show that strategic information disclosure can be a promising way to further reverse the information asymmetry and achieve more efficient active defense.

2018-01-10
Bhattacharjee, S. Das, Talukder, A., Al-Shaer, E., Doshi, P..  2017.  Prioritized active learning for malicious URL detection using weighted text-based features. 2017 IEEE International Conference on Intelligence and Security Informatics (ISI). :107–112.

Data analytics is being increasingly used in cyber-security problems, and found to be useful in cases where data volumes and heterogeneity make it cumbersome for manual assessment by security experts. In practical cyber-security scenarios involving data-driven analytics, obtaining data with annotations (i.e. ground-truth labels) is a challenging and known limiting factor for many supervised security analytics task. Significant portions of the large datasets typically remain unlabelled, as the task of annotation is extensively manual and requires a huge amount of expert intervention. In this paper, we propose an effective active learning approach that can efficiently address this limitation in a practical cyber-security problem of Phishing categorization, whereby we use a human-machine collaborative approach to design a semi-supervised solution. An initial classifier is learnt on a small amount of the annotated data which in an iterative manner, is then gradually updated by shortlisting only relevant samples from the large pool of unlabelled data that are most likely to influence the classifier performance fast. Prioritized Active Learning shows a significant promise to achieve faster convergence in terms of the classification performance in a batch learning framework, and thus requiring even lesser effort for human annotation. An useful feature weight update technique combined with active learning shows promising classification performance for categorizing Phishing/malicious URLs without requiring a large amount of annotated training samples to be available during training. In experiments with several collections of PhishMonger's Targeted Brand dataset, the proposed method shows significant improvement over the baseline by as much as 12%.

2017-12-20
Rebaï, S. Bezzaoucha, Voos, H., Darouach, M..  2017.  A contribution to cyber-security of networked control systems: An event-based control approach. 2017 3rd International Conference on Event-Based Control, Communication and Signal Processing (EBCCSP). :1–7.
In the present paper, a networked control system under both cyber and physical attacks Is considered. An adapted formulation of the problem under physical attacks, data deception and false data injection attacks, is used for controller synthesis. Based on the classical fault tolerant detection (FTD) tools, a residual generator for attack/fault detection based on observers is proposed. An event-triggered and Bilinear Matrix Inequality (BMI) implementation is proposed in order to achieve novel and better security strategy. The purpose in using this implementation would be to reduce (limit) the total number of transmissions to only instances when the networked control system (NCS) needs attention. It is important to note that the main contribution of this paper is to establish the adequate event-triggered and BMI-based methodology so that the particular structure of the mixed attacked/faulty structure can be re-formulated within the classical FTD paradigm. Experimental results are given to illustrate the developed approach efficiency on a pilot three-tank system. The plant model is presented and the proposed control design is applied to the system.
2017-12-12
Zhu, X., Badr, Y., Pacheco, J., Hariri, S..  2017.  Autonomic Identity Framework for the Internet of Things. 2017 International Conference on Cloud and Autonomic Computing (ICCAC). :69–79.

The Internet of Things (IoT) will connect not only computers and mobile devices, but it will also interconnect smart buildings, houses, and cities, as well as electrical grids, gas plants, and water networks, automobiles, airplanes, etc. IoT will lead to the development of a wide range of advanced information services that are pervasive, cost-effective, and can be accessed from anywhere and at any time. However, due to the exponential number of interconnected devices, cyber-security in the IoT is a major challenge. It heavily relies on the digital identity concept to build security mechanisms such as authentication and authorization. Current centralized identity management systems are built around third party identity providers, which raise privacy concerns and present a single point of failure. In addition, IoT unconventional characteristics such as scalability, heterogeneity and mobility require new identity management systems to operate in distributed and trustless environments, and uniquely identify a particular device based on its intrinsic digital properties and its relation to its human owner. In order to deal with these challenges, we present a Blockchain-based Identity Framework for IoT (BIFIT). We show how to apply our BIFIT to IoT smart homes to achieve identity self-management by end users. In the context of smart home, the framework autonomously extracts appliances signatures and creates blockchain-based identifies for their appliance owners. It also correlates appliances signatures (low level identities) and owners identifies in order to use them in authentication credentials and to make sure that any IoT entity is behaving normally.

2017-11-20
Halevi, Tzipora, Memon, Nasir, Lewis, James, Kumaraguru, Ponnurangam, Arora, Sumit, Dagar, Nikita, Aloul, Fadi, Chen, Jay.  2016.  Cultural and Psychological Factors in Cyber-security. Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services. :318–324.

Increasing cyber-security presents an ongoing challenge to security professionals. Research continuously suggests that online users are a weak link in information security. This research explores the relationship between cyber-security and cultural, personality and demographic variables. This study was conducted in four different countries and presents a multi-cultural view of cyber-security. In particular, it looks at how behavior, self-efficacy and privacy attitude are affected by culture compared to other psychological and demographics variables (such as gender and computer expertise). It also examines what kind of data people tend to share online and how culture affects these choices. This work supports the idea of developing personality based UI design to increase users' cyber-security. Its results show that certain personality traits affect the user cyber-security related behavior across different cultures, which further reinforces their contribution compared to cultural effects.

2017-09-01
Dong Jin, Illinois Institute of Technology, Zhiyi Li, Illinois Institute of Technology, Christopher Hannon, Illinois Institute of Technology, Chen Chen, Argonne National Laboratory, Jianhui Wang, Argonne National Laboratory, Mohammad Shahidehpour, Illinois Institute of Technology, Cheol Won Lee, National Research Institute, South Korea.  2017.  Toward a Cyber Resilient and Secure Microgrid Using Software-Defined Networking. IEEE Transactions on Smart Grid. 8(5)

To build a resilient and secure microgrid in the face of growing cyber-attacks and cyber-mistakes, we present a software-defined networking (SDN)-based communication network architecture for microgrid operations. We leverage the global visibility, direct networking controllability, and programmability offered by SDN to investigate multiple security applications, including self-healing communication network management, real-time and uncertainty-aware communication network verification, and specification-based intrusion detection. We also expand a novel cyber-physical testing and evaluation platform that combines a power distribution system simulator (for microgrid energy services) and an SDN emulator with a distributed control environment (for microgrid communications). Experimental results demonstrate that the SDN-based communication architecture and applications can significantly enhance the resilience and security of microgrid operations against the realization of various cyber threats.

2017-04-03
Nicol, David M..  2016.  Risk Assessment of Cyber Access to Physical Infrastructure in Cyber-Physical Systems. Proceedings of the 2Nd ACM International Workshop on Cyber-Physical System Security. :1–2.